Efficacy and Safety of Dapagliflozin in the Elderly

Total Page:16

File Type:pdf, Size:1020Kb

Efficacy and Safety of Dapagliflozin in the Elderly Diabetes Care 1 fi Avivit Cahn,1 Ofri Mosenzon,1 Ef cacy and Safety of Stephen D. Wiviott,2 Aliza Rozenberg,1 fl Ilan Yanuv,1 Erica L. Goodrich,2 Dapagli ozin in the Elderly: Sabina A. Murphy,2 Deepak L. Bhatt,2 – Lawrence A. Leiter,3 Darren K. McGuire,4 Analysis From the DECLARE John P.H. Wilding,5 Ingrid A.M. Gause-Nilsson,6 TIMI 58 Study Martin Fredriksson,6 Peter A. Johansson,6 6 2 https://doi.org/10.2337/dc19-1476 Anna Maria Langkilde, Marc S. Sabatine, and Itamar Raz1 OBJECTIVE Data regarding the effects of sodium–glucose cotransporter 2 inhibitors in the elderly (age ‡65 years) and very elderly (age ‡75 years) are limited. RESEARCH DESIGN AND METHODS The Dapagliflozin Effect on Cardiovascular Events (DECLARE)–TIMI 58 assessed cardiac and renal outcomes of dapagliflozin versus placebo in patients with type 2 diabetes. Efficacy and safety outcomes were studied within age subgroups for treatment effect and age-based treatment interaction. 1Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, He- RESULTS brew University of Jerusalem, The Faculty of < ‡ < Medicine, Jerusalem, Israel CARDIOVASCULAR AND METABOLIC RISK Of the 17,160 patients, 9,253 were 65 years of age, 6,811 65 to 75 years, and 2 ‡ fl TIMI Study Group, Division of Cardiovascular 1,096 75 years. Dapagli ozin reduced the composite of cardiovascular death or Medicine, Brigham and Women’s Hospital and hospitalization for heart failure consistently, with a hazard ratio (HR) of 0.88 (95% CI Harvard Medical School, Boston, MA 0.72, 1.07), 0.77 (0.63, 0.94), and 0.94 (0.65, 1.36) in age-groups <65, ‡65 to <75, 3Li Ka Shing Knowledge Institute, St. Michael’s ‡ P fl Hospital, University of Toronto, Toronto, Canada and 75 years, respectively (interaction value 0.5277). Overall, dapagli ozin did 4 fi University of Texas Southwestern Medical Cen- not signi cantly decrease the rates of major adverse cardiovascular events, with HR ter, Dallas, TX 0.93(95% CI 0.81,1.08), 0.97 (0.83,1.13), and 0.84 (0.61, 1.15) inage-groups <65,‡65 5Institute of Ageing and Chronic Disease, Uni- to <75, and ‡75 years, respectively (interaction P value 0.7352). The relative risk versity of Liverpool, Liverpool, U.K. 6 reduction for the secondary prespecified cardiorenal composite outcome ranged AstraZeneca, Molndal,¨ Sweden from 18% to 28% in the different age-groups with no heterogeneity. Major Corresponding author: Avivit Cahn, avivit@ hadassah.org.il hypoglycemia was less frequent with dapagliflozin versus placebo, with HR 0.97 (95% < ‡ < Received 26 July 2019 and accepted 17 November CI 0.58, 1.64), 0.50 (0.29, 0.84), and 0.68 (0.29, 1.57) in age-groups 65, 65 to 75, 2019 and ‡75 years, respectively (interaction P value 0.2107). Safety outcomes, including Clinical trial reg. no. NCT01730534, clinicaltrials fractures, volume depletion, cancer, urinary tract infections, and amputations were .gov. balanced with dapagliflozin versus placebo, and acute kidney injury was reduced, all This article contains Supplementary Data online regardless of age. Genital infections that were serious or led to discontinuation of the at http://care.diabetesjournals.org/lookup/suppl/ study drug and diabetic ketoacidosis were uncommon, yet more frequent with doi:10.2337/dc19-1476/-/DC1. dapagliflozin versus placebo, without heterogeneity (interaction P values 0.1058 and © 2019 by the American Diabetes Association. 0.8433, respectively). Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More infor- CONCLUSIONS mation is available at http://www.diabetesjournals The overall efficacy and safety of dapagliflozin are consistent regardless of age. .org/content/license. Diabetes Care Publish Ahead of Print, published online December 16, 2019 2Efficacy and Safety of Dapagliflozin in Elderly Diabetes Care Type 2 diabetes mellitus (T2DM) is a that ascertained the CV and renal effects serious adverse events [SAEs]) or 7 (for prevalent disorder in the elderly, with of dapagliflozin on a large patient pop- nonserious AEs) days after the last dose of approximately one-quarter of people ulationbothwithandwithoutestablished the study drug or the closing visit. Major age .65 years with diabetes and an cardiovascular disease, including a large hypoglycemia was defined as symptomatic expected increase in rates of diabetes cohort of elderly and very elderly pa- events requiring external assistance due to in the upcoming years (1). Diabetes care tients (4). In the present analysis, we the severe impairment of consciousness in the elderly is challenging due to high studied the efficacy and safety of dapa- with prompt recovery after glucose or rates of concomitant comorbidities, func- gliflozin stratified by age. glucagon administration. The urinary tional disability, frailty, cognitive impair- tract and genital infections collected were ment,and polypharmacy. The complexity RESEARCH DESIGN AND METHODS only those that were either serious or led of treatment, side effects, and drug inter- Study Overview to the discontinuation of the study drug. actions are important considerations when In the DECLARE–TIMI 58 trial, a total of choosing the appropriate glucose-lowering 17,160 patients, including 7,907 age $65 Statistical Analysis pharmacotherapy for older patients with years and 1,096 age $75 years, with T2DM Prespecified age-groups were ,65, $65 diabetes (1,2). However, data regarding andestablishedatheroscleroticcardiovas- and ,75, and $75 years. The data pre- the efficacy and safety of glucose-lowering cular disease or risk factors, 41% and 59%, sented in the main article are for three agents are often lacking, particularly in respectively, were randomly assigned to age-groups (,65, $65 to ,75, and $75 the very elderly, age $75 years. The receive dapagliflozin or placebo in addi- years) to enable the description of data U.S. Food and Drug Administration as tiontostandardofcareandfollowedfora fromallagesubgroups,including65to,75 well as the European Medicines Agency median period of 4.2 years. The study years, which comprised 39.7% of the recommended collecting comprehen- enrolled patients at least 40 years old, study population. Efficacy and safety data limited to the prespecified age- sive data especially in very elderly with HbA1c 6.5%212.0% and creatinine patients with diabetes to enable ap- clearance $60 mL/min. Patients who re- groups are included in the Supplementary propriate assessment of their drug mained eligible after a 4–8-week placebo Material. responses (2,3). run-in period were randomized in a 1:1 Baseline characteristics are reported Sodium–glucose cotransporter 2 (SGLT2) double-blind fashion to dapagliflozin 10 mg as frequencies and percentages for cat- inhibitors have been available for the daily or matched placebo. All patients were egorical variables and as median and in- treatment of diabetes since 2012. Mul- to be treated according to regional stand- terquartile range (IQR) for continuous tiple clinical benefits beyond glucose ards of care for CV risk factors: blood variables. Incidence rates and log-rank test lowering have been established with pressure, lipids, antithrombotic treat- for trend P values in efficacy and safety end points are reported for the three age- this drug class. These include reduced ment, and HbA1c. The design, baseline hospitalizations for heart failure, renal characteristics, and principal results of groups. protection, and improvements in weight this study have been published (4,11,12). Analyses were performed on an intention- and blood pressure (4–8). Furthermore, to-treat basis. Hazard ratios (HRs) and 95% the drugs are taken orally and at any time Assessment of Outcomes CIs were determined from Cox regression of the day and have no known significant The dual primary composite efficacy end models with stratification factor (athero- drug interactions (8). Considering their points were CV death or hospitalization sclerotic cardiovascular disease or multiple multiple favorable effects, minimal in- for heart failure (CVD/HHF) and major CV risk factors and hematuria status) as cremental risk for hypoglycemia, and adverse cardiovascular events (MACE; strata in models comparing treatment in simplicity of administration, they appear the composite of CV death, MI, or ische- age-groups. to be an attractive therapeutic option for mic stroke). A secondary prespecified Mixedmodelsforrepeatedmeasuresin older adults addressing the many comor- cardiorenal composite outcome was a HbA1c, weight, systolic blood pressure, and bidities more prevalent in this popula- sustained decrease of 40% or more in diastolic blood pressure were analyzed to tion. Nevertheless, there has been some estimated glomerular filtration rate (eGFR) produce least squares mean estimates and hesitance in clinical practice prescribing to ,60 mL/min/1.73 m2, new end-stage 95% CIs in each treatment and age-group. these agents to the elderly, mostly due to renal disease (ESRD), or death from renal Attainment of glycemic and weight targets insufficient long-term safety data (1). or CV causes. A renal-specific composite was compared between groups using Older patients are more prone to the outcome included a 40% decrease in eGFR logistic regression models. P values for development of fractures and acute kid- to ,60 mL/min/1.73 m2, ESRD, or death the covariate of interest were adjusted ney injury (AKI), and safety alerts re- from renal cause. for baseline HbA1c or weight accordingly. garding these potential risks with some Safety end points were assessed in all There was no statistical adjustment for SGLT2 inhibitors have been issued (9). patients who received at least one dose of multiple comparisons. All analyses were Moreover, due to the limited therapeutic study drug (the safety population). For performed using SAS software, version experience in patients age 75 years and amputations, fractures, and malignancies, 9.4 (SAS Institute Inc., Cary, NC) and Stata older, initiation of SGLT2 inhibitor ther- events ocurring from first dose until the version 14.2 (College Station, TX).
Recommended publications
  • Treatment of Diabetes Mellitus
    TREATMENT OF DIABETES MELLITUS DIABETES is a condition that affects how the body makes energy from food. Food is broken down into sugar (glucose) in the body and released into the blood. When the blood sugar level rises after a meal, insulin responds to let the sugar into the cells to be used as energy. In diabetes, the body either does not make enough insulin or it stops responding to insulin as well as it should. This results in sugar staying in the blood and leads to serious health problems over time. DIAGNOSIS OF DIABETES1 • A1C Test: Lab test measuring average blood sugar over past two to three months • Fasting Blood Sugar Test: Lab test measuring blood sugar after eight hours of no food or drink • Oral Glucose Tolerance Test (OGTT): Measures blood sugar before and two hours after drinking a specific sugary liquid • Random Blood Sugar Test: Measures blood sugar at a moment in time, without any kind of preparation (like fasting) FASTING BLOOD ORAL GLUCOSE TOLERANCE RANDOM BLOOD RESULT A1C TEST SUGAR TEST TEST SUGAR TEST Diabetes ≥ 6.5% ≥126 mg/dL ≥ 200 mg/dL ≥ 200 mg/dL Prediabetes 5.7 – 6.4% 100 – 125 mg/dL 140 – 199 mg/dL N/A Normal < 5.7% ≤99 mg/dL < 140 mg/dL N/A NON-DRUG TREATMENTS2 THERAPY COST WHAT TO EXPECT Diet (Mediterranean diet) and exercise (30 minutes a day, five days a week of moderate- Weight loss $-$$ intensity exercise); 7% weight loss decreases risk of diabetes3 Psychological intervention $$-$$$ Psychotherapy may reduce diabetic distress and improve glycemic control4,5 nationalcooperativerx.com PRESCRIPTION TREATMENTS
    [Show full text]
  • View a Copy of This Licence, Visit Tivecommons.Org/Licenses/By/4.0
    Katakami et al. Cardiovasc Diabetol (2020) 19:110 https://doi.org/10.1186/s12933-020-01079-4 Cardiovascular Diabetology ORIGINAL INVESTIGATION Open Access Tofoglifozin does not delay progression of carotid atherosclerosis in patients with type 2 diabetes: a prospective, randomized, open-label, parallel-group comparative study Naoto Katakami1,2* , Tomoya Mita3, Hidenori Yoshii4, Toshihiko Shiraiwa5, Tetsuyuki Yasuda6, Yosuke Okada7, Keiichi Torimoto7, Yutaka Umayahara8, Hideaki Kaneto9, Takeshi Osonoi10, Tsunehiko Yamamoto11, Nobuichi Kuribayashi12, Kazuhisa Maeda13, Hiroki Yokoyama14, Keisuke Kosugi15, Kentaro Ohtoshi16, Isao Hayashi17, Satoru Sumitani18, Mamiko Tsugawa19, Kayoko Ryomoto20, Hideki Taki21, Tadashi Nakamura22, Satoshi Kawashima23, Yasunori Sato24, Hirotaka Watada3 and Iichiro Shimomura1 on behalf of the UTOPIA study investigators Abstract Background: This study aimed to investigate the preventive efects of tofoglifozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on atherosclerosis progression in type 2 diabetes (T2DM) patients without apparent cardiovascular disease (CVD) by monitoring carotid intima-media thickness (IMT). Methods: This prospective, randomized, open-label, blinded-endpoint, multicenter, parallel-group, comparative study included 340 subjects with T2DM and no history of apparent CVD recruited at 24 clinical units. Subjects were randomly allocated to either the tofoglifozin treatment group (n 169) or conventional treatment group using drugs other than SGLT2 inhibitors (n 171). Primary outcomes were changes= in mean and maximum common carotid IMT measured by echography during= a 104-week treatment period. Results: In a mixed-efects model for repeated measures, the mean IMT of the common carotid artery (mean- IMT-CCA), along with the right and left maximum IMT of the CCA (max-IMT-CCA), signifcantly declined in both the tofoglifozin ( 0.132 mm, SE 0.007; 0.163 mm, SE 0.013; 0.170 mm, SE 0.020, respectively) and the control group ( 0.140 mm,− SE 0.006; 0.190 mm,− SE 0.012; 0.190 mm,− SE 0.020, respectively).
    [Show full text]
  • Dapagliflozin – Structure, Synthesis, and New Indications
    Pharmacia 68(3): 591–596 DOI 10.3897/pharmacia.68.e70626 Review Article Dapagliflozin – structure, synthesis, and new indications Stefan Balkanski1 1 Bulgarian Pharmaceutical Union, Sofia, Bulgaria Corresponding author: Stefan Balkanski ([email protected]) Received 24 June 2021 ♦ Accepted 4 July 2021 ♦ Published 4 August 2021 Citation: Balkanski S (2021) Dapagliflozin – structure, synthesis, and new indications. Pharmacia 68(3): 591–596.https://doi. org/10.3897/pharmacia.68.e70626 Abstract Dapagliflozin is a sodium-glucose co-transporter-2 (SGLT2) inhibitors used in the treatment of patients with type 2 diabetes. An aryl glycoside with significant effect as glucose-lowering agents, Dapagliflozin also has indication for patients with Heart Failure and Chronic Kidney Disease. This review examines the structure, synthesis, analysis, structure activity relationship and uses of the prod- uct. The studies behind this drug have opened the doors for the new line of treatment – a drug that reduces blood glucoses, decreases the rate of heart failures, and has a positive effect on patients with chronic kidney disease. Keywords Dapagliflozin, SGLT2-inhibitor, diabetes, heart failure Structure of dapagliflozin against diabetes (Lee et al. 2005; Lemaire 2012; Mironova et al. 2017). Embodiments of (SGLT-2) inhibitors include C-glycosides have a remarkable rank in medicinal chemis- dapagliflozin, canagliflozin, empagliflozin and ipragliflozin, try as they are considered as universal natural products shown in Figure 1. It has molecular formula of C24H35ClO9. (Qinpei and Simon 2004). Selective sodium-dependent IUPAC name (2S,3R,4R,5S,6R)-2-[4-chloro-3-[(4- glucose cotransporter 2 (SGLT-2) inhibitors are potent ethoxyphenyl)methyl]phenyl]-6-(hydroxymethyl)oxa- medicinal candidates of aryl glycosides that are functional ne-3,4,5-triol;(2S)-propane-1,2-diol;hydrate.
    [Show full text]
  • Supplementary Material
    Supplementary material Table S1. Search strategy performed on the following databases: PubMed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL). 1. Randomi*ed study OR random allocation OR Randomi*ed controlled trial OR Random* Control* trial OR RCT Epidemiological study 2. sodium glucose cotransporter 2 OR sodium glucose cotransporter 2 inhibitor* OR sglt2 inhibitor* OR empagliflozin OR dapagliflozin OR canagliflozin OR ipragliflozin OR tofogliflozin OR ertugliflozin OR sotagliflozin OR sergliflozin OR remogliflozin 3. 1 AND 2 1 Table S2. Safety outcomes of empagliflozin and linagliptin combination therapy compared with empagliflozin or linagliptin monotherapy in treatment naïve type 2 diabetes patients Safety outcome Comparator 1 Comparator 2 I2 RR [95% CI] Number of events Number of events / / total subjects total subjects i. Empagliflozin + linagliptin vs empagliflozin monotherapy Empagliflozin + Empagliflozin linagliptin monotherapy ≥ 1 AE(s) 202/272 203/270 77% 0.99 [0.81, 1.21] ≥ 1 drug-related 37/272 38/270 0% 0.97 [0.64, 1.47] AE(s) ≥ 1 serious AE(s) 13/272 19/270 0% 0.68 [0.34, 1.35] Hypoglycaemia* 0/272 5/270 0% 0.18 [0.02, 1.56] UTI 32/272 25/270 29% 1.28 [0.70, 2.35] Events suggestive 12/272 13/270 9% 0.92 [0.40, 2.09] of genital infection i. Empagliflozin + linagliptin vs linagliptin monotherapy Empagliflozin + Linagliptin linagliptin monotherapy ≥ 1 AE(s) 202/272 97/135 0% 1.03 [0.91, 1.17] ≥ 1 drug-related 37/272 17/135 0% 1.08 [0.63, 1.84] AE(s) ≥ 1 serious AE(s) 13/272 2/135 0% 3.22 [0.74, 14.07] Hypoglycaemia* 0/272 1/135 NA 0.17 [0.01, 4.07] UTI 32/272 12/135 0% 1.32 [0.70, 2.49] Events suggestive 12/272 4/135 0% 1.45 [0.47, 4.47] of genital infection RR, relative risk; AE, adverse event; UTI, urinary tract infection.
    [Show full text]
  • Glucose Cotransporter 2 Inhibitor, Attenuates Body Weight Gain and Fat Accumulation in Diabetic and Obese Animal Models
    OPEN Citation: Nutrition & Diabetes (2014) 4, e125; doi:10.1038/nutd.2014.20 & 2014 Macmillan Publishers Limited All rights reserved 2044-4052/14 www.nature.com/nutd ORIGINAL ARTICLE Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models M Suzuki1, M Takeda1, A Kito1, M Fukazawa1, T Yata2, M Yamamoto1, T Nagata1, T Fukuzawa1, M Yamane1, K Honda1, Y Suzuki1 and Y Kawabe1 OBJECTIVE: Tofogliflozin, a highly selective inhibitor of sodium/glucose cotransporter 2 (SGLT2), induces urinary glucose excretion (UGE), improves hyperglycemia and reduces body weight in patients with Type 2 diabetes (T2D). The mechanisms of tofogliflozin on body weight reduction were investigated in detail with obese and diabetic animal models. METHODS: Diet-induced obese (DIO) rats and KKAy mice (a mouse model of diabetes with obesity) were fed diets containing tofogliflozin. Body weight, body composition, biochemical parameters and metabolic parameters were evaluated. RESULTS: In DIO rats tofogliflozin was administered for 9 weeks, UGE was induced and body weight gain was attenuated. Body fat mass decreased without significant change in bone mass or lean body mass. Food consumption (FC) increased without change in energy expenditure, and deduced total calorie balance (deduced total calorie balance ¼ FC À UGE À energy expenditure) decreased. Respiratory quotient (RQ) and plasma triglyceride (TG) level decreased, and plasma total ketone body (TKB) level increased. Moreover, plasma leptin level, adipocyte cell size and proportion of CD68-positive cells in mesenteric adipose tissue decreased. In KKAy mice, tofogliflozin was administered for 3 or 5 weeks, plasma glucose level and body weight gain decreased together with a reduction in liver weight and TG content without a reduction in body water content.
    [Show full text]
  • Qtern (Dapagliflozin/Saxagliptin) – New Drug Approval
    Qtern® (dapagliflozin/saxagliptin) – New drug approval • On February 28, 2017, AstraZeneca announced the FDA approval of Qtern (dapagliflozin/saxagliptin) as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus (T2DM) who have inadequate control with Farxiga® (dapagliflozin) or who are already treated with dapagliflozin and Onglyza® (saxagliptin). • Qtern is not indicated for the treatment of type 1 diabetes mellitus or diabetic ketoacidosis, and it should only be used in patients who tolerate 10 mg of dapagliflozin. • Qtern combines two anti-hyperglycemic agents, dapagliflozin, a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, and saxagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor. • The efficacy of Qtern was evaluated in a study of 315 T2DM patients. Patients were randomized to saxagliptin or placebo, in combination with dapagliflozin and metformin. — Patients treated with add-on saxagliptin therapy had significantly greater reductions in HbA1c from baseline vs. the placebo group (-0.5% vs. -0.2%, respectively; difference between groups in HbA1c: -0.4%, p < 0.0001). — The proportion of patients achieving HbA1c < 7% at week 24 was 35.3% in the saxagliptin group vs. 23.1% in the placebo group. • Qtern is contraindicated in patients with a history of a serious hypersensitivity reaction to dapagliflozin or to saxagliptin (eg, anaphylaxis, angioedema or exfoliative skin conditions), and in patients with moderate to severe renal impairment (eGFR < 45 mL/min/1.73 m2), end-stage renal disease, or on dialysis. • Warnings and precautions of Qtern include pancreatitis, heart failure, hypotension, ketoacidosis, acute kidney injury and impairment in renal function, urosepsis and pyelonephritis, hypoglycemia with concomitant use of insulin or insulin secretagogues, genital mycotic infections, increases in low- density lipoprotein cholesterol, bladder cancer, severe and disabling arthralgia, and bullous pemphigoid.
    [Show full text]
  • International Journal of Pharmacy & Life Sciences
    Research Article Nizami et al., 9(7): July, 2018:5860-5865] CODEN (USA): IJPLCP ISSN: 0976-7126 INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES (Int. J. of Pharm. Life Sci.) Analytical method development and validation for simultaneous estimation of Ipragliflozin and Sitagliptin in tablet form by RP-HPLC method Tahir Nizami*, Birendra Shrivastava and Pankaj Sharma School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, (RJ) - India Abstract An economical RP-HPLC method using a PDA detector at 224 nm wavelength for simultaneous estimation of Ipragliflozin and Sitagliptin in pharmaceutical dosage forms has been developed. The method was validated as per ICH guidelines over a range of 50-150 µg/mL for Ipragliflozin and Sitagliptin respectively. Analytical column used was ACE Column C18, (150 mm x 4.6 mm i.d, 5μm) with flow rate of 1.0 mL / min at a temperature of 30°C ± 0.5°C. The separation was carried out using a mobile phase consisting of orthophosphoric acid buffer and methanol in the ratio of 60: 40%v/v. Retention times of 3.092 and 4.549 min were obtained for Ipragliflozin and Sitagliptin respectively. The percentage recoveries of Ipragliflozin and Sitagliptin are 100.12% and 99.42% respectively. The goodness of fit was close to 1 for all the three components. The relative standard deviations are always less than 2%. Keywords: Ipragliflozin and Sitagliptin, RP -HPLC, Simultaneous analysis, Tablets Introduction Ipragliflozin (IPRA) a novel SGLT2 selective The empirical formulaC16H15F6N5O and the inhibitor was investigated. In vitro, the potency of molecular mass 523.32. Sitagliptin is an orally-active Ipragliflozin to inhibit SGLT2 and SGLT1 and inhibitor of the dipeptidyl peptidase-4 (DPP-4) stability were assessed.
    [Show full text]
  • Comparison of Tofogliflozin 20 Mg and Ipragliflozin 50 Mg Used Together
    2017, 64 (10), 995-1005 Original Comparison of tofogliflozin 20 mg and ipragliflozin 50 mg used together with insulin glargine 300 U/mL using continuous glucose monitoring (CGM): A randomized crossover study Soichi Takeishi, Hiroki Tsuboi and Shodo Takekoshi Department of Diabetes, General Inuyama Chuo Hospital, Inuyama 484-8511, Japan Abstract. To investigate whether sodium glucose co-transporter 2 inhibitors (SGLT2i), tofogliflozin or ipragliflozin, achieve optimal glycemic variability, when used together with insulin glargine 300 U/mL (Glargine 300). Thirty patients with type 2 diabetes were randomly allocated to 2 groups. For the first group: After admission, tofogliflozin 20 mg was administered; Fasting plasma glucose (FPG) levels were titrated using an algorithm and stabilized at 80 mg/dL level with Glargine 300 for 5 days; Next, glucose levels were continuously monitored for 2 days using continuous glucose monitoring (CGM); Tofogliflozin was then washed out over 5 days; Subsequently, ipragliflozin 50 mg was administered; FPG levels were titrated using the same algorithm and stabilized at 80 mg/dL level with Glargine 300 for 5 days; Next, glucose levels were continuously monitored for 2 days using CGM. For the second group, ipragliflozin was administered prior to tofogliflozin, and the same regimen was maintained. Glargine 300 and SGLT2i were administered at 8:00 AM. Data collected on the second day of measurement (mean amplitude of glycemic excursion [MAGE], average daily risk range [ADRR]; on all days of measurement) were analyzed. Area over the glucose curve (<70 mg/dL; 0:00 to 6:00, 24-h), M value, standard deviation, MAGE, ADRR, and mean glucose levels (24-h, 8:00 to 24:00) were significantly lower in patients on tofogliflozin than in those on ipragliflozin.
    [Show full text]
  • 202293Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 202293Orig1s000 RISK ASSESSMENT and RISK MITIGATION REVIEW(S) Department of Health and Human Services Public Health Service Food and Drug Administration Center for Drug Evaluation and Research Office of Surveillance and Epidemiology Office of Medication Error Prevention and Risk Management Final Risk Evaluation and Mitigation Strategy (REMS) Review Date: December 20, 2013 Reviewer(s): Amarilys Vega, M.D., M.P.H, Medical Officer Division of Risk Management (DRISK) Team Leader: Cynthia LaCivita, Pharm.D., Team Leader DRISK Drug Name(s): Dapagliflozin Therapeutic Class: Antihyperglycemic, SGLT2 Inhibitor Dosage and Route: 5 mg or 10 mg, oral tablet Application Type/Number: NDA 202293 Submission Number: Original, July 11, 2013; Sequence Number 0095 Applicant/sponsor: Bristol-Myers Squibb and AstraZeneca OSE RCM #: 2013-1639 and 2013-1637 *** This document contains proprietary and confidential information that should not be released to the public. *** Reference ID: 3426343 1 INTRODUCTION This review documents DRISK’s evaluation of the need for a risk evaluation and mitigation strategy (REMS) for dapagliflozin (NDA 202293). The proposed proprietary name is Forxiga. Bristol-Myers Squibb and AstraZeneca (BMS/AZ) are seeking approval for dapagliflozin as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus (T2DM). Bristol-Myers Squibb and AstraZeneca did not submit a REMS or risk management plan (RMP) with this application. At the time this review was completed, FDA’s review of this application was still ongoing. 1.1 BACKGROUND Dapagliflozin. Dapagliflozin is a potent, selective, and reversible inhibitor of the human renal sodium glucose cotransporter 2 (SGLT2), the major transporter responsible for renal glucose reabsorption.
    [Show full text]
  • Open-Label Study to Assess the Efficacy of Ipragliflozin for Reducing
    Clinical Drug Investigation (2019) 39:1213–1221 https://doi.org/10.1007/s40261-019-00851-z ORIGINAL RESEARCH ARTICLE Open‑Label Study to Assess the Efcacy of Ipraglifozin for Reducing Insulin Dose in Patients with Type 2 Diabetes Mellitus Receiving Insulin Therapy Hisamitsu Ishihara1 · Susumu Yamaguchi2 · Toshifumi Sugitani2 · Yoshinori Kosakai2 Published online: 24 September 2019 © The Author(s) 2019 Abstract Background and Objective To avoid insulin-induced hypoglycemia and weight gain, the minimum dose of insulin should be used. In this study, therefore, we examined insulin dose reduction by ipraglifozin add-on therapy in Japanese patients with type 2 diabetes mellitus treated with long-acting basal insulin. Methods In this multicenter, open-label study, patients received one ipraglifozin 50-mg tablet once daily in combination with basal insulin for 24 weeks. The primary efcacy endpoint was the change and percent change in insulin dose from base- line to Week 24. Secondary efcacy endpoints included changes in glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), glycoalbumin, cholesterol, leptin, adiponectin, C-peptide, glucagon, body weight, and blood pressure, and number of patients achieving withdrawal of insulin at the end of treatment (EOT). Treatment-emergent adverse events (TEAEs) were evaluated for safety. Results In total, 114 patients were screened, 103 were registered, and 97 completed the study. The mean age was 59 years and 72.8% of patients were male. The mean change in insulin dose from baseline at Week 24 was − 6.6 ± 4.4 units/day (p < 0.001); the mean percent change was − 29.87%. HbA1c, FPG, glycoalbumin, glucagon levels, body weight, and blood pressure signifcantly decreased from baseline to EOT (p < 0.05).
    [Show full text]
  • Real-Life Prescribing of SGLT2 Inhibitors: How to Handle the Other Medications, Including
    Kidney360 Publish Ahead of Print, published on February 1, 2021 as doi:10.34067/KID.0000412021 Real-life prescribing of SGLT2 inhibitors: How to handle the other medications, including glucose-lowering drugs and diuretics David Lam1 and Aisha Shaikh1,2 1Icahn School of Medicine at Mount Sinai, Dept. of Medicine, New York, NY 2James J. Peters VA Medical Center, Dept. of Medicine, Bronx, NY Corresponding Author: Aisha Shaikh, MD James J. Peters VA Medical Center 130 w. Kingsbridge Road Bronx, NY – 10468 Email: [email protected] Phone: 718-584-9000, Ext# 6630 Copyright 2021 by American Society of Nephrology. Introduction Sodium-glucose cotransporter-2 inhibitors (SGLT2is) have emerged as an effective therapy for improving outcomes in diabetic and non-diabetic kidney disease (1, 2). Clinical trials have demonstrated the benefits of SGLT2is for secondary prevention of adverse cardiovascular (CV) effects in patients with established atherosclerotic disease and/or heart failure with reduced ejection fraction (3-7). It is imperative for clinicians to assess the use of SGLT2is in medically eligible patients and prescribe these agents when appropriate. Despite the overwhelming evidence of the benefits of SGLT2i therapy, the prescription rate remains dismally low particularly among patients most likely to benefit from cardiorenal protective effects (8). Several potential factors contribute to low SGLT2i prescription rate including prescriber hesitancy, treatment inertia and high drug cost. In this article, we review clinical indications for SGLT2i use, therapeutic and adverse effects, and our approach to handling concomitant medications. Clinical indications for SGLT2i Use 1. Type 2 diabetes mellitus (T2DM) and albuminuric kidney disease (albuminuria of ≥ 200 mg/gram of creatinine plus eGFR of 25 – 90 ml/min/1.73 m2).
    [Show full text]
  • Populationsweite Utilisationsuntersuchung in Den Chronischen Krankheitsbildern Hypertonie, Hyperlipid¨Amieund Typ 2 Diabetes Mellitus –
    Ruhr-Universit¨atBochum Prof. Dr. rer. nat. Hans J. Trampisch Dienstort: Abteilung f¨urMedizinische Informatik, Biometrie und Epidemiologie Populationsweite Utilisationsuntersuchung in den chronischen Krankheitsbildern Hypertonie, Hyperlipid¨amieund Typ 2 Diabetes Mellitus { Eine Studie des Projekts PUKO-BHD an der Medizinischen Universit¨atWien Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin einer Hohen Medizinischen Fakult¨at der Ruhr-Universit¨atBochum vorgelegt von: Lisanne M. Jandeck aus Herford 2014 Dekan: Prof. Dr. med. Albrecht Bufe Referent: Prof. Dr. rer. nat. Hans J. Trampisch Korreferent: Prof. Dr. med. J¨urgenWindeler Tag der M¨undlichen Pr¨ufung:09.02.2017 Abstract Jandeck Lisanne M. Populationsweite Utilisationsuntersuchung in den chronischen Krankheitsbildern Hypertonie, Hyperlipid¨amieund Typ 2 Diabetes Mellitus Problem: Hypertonie (HT), Hyperlipid¨amie(HL) und Typ 2 Diabetes Mellitus (DM) stellen die h¨aufigstenchronischen Erkrankungen in Osterreich¨ dar, besonders bei Uber-50j¨ahrigen.Die¨ Zielsetzung dieser Teilstudie Utilisation\ des Projekts mit " dem Titel PUKO-BHD { Pr¨avalenz, Utilisation, Kosten und Outcome bei Blut- " hochdruck, Hyperlipid¨amieund Typ 2 Diabetes Mellitus\ ist eine populationsweite epidemiologische Untersuchung zu der Utilisation von Arzneimitteln zur Behand- lung dieser Krankheiten, insbesondere in Bezug auf Mehrfachverschreibungen (dou- ble prescriptions, DP) und Verschreibungen von Kombinationen von Wirkstoffen, die (schwerwiegende) Wechselwirkungen erzeugen k¨onnen (drug-drug
    [Show full text]