remote sensing Article Collision Probability Prediction and Orbit Maneuvering Probability Determination of Non-Cooperative Space Object Orbit 1,2 3 1, 1 1, , Yuanlan Wen , Zhuo Yu , Lina He y, Qian Wang and Xiufeng He * y 1 School of Earth Science and Engineering, Hohai University, Nanjing 210098, China;
[email protected] (Y.W.);
[email protected] (L.H.);
[email protected] (Q.W.) 2 Research School of High Technology, Hunan Institute of Traffic Engineering, Hengyang 421099, China 3 Xi’an Satellite Control Center, Xi’an 710043, China;
[email protected] * Correspondence:
[email protected] These authors contributed equally to the work. y Received: 5 September 2020; Accepted: 1 October 2020; Published: 12 October 2020 Abstract: Probability of collision between non-cooperative space object (NCSO) and the reference spacecraft (RS) has been increased drastically over the past few decades. The traditional method is difficult to identify the maneuvering of non-cooperative space object. In the present paper, not only positions and velocities, but also accelerations of non-cooperative space object are estimated as parameters by the extended Kalman filtering based on setting up the state linear equation and measurement model of the non-cooperative space object. The algorithm for predicting collision probability is derived from position error ellipsoid, and the algorithm for determining maneuvering probability is derived from maneuvering acceleration and its error ellipsoid, which can be employed to identify whether the upcoming space object is being maneuvered. An epoch Earth-centered inertial (EECI) coordinate system is suggested to replace Earth-centered inertial (ECI) to simplify coordinate transformation.