Lecture 6: September 15 Connected Components. If a Topological Space X Is Not Connected, It Makes Sense to Investigate the Maximal Connected Subspaces It Contains

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 6: September 15 Connected Components. If a Topological Space X Is Not Connected, It Makes Sense to Investigate the Maximal Connected Subspaces It Contains 1 Lecture 6: September 15 Connected components. If a topological space X is not connected, it makes sense to investigate the maximal connected subspaces it contains. Given a point x X,wedefine ∈ C(x)= C X C is connected and x C ⊆ ∈ as the union of all connected subspaces of X that contain the point x. Proposition 6.1. These sets have the following properties: (a) Each subspace C(x) is connected and closed. (b) If x, y X, then C(x) and C(y) are either equal or disjoint. (c) Every nonempty∈ connected subspace of X is contained in a unique C(x). Proof. C(x) is a union of connected subspaces that all contain the point x, and therefore connected by Proposition 5.8. Now Proposition 5.9 shows that the closure C(x) is also connected; since it contains x, it must be contained in C(x), and therefore equal to C(x). This proves (a). To prove (b), suppose that C(x) and C(y) are not disjoint. Take any z C(x) C(y). We shall argue that C(x)=C(z); by symmetry, this will imply that∈ C(x)=∩ C(z)=C(y). We have z C(x), and since C(x) is connected, we get C(x) C(z). Hence x C(z), and for∈ the same reason, C(z) C(x). To⊆ prove (c), let Y ∈ X be nonempty connected subspace.⊆ Choose a point x Y ;thenY C(x) by⊆ construction. Uniqueness follows from (b). ∈ ⊆ The set C(x) is called the connected component of x; the proposition shows that it is the maximal connected subspace of X containing the point x. Since any two connected components of X are either equal or disjoint, we get a partition of the space X into maximal connected subsets. Example 6.2. The connected components of a space are always closed, but not necessarily open. In the case of Q, the connected component of x Q is x , because no subspace with two or more points is connected. So the∈ connected{ } components of X do not give us a separation of X in general. Example 6.3. If X has only finitely many connected components, then each con- nected component is open (being the complement of a finite union of closed sets). There is a similar definition for path connectedness: given a point x X,weset ∈ P (x)= P X P is path connected and x P ⊆ ∈ = y X x and y can be joined by a path inX , ∈ and call it the path component of x. The following result can be proved in the same way as Proposition 6.1. Proposition 6.4. The path components of X have the following properties: (a) Each subspace P (x) is path connected. (b) If x, y X, then P (x) and P (y) are either equal or disjoint. (c) Every∈ nonempty path connected subspace of X is contained in a unique P (x). Since P (x) is connected by Proposition 5.14, it is contained in C(x); but the two need not be equal. 2 Example 6.5. The topologist’s sine curve is connected, but it has two path compo- nents. Path connectedness and connectedness. I mentioned last time that in suffi- ciently nice topological spaces (such as open subsets of Rn) connectedness and path connectedness are equivalent. The point is that Rn contains lots and lots of paths, whereas a random topological space may not contain any nonconstant path at all. This suggests looking at spaces where at least any two nearby points can be joined by a path. Definition 6.6. A topological space X is called locally path connected if every point has a path connected neighborhood. Open balls in Rn are obviously path connected. Consequently, every open set in Rn is locally path connected; more generally, every topological manifold is locally path connected. Proposition 6.7. Let X be a locally path connected topological space. Then P (x) is open, and P (x)=C(x) for every x X. In particular, the connected components of X are open. ∈ Proof. You will remember a similar result from one of last week’s homework prob- lems. We first prove that P (x) is open for every x X.SinceX is locally path connected, there is a path connected neighborhood U∈of x;wehaveU P (x), be- cause P (x) is the union of all path connected subspaces containing x.If⊆ y P (x) is any point, then P (y)=P (x), and so P (x) also contains a neighborhood∈ of y, proving that P (x) is open. Next, we show that P (x)=C(x). The union of all the other path components of X is open, and so their complement P (x) must be closed. Now P (x) C(x)isa nonempty subset that is both open and closed; because C(x) is connected,⊆ it must be that P (x)=C(x). The last step in the proof is a typical application of connectedness: to prove that a nonempty subset Y of a connected space X is equal to X, it is enough to show that Y is both open and closed. Compactness. The second important property of closed intervals in R is compact- ness. Perhaps you know the definition that is used in analysis: a subset A Rn is called compact if every sequence in A has a convergent subsequence. As⊆ with closed sets, definitions involving sequences are not suitable for general topological spaces. We therefore adopt the following definition in terms of open coverings. Definition 6.8. An open covering of a topological space X is a collection U of open subsets with the property that X = U. U U ∈ We say that X is compact if, for every open covering U , there are finitely many open sets U ,...,U U such that X = U U . 1 n ∈ 1 ∪···∪ n Compactness is a very important finiteness property of the topology on a space. In fact, every topological space with only finitely many points is trivially compact; in a sense, compact spaces are thus a generalization of finite topological spaces. 3 Note that compactness is a topological property: if X is compact, then any space homeomorphic to X is also compact. You should convince yourself that when the topology of X is given in terms of a basis, it suffices to check the condition for open coverings by basic open sets. Example 6.9. R is not compact: in the open covering ∞ R = ( n, n), − n=1 no finite number of subsets is enough to cover R. Example 6.10. Q [0, 1] is also not compact. This is obvious using the analyst’s definition in terms∩ of sequences; here is one way of proving it with our definition. We enumerate all the rational numbers between 0 and 1 in the form α1,α2,..., and also choose an irrational number β [0, 1]. For every k,letIk be the open interval of length = α β centered at∈ the point α . Obviously, the sets k | k − | k Ik Q [0, 1] ∩ ∩ form an open covering of Q [0, 1]; I claim that no finite number of sets can cover everything. Otherwise, there∩ would be some integer n 1 such that every rational number between 0 and 1 lies in I I . But then≥ the open interval of length 1 ∪···∪ n min k 1 k n ≤ ≤ centered at β would not contain any rational number, which is absurd. These examples illustrate an important point: it is usually pretty easy to show that a space is not compact, because all we have to do is find one offending open covering. On the other hand, it can be quite hard to show that a space is compact, because we need to consider all possible open coverings. Example 6.11. The closed unit interval [0, 1] is compact; we will prove this next time. General properties of compactness. The following lemma is an easy conse- quence of the definitions (of compactness and of the subspace topology). Lemma 6.12. Let X be a topological space, and let Y X be a subspace. The following two conditions are equivalent: ⊆ (a) Y is compact (in the subspace topology). (b) Whenever U is a collection of open sets in X with Y U, ⊆ U U ∈ there are finitely many sets U ,...,U U with Y U U . 1 n ∈ ⊆ 1 ∪···∪ n We can use this lemma to prove some general properties of compact spaces. Proposition 6.13. Every closed subspace of a compact space is compact. Proof. Let X be compact and Y X closed. Given an open covering U of Y ,we get an open covering of X by throwing⊆ in the open subset U = X Y .SinceX 0 \ is compact, there are finitely many sets U1,...,Un U such that X = U0 U1 U .ButthenY U U , proving that ∈Y is compact. ∪ ∪ ···∪ n ⊆ 1 ∪···∪ n 4 Proposition 6.14. If X is compact and f : X Y is continuous, then f(X) is again compact. → Proof. Let U be an arbitrary open covering of f(X). Then 1 f − (U) U U ∈ is a collection of open sets that cover X; because X is compact, there must be finitely many sets U ,...,U U with 1 n ∈ 1 1 X = f − (U ) f − (U ). 1 ∪···∪ n Since U ,...,U f(X), we now get f(X)=U U , proving that f(X)is 1 n ⊆ 1 ∪···∪ n also compact. .
Recommended publications
  • A Guide to Topology
    i i “topguide” — 2010/12/8 — 17:36 — page i — #1 i i A Guide to Topology i i i i i i “topguide” — 2011/2/15 — 16:42 — page ii — #2 i i c 2009 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2009929077 Print Edition ISBN 978-0-88385-346-7 Electronic Edition ISBN 978-0-88385-917-9 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “topguide” — 2010/12/8 — 17:36 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY MAA Guides # 4 A Guide to Topology Steven G. Krantz Washington University, St. Louis ® Published and Distributed by The Mathematical Association of America i i i i i i “topguide” — 2010/12/8 — 17:36 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Paul Zorn, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Patricia B. Humphrey Virginia E. Knight Mark A. Peterson Jonathan Rogness Thomas Q. Sibley Joe Alyn Stickles i i i i i i “topguide” — 2010/12/8 — 17:36 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successfulexpositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition.
    [Show full text]
  • Open 3-Manifolds Which Are Simply Connected at Infinity
    OPEN 3-MANIFOLDS WHICH ARE SIMPLY CONNECTED AT INFINITY C H. EDWARDS, JR.1 A triangulated open manifold M will be called l-connected at infin- ity il each compact subset C of M is contained in a compact poly- hedron P in M such that M—P is connected and simply connected. Stallings has shown that, if M is a contractible open combinatorial manifold which is l-connected at infinity and is of dimension ra^5, then M is piecewise-linearly homeomorphic to Euclidean re-space E" [5]. Theorem 1. Let M be a contractible open 3-manifold, each of whose compact subsets can be imbedded in £3. If M is l-connected at infinity, then M is homeomorphic to £3. Notice that, in order to prove the 3-dimensional Poincaré conjec- ture, it would suffice to prove Theorem 1 without the hypothesis that each compact subset of M can be imbedded in £3. For, if M is a simply connected closed 3-manifold and p is a point of M, then M —p is a contractible open 3-manifold which is clearly l-connected at infinity. Conversely, if the 3-dimensional Poincaré conjecture were known, then the hypothesis that each compact subset of M can be imbedded in £3 would be unnecessary. All spaces and mappings in this paper are considered in the poly- hedral or piecewise-linear sense, unless otherwise stated. As usual, by an open re-manifold is meant a noncompact connected space triangu- lated by a countable simplicial complex without boundary, such that the link of each vertex is piecewise-linearly homeomorphic to the usual (re—1)-sphere.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Daniel Irvine June 20, 2014 Lecture 6: Topological Manifolds 1. Local
    Daniel Irvine June 20, 2014 Lecture 6: Topological Manifolds 1. Local Topological Properties Exercise 7 of the problem set asked you to understand the notion of path compo- nents. We assume that knowledge here. We have done a little work in understanding the notions of connectedness, path connectedness, and compactness. It turns out that even if a space doesn't have these properties globally, they might still hold locally. Definition. A space X is locally path connected at x if for every neighborhood U of x, there is a path connected neighborhood V of x contained in U. If X is locally path connected at all of its points, then it is said to be locally path connected. Lemma 1.1. A space X is locally path connected if and only if for every open set V of X, each path component of V is open in X. Proof. Suppose that X is locally path connected. Let V be an open set in X; let C be a path component of V . If x is a point of V , we can (by definition) choose a path connected neighborhood W of x such that W ⊂ V . Since W is path connected, it must lie entirely within the path component C. Therefore C is open. Conversely, suppose that the path components of open sets of X are themselves open. Given a point x of X and a neighborhood V of x, let C be the path component of V containing x. Now C is path connected, and since it is open in X by hypothesis, we now have that X is locally path connected at x.
    [Show full text]
  • Topology - Wikipedia, the Free Encyclopedia Page 1 of 7
    Topology - Wikipedia, the free encyclopedia Page 1 of 7 Topology From Wikipedia, the free encyclopedia Topology (from the Greek τόπος , “place”, and λόγος , “study”) is a major area of mathematics concerned with properties that are preserved under continuous deformations of objects, such as deformations that involve stretching, but no tearing or gluing. It emerged through the development of concepts from geometry and set theory, such as space, dimension, and transformation. Ideas that are now classified as topological were expressed as early as 1736. Toward the end of the 19th century, a distinct A Möbius strip, an object with only one discipline developed, which was referred to in Latin as the surface and one edge. Such shapes are an geometria situs (“geometry of place”) or analysis situs object of study in topology. (Greek-Latin for “picking apart of place”). This later acquired the modern name of topology. By the middle of the 20 th century, topology had become an important area of study within mathematics. The word topology is used both for the mathematical discipline and for a family of sets with certain properties that are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms , which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a homeomorphism of the real line. Topology includes many subfields. The most basic and traditional division within topology is point-set topology , which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces (basic examples include compactness and connectedness); algebraic topology , which generally tries to measure degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric topology , which primarily studies manifolds and their embeddings (placements) in other manifolds.
    [Show full text]
  • L -Betti Numbers of R-Spaces and the Integral Foliated Simplicial Volume
    Marco Schmidt L2-Betti Numbers of R-Spaces and the Integral Foliated Simplicial Volume 2005 Mathematik L2-Betti Numbers of R-Spaces and the Integral Foliated Simplicial Volume Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Mathematik und Informatik der Mathematisch-Naturwissenschaftlichen Fakult¨at der Westf¨alischen Wilhelms-Universit¨at M¨unster vorgelegt von Marco Schmidt aus Berlin – 2005 – Dekan: Prof. Dr. Klaus Hinrichs Erster Gutachter: Prof. Dr. Wolfgang L¨uck Zweiter Gutachter: Prof. Dr. Anand Dessai Tag der m¨undlichen Pr¨ufung: 30. Mai 2005 Tag der Promotion: 13. Juli 2005 Introduction The origin of this thesis is the following conjecture of Gromov [26, Section 8A, 2 (2) p. 232] revealing a connection between the L -Betti numbers bk (M)and the sim- plicial volume M of a closed oriented connected aspherical manifold M. Conjecture. Let M be a closed oriented connected aspherical manifold with M = 0. Then (2) ≥ bk (M)=0 for all k 0. The first definition of L2-Betti numbers for cocompact free proper G-manifolds with G-invariant Riemannian metric (due to Atiyah [2]) is given in terms of the heat kernel. We will briefly recall this original definition at the beginning of Chap- ter 1. Today, there is an algebraic and more general definition of L2-Betti numbers which works for arbitrary G-spaces. Analogously to ordinary Betti numbers, they are given as the “rank” of certain homology modules. More precisely, the k-th L2- (2) N Betti number bk (Z; G) of a G-space Z is the von Neumann dimension of the k-th twisted singular homology group of Z with coefficients in the group von Neumann algebra N G.
    [Show full text]
  • CONNECTEDNESS-Notes Def. a Topological Space X Is
    CONNECTEDNESS-Notes Def. A topological space X is disconnected if it admits a non-trivial splitting: X = A [ B; A \ B = ;; A; B open in X; and non-empty. (We'll abbreviate `disjoint union' of two subsets A and B {meaning A\B = ;{ by A t B.) X is connected if no such splitting exists. A subset C ⊂ X is connected if it is a connected topological space, when endowed with the induced topology (the open subsets of C are the intersections of C with open subsets of X.) Note that X is connected if and only if the only subsets of X that are simultaneously open and closed are ; and X. Example. The real line R is connected. The connected subsets of R are exactly the intervals. (See [Fleming] for a proof.) Def. A topological space X is path-connected if any two points p; q 2 X can be joined by a continuous path in X, the image of a continuous map γ : [0; 1] ! X, γ(0) = p; γ(1) = q. Path-connected implies connected: If X = AtB is a non-trivial splitting, taking p 2 A; q 2 B and a path γ in X from p to q would lead to a non- trivial splitting [0; 1] = γ−1(A) t γ−1(B) (by continuity of γ), contradicting the connectedness of [0; 1]. Example: Any normed vector space is path-connected (connect two vec- tors v; w by the line segment t 7! tw + (1 − t)v; t 2 [0; 1]), hence connected. The continuous image of a connected space is connected: Let f : X ! Y be continuous, with X connected.
    [Show full text]
  • On Digital Simply Connected Spaces and Manifolds: a Digital Simply Connected 3- Manifold Is the Digital 3-Sphere
    On digital simply connected spaces and manifolds: a digital simply connected 3- manifold is the digital 3-sphere Alexander V. Evako Npk Novotek, Laboratory of Digital Technologies. Moscow, Russia e-mail: [email protected]. Abstract In the framework of digital topology, we study structural and topological properties of digital n- dimensional manifolds. We introduce the notion of simple connectedness of a digital space and prove that if M and N are homotopy equivalent digital spaces and M is simply connected, then so is N. We show that a simply connected digital 2-manifold is the digital 2-sphere and a simply connected digital 3-manifold is the digital 3-sphere. This property can be considered as a digital form of the Poincaré conjecture for continuous three-manifolds. Key words: Graph; Dimension; Digital manifold; Simply connected space; Sphere 1. Introduction A digital approach to geometry and topology plays an important role in analyzing n-dimensional digitized images arising in computer graphics as well as in many areas of science including neuroscience, medical imaging, industrial inspection, geoscience and fluid dynamics. Concepts and results of the digital approach are used to specify and justify some important low-level image processing algorithms, including algorithms for thinning, boundary extraction, object counting, and contour filling. Usually, a digital object is equipped with a graph structure based on the local adjacency relations of digital points [5]. In papers [6-7], a digital n-surface was defined as a simple undirected graph and basic properties of n-surfaces were studied. Paper [6] analyzes a local structure of the digital space Zn.
    [Show full text]
  • Path Connectedness and Invertible Matrices
    PATH CONNECTEDNESS AND INVERTIBLE MATRICES JOSEPH BREEN 1. Path Connectedness Given a space,1 it is often of interest to know whether or not it is path-connected. Informally, a space X is path-connected if, given any two points in X, we can draw a path between the points which stays inside X. For example, a disc is path-connected, because any two points inside a disc can be connected with a straight line. The space which is the disjoint union of two discs is not path-connected, because it is impossible to draw a path from a point in one disc to a point in the other disc. Any attempt to do so would result in a path that is not entirely contained in the space: Though path-connectedness is a very geometric and visual property, math lets us formalize it and use it to gain geometric insight into spaces that we cannot visualize. In these notes, we will consider spaces of matrices, which (in general) we cannot draw as regions in R2 or R3. To begin studying these spaces, we first explicitly define the concept of a path. Definition 1.1. A path in X is a continuous function ' : [0; 1] ! X. In other words, to get a path in a space X, we take an interval and stick it inside X in a continuous way: X '(1) 0 1 '(0) 1Formally, a topological space. 1 2 JOSEPH BREEN Note that we don't actually have to use the interval [0; 1]; we could continuously map [1; 2], [0; 2], or any closed interval, and the result would be a path in X.
    [Show full text]
  • Point-Set Topology 2
    Point-Set Topology 2 Tam 1 Connectedness and path-connectedness Definition 1. Let X be a topological space. A separation of X is a pair of disjoint nonempty open sets U and V in X whose union is X. The space X is connected if there does not exist a separation of X. Connected subsets of the real line are either one-point sets or intervals. n Connected sets in R , for n ≥ 2, are not so nice. For example, the following 2 set in R is connected. 2 1 2 S = (x; y) 2 R y = sin ; x > 0 [ (x; y) 2 R j x = 0; y 2 [−1; 1] x Lemma 2. The image of an connected set under a continuous map is con- nected. Definition 3. A metric space X is path-connected if for every p; q 2 X, there exists a continuous map γ : [0; 1] −! X such that γ(0) = p and γ(1) = q. The map γ is called a path connecting p and q. Theorem 4. If A is path-connected, then A is connected. The converse is not true. The following theorem is an example how we can use connectedness to prove that two spaces are not homeomorphic. Theorem 5. None of the following space is homeomorphic to any of the 2 others: (0; 1), [0; 1), [0; 1] and R . The proof of the next theorem is an example of a common arguement using connectedness in topology, geometry and analysis. The general prin- ciple is that if you want to prove that a property P is true (or not true) on a connected space X, then try considering the subset of X where P is true and the subset where P is true.
    [Show full text]
  • Math 131: Introduction to Topology 1
    Math 131: Introduction to Topology 1 Professor Denis Auroux Fall, 2019 Contents 9/4/2019 - Introduction, Metric Spaces, Basic Notions3 9/9/2019 - Topological Spaces, Bases9 9/11/2019 - Subspaces, Products, Continuity 15 9/16/2019 - Continuity, Homeomorphisms, Limit Points 21 9/18/2019 - Sequences, Limits, Products 26 9/23/2019 - More Product Topologies, Connectedness 32 9/25/2019 - Connectedness, Path Connectedness 37 9/30/2019 - Compactness 42 10/2/2019 - Compactness, Uncountability, Metric Spaces 45 10/7/2019 - Compactness, Limit Points, Sequences 49 10/9/2019 - Compactifications and Local Compactness 53 10/16/2019 - Countability, Separability, and Normal Spaces 57 10/21/2019 - Urysohn's Lemma and the Metrization Theorem 61 1 Please email Beckham Myers at [email protected] with any corrections, questions, or comments. Any mistakes or errors are mine. 10/23/2019 - Category Theory, Paths, Homotopy 64 10/28/2019 - The Fundamental Group(oid) 70 10/30/2019 - Covering Spaces, Path Lifting 75 11/4/2019 - Fundamental Group of the Circle, Quotients and Gluing 80 11/6/2019 - The Brouwer Fixed Point Theorem 85 11/11/2019 - Antipodes and the Borsuk-Ulam Theorem 88 11/13/2019 - Deformation Retracts and Homotopy Equivalence 91 11/18/2019 - Computing the Fundamental Group 95 11/20/2019 - Equivalence of Covering Spaces and the Universal Cover 99 11/25/2019 - Universal Covering Spaces, Free Groups 104 12/2/2019 - Seifert-Van Kampen Theorem, Final Examples 109 2 9/4/2019 - Introduction, Metric Spaces, Basic Notions The instructor for this course is Professor Denis Auroux. His email is [email protected] and his office is SC539.
    [Show full text]