Tangible Bits

Total Page:16

File Type:pdf, Size:1020Kb

Tangible Bits Tangible Bits Beyond Ubiquitous GUIs 2004 Tokyo Hiroshi Ishii Tangible Media Group MIT Media Laboratory © 2004 MIT Media Laboratory, Hiroshi Ishii 1 Tangible Bits Designing the Seamless Interface between People, Bits, and Atoms February 2004 Hiroshi Ishii Tangible Media Group Things That Think MIT Media Laboratory © 2004 MIT Media Laboratory, Hiroshi Ishii 2 Ubiquitous Computing Mark Weiser, Xerox PARC, 1991 • Computers should be "transparent." • Computational services are delivered through a variety of computational devices such as Tabs, Pads, and Boards, with the infrastructure to allow these devices to talk with each other. © 2004 MIT Media Laboratory, Hiroshi Ishii Mark Weiser at Xerox PARC presented his vision of “Ubiquitous Computing” in 1991. He claimed computers should be transparent and invisible. He claimed that the most profound technologies are invisible. They weave themselves into the fabric of everyday life until they are indistinguishable from it. His team designed a variety of computational devices including Tabs, Pads, and Boards along with the infrastructure to allow these devices to talk with each other. Recently, he is introducing a concept of “calm technology” citing the LIVE WIRE by Natalie Jeremijenko as an example. 3 Misunderstood Ubiquitous • Anytime & Anyplace • Mobile, wireless, broadband, RFID, …. • Multiple Computational Devices / User – c.f. Mainframe (TSS) computing: one computer / many users Personal computing: one computer / user © 2004 MIT Media Laboratory, Hiroshi Ishii Mark Weiser at Xerox PARC presented his vision of “Ubiquitous Computing” in 1991. He claimed computers should be transparent and invisible. He claimed that the most profound technologies are invisible. They weave themselves into the fabric of everyday life until they are indistinguishable from it. His team designed a variety of computational devices including Tabs, Pads, and Boards along with the infrastructure to allow these devices to talk with each other. Recently, he is introducing a concept of “calm technology” citing the LIVE WIRE by Natalie Jeremijenko as an example. 4 Wieser wrote to me in 1997… Date: Sun, 26 Jan 1997 23:34:10 PST Subject: "Tangible Bits" Dear Hiroshi and Brygg, I recently had a chance to read your CHI 97 paper "Tangible Bits"! Great work! In my opinion thisi s the k i nd of work that will characterize the technological landscape in the twenty-first century. .......... My request is that you help me stop the spread of misunderstanding of ubiquitous computing based si mply on its name. Ubicomp was never just about making "computers" ubiquitous. It was always, like your work, about awakening computation mediation into the environment. .......... I tried to stop using ubiquitous computing because of its misleading implication, but it keeps cropping up again, so I keep returning to it as my umbrella name for lots of work, including Things That Think. Augmented reality was in use for awhile, but again got balkanized in meaning. I have started to talk about Calm Technology as a theme, but it better names a goal than a research project. "Tangible Bits" is very ni ce, and maybe could serve as an overall umbrella, but then you might lose it as the name of your research project! .......... -mark (Dr.) Mark Wei ser Chief Technologist, Xerox PARC © 2004 MIT Media Laboratory, Hiroshi Ishii 5 LIVE WIRE Natalie Jeremijenko, 1995 • 8 foot piece of plastic rope that hangs from a small electric motor mounted in the ceiling. The motor is linked to a nearby LAN, so that passing bits cause twitching of the motor. • Bits flowing through the wires of a computer network become tangible through motion, sound, and touch. • Mark Wieser called “Calm Technology” © 2004 MIT Media Laboratory, Hiroshi Ishii Natalie Jeremijenko designed a beautiful instrument called Live Wire while an artist in residence at Xerox PARC. It is a piece of plastic cord that hangs from a small electric motor mounted on the ceiling. The motor is linked to the Ethernet, and each passing digital packet causes a tiny twitch of the motor. Bits flowing through the wires of a computer network become tangible through motion, sound without being obtrusive, taking advantage of peripheral cues. This work encouraged us to think about ambient media as a general mechanism for displaying activities in cyberspace. 6 “The Computer for the 21st Century” “The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” Mark Weiser July 23, 1952 - April 27, 1999 © 2004 MIT Media Laboratory, Hiroshi Ishii Mark Weiser wrote as follows in the 1st paragraph of his landmark paper on Ubiquitous Computing published in 1991 Scientific America . “The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” If you learn the task quite well using the right tools, and become the master, the tools cease to be a center of users’ attention. �Tools disappear into the background and you can concentrate on the tasks themselves. This is the definition of transparent or invisible computers by Mark. Invisible does not mean you can not see with your eyes. It is the matter of user’s focus of attention and consciousness. It is the state in which tools do not get in your way and you can concentrate on the task. Mark showed a series of ubiquitous computers including Live Board, Pads, and Badges. All of them come with screens and GUIs. But I do not feel Ubiquitous GUI is the path to achieve invisible interface. Today, I would like to show my approach: Tangible Interfaces. 7 At the Border Where the land meets the sea, there is a border. © 2004 MIT Media Laboratory, Hiroshi Ishii Where the land meets the sea, there is a border. This borderline is constantly moving and changing the shape of the shore. However, it is not only a simple line of a landscape, but also a critical biological locale. 8 Living at the Border Harsh, but also fertile environment. © 2004 MIT Media Laboratory, Hiroshi Ishii Whenever the tides go in and out, the inhabitants in the intertidal zone experience harsh environmental changes. When the tidal animals are exposed, they must withstand the heat and drying. When they are submerged, they must face constant pounding of waves. Living at this border is hard, but it is also a fertile environment for many kinds of life and activity. Where the land meets the sea, countless creatures have evolved diverse and creative approaches for flourishing among the turbulence and constant changes of these competing worlds. Our ancestors came from the sea and landed crossing this border a million years ago. 9 At the Border between Physical and Digital We live on the border where bits meet atoms. In the flood of pixels from the ubiquitous GUI screens, we are losing our sense of body and places. Pixels impoverish human senses. © 2004 MIT Media Laboratory, Hiroshi Ishii We are now crossing another border. Where bits meet atoms, there is another shoreline. Today, we live on the boundary between physical space and cyberspace. The constant pounding by waves of bits from screens distorts our experience of space. People are losing their sense of body and places in the flood of pixels from the ubiquitous rectangular screens. Living on this border is hard because our bodies remain in the physical world, even while we are immersed within digital information. It is also hard because current interfaces are not designed for amphibians. We are half drowning in the sea of bits, squeezing plastic mice instead of breathing and swimming. People are standing at the water's edge at a loss. 10 At the Boundary Where the sea meets the land, life has blossomed into a myriad of unique forms in the turbulence of water, sand, and wind. At another seashore between the land of atoms and the sea of bits, we are now facing the challenge of reconciling our dual citizenships in the physical and digital worlds. Windows to the digital world are confined to flat square screens and pixels, or "painted bits." Unfortunately, one can not feel and confirm the virtual existence of this digital information through one's body. Tangible Bits seeks to realize seamless interfaces between humans, digital information, and the physical environment by giving physical form to digital information and computation, making bits directly manipulable and perceptible. Hiroshi Ishii | Tangible Media Group | MIT Media Lab © 2004 MIT Media Laboratory, Hiroshi Ishii 11 • Seamless Interfaces for the Boundaries • Seamless Collaboration Media (88-94) at NTT Human Interface Laboratories • Beyond “Being There” • CSCW (Computer-Supported Cooperative Work) communities: ACM SIGOIS, SIGCHI, IFIP • Tangible User Interfaces (96-00) at Tangible Media Group, MIT Media Laboratory • Beyond “Painted Bits” • HCI (Human-Computer Interactions) communities: ACM SIGCHI and SIGGRAPH © 2004 MIT Media Laboratory, Hiroshi Ishii 12 My Art Work in 1959 © 2004 MIT Media Laboratory, Hiroshi Ishii Let me show another art work. This is my drawing on a fridge door in 1959. I loved drawing. Since then, drawing has been a very important medium in which I think, express myself and communicate with my mother. 13 Goal of ClearBoard Design • Seamless Integration of Shared Workspace and Interpersonal Space • Natural and smooth transition between them using everyday cues Shared Workspace Interpersonal Space © 2004 MIT Media Laboratory, Hiroshi Ishii ClearBord, the shared drawing media I designed, is deeply rooted in my drawing practices and my liking for the whiteboard. Our goal was to create a collaboration medium that seamlessly integrated the IPS and the SWS. We designed ClearBoard to allow users to shift easily between these spaces by using familiar everyday cues such as the partner's gestures, head movements, eye contact, and gaze direction. 14 Beyond “Being There” Beyond “Talking Heads” • Tacit Goal of Telecommunication: Imitation of "Being There" over distance – But this goal is a mirage.
Recommended publications
  • Bpml 30-Nov-77 08:14 42492 This File Is a Combination Ot Two Earlier Files
    BPMl 30-Nov-77 08:14 42492 ,NLS DOCUMENTS AND PUBLICATIONS LIST - May 1977 This file is a combination ot two earlier files that included a listing of ARC publl~ations and documents through May 1977. It was compiled by Nina Zolotow. 1 AUGMENTATION RESEARCH CENTER PUBLICATIONS 2 Engelbart, D.C., "Special Considerations of tne Individual as a User, Generator, and RetrieVer of Information," Reprinted from American Documentation, Vol. 12, No.2, APrll, 1961 (XDOC··0585,) 3 Engelbart, D.C., "Augmenting Human Intellect: A Conceptual Framework," Stanford Research Inst1tute, Augmentation Research Center, AFOSR-322J, AD-289 5&5m October 1962 (XDOC--3906 J ) 4 Engelbart, D.C., "A Conceptual Framework for the Augmentation Of Man·s Intellect," VISTAS IN INFORMATION HANDLING, Howerton and Weeds (Editors), spartan BOOkS, Washington, D.C~, 1963, PP. 1-29 (XDOC-·0981,) 5 Engelbart, D.C., Sorenson, P.H., "Explorations in the Automation of Sensorimotor SkIll Tralnlng," stanford Research Institute, MAVTRADEVCEN 1517-1, AD 619 046, January 1965 (XDOC--11736,) 6 Engelbart, D.C., "Augmenting Human Intellect: Experiments, Concepts, and Posslbilltles--Summary Report," Stanford Research Institute, Au~mentatlon Research Center, March 1965 (XDOC--9691,) 7 EngliSh, W.K., Engelbart, D.C., HUddart, B., "Computer Aided DiSPlay Control--Final Report.," Stanford Research Institute, Augmentation Research Center, July 1965 (XDOC--9692,) 8 English, W.K., Engelbart, D.c., Berman, M.A., "DisplaY-Selection Techniques for Text ManiPulation," IEEE TRANSACTIONS ON HUMAN FACTORS IN ELECTRONICS, VOl. HFE~8, No.1, Pp. 5-15, March 1967 (XDOc--9694,) 9 Licklider, J.C.R., Taylor, R.W., Herbert, E., "The Computer as a CommuniCation Device," INTERNATIONAL SCIENCE AND TECHNOLOGY, NO.
    [Show full text]
  • The Implementation of Nls on a Minicomputer by James G
    \ \ \ \ \ THE IMPLEMENTATION OF NLS ON A MINICOMPUTER BY JAMES G. MITCHELL CSL 73·3 AUGUST 1973 NIC #18941 This technical report covers the research performed at Xerox Palo Alto Research Center (PARC) for the period June 30, 1972 to July I, 1973 under Contract Number DAHCl5 72 C 0223 with the Advanced Research Projects Agency, Information Processing Techniques Office. The research covers initial studies and evaluation of transferring a large, display-oriented documentation system (the NLS system developed at Stanford Research Institute) to a minicomputer system and a protocol for accessing NLS over the ARPANET. The research reported herein was supported by the Advanced Research Projects Agency under Contract No. DAHCI5 72 C 0223, ARPA Order No. 2151, Program Code No. 2PIO. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government. XEROX PALO ALTO RESEARCH CENTER 3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304 Xerox Palo Alto Research Center (PARC): PARC is a research facility of the Xerox Corporation. It is involved in research in the physical sciences, computer hardware and software systems and the computer sciences in general. These latter include computer architecture, interactive graphics, operating systems, programming research, and natural language understanding systems. The Computer Science Laboratory (CSL) of PARe currently numbers thirty technical and support staff. INTRODUCTION The ARPA contract reported herein concerns the development of an NLS-I ike [I] display-oriented text-editing system supporting multiple users on a minicomputer configuration.
    [Show full text]
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • (Jake) Feinler
    Oral History of Elizabeth (Jake) Feinler Interviewed by: Marc Weber Recorded: September 10, 2009 Mountain View, California Editor’s note: Material in [square brackets] has been added by Jake Feinler CHM Reference number: X5378.2009 © 2009 Computer History Museum Oral History of Elizabeth (Jake) Feinler Marc Weber: I’m Marc Weber from the Computer History Museum, and I’m here today, September 10th, 2009, with “Jake” Elizabeth Feinler, who was the director of the Network Information Systems Center at SRI. [This group provided the Network Information Center (NIC) for the Arpanet and the Defense Data Network (DDN), a project for which she was the principal investigator from 1973 until 1991. Earlier she was a member of Douglas Engelbart’s Augmentation Research Center (ARC) at SRI [which [housed] the second computer on the Arpanet. It was on this computer that the NIC resided initially.] Jake is also a volunteer here at the museum. [She has donated an extensive collection of early Internet papers to the museum, and has been working on organizing this collection for some time.] Thank you for joining us. Elizabeth (Jake) Feinler: My pleasure. Weber: I really just wanted to start with where did you grow up and what got you interested in technical things or things related to this. Feinler: [Originally I hoped to pursue a career in advertising design, but could not afford the freshman room and board away from home, so I began attending West Liberty State College (now West Liberty University) close to my home. West Liberty was very small then, and the] art department [wasn’t very good.
    [Show full text]
  • The UNIX Time-Sharing System
    1. Introduction ACM Symposium on Operating Systems Principles There have been three versions of UNIX. The earliest Yorktown Heights, N.Y.: October, 1963 version (circa 1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver. sion ran on the unprotected PDP.~~'20 computer. hi^ paper describes only the PDP-ll 40 and .'45 [I] system System The UNIX Time- since it is more modern and many of the diferences The UNMO Time-Sharing between it and older UNlx systems result from redesign Dennis M. Ritchie and Ken Thompson Sharing System of features found to be deficient or lacking. Since PDP-l l UNIX became operational in February July, 1974 Dennis M. Ritchie and Ken Thompson 1971, about 40 installations have been put into service; Volume 17, Number 7 Bell Laboratories they are generally smaller than the system described here. Most of them are engaged in applications such as pp. 365-375 the preparation and formatting of patent applications and other textual material, the collection and processing of trouble data from vartous switching machines within the Bell System, and recording and checking telephone service orders. Our own installation is used mainly machines, most notably the PDP-I1 family. for research in operating systems, languages, com- UNIPhas become one of the most widely puter networks, and other topics in computer scienc', known and imitated operating systems of all The genius of Ritchie and Thompson is in UNIX is a general-purpose, multi-user, interactive and also for document preparation. time. Ken Thompson, in working on a pro- their selection of a subset of the most pow- operating system for the Digital Equipment Corporation Perhaps the most important achievement of L.NIX PDP-II/~Oand 11/45 computers.
    [Show full text]
  • Videoconferencing - Wikipedia,Visited the Free on Encyclopedia 6/30/2015 Page 1 of 15
    Videoconferencing - Wikipedia,visited the free on encyclopedia 6/30/2015 Page 1 of 15 Videoconferencing From Wikipedia, the free encyclopedia Videoconferencing (VC) is the conduct of a videoconference (also known as a video conference or videoteleconference) by a set of telecommunication technologies which allow two or more locations to communicate by simultaneous two-way video and audio transmissions. It has also been called 'visual collaboration' and is a type of groupware. Videoconferencing differs from videophone calls in that it's designed to serve a conference or multiple locations rather than individuals.[1] It is an intermediate form of videotelephony, first used commercially in Germany during the late-1930s and later in A Tandberg T3 high resolution the United States during the early 1970s as part of AT&T's development of Picturephone telepresence room in use technology. (2008). With the introduction of relatively low cost, high capacity broadband telecommunication services in the late 1990s, coupled with powerful computing processors and video compression techniques, videoconferencing has made significant inroads in business, education, medicine and media. Like all long distance communications technologies (such as phone and Internet), by reducing the need to travel, which is often carried out by aeroplane, to bring people together the technology also contributes to reductions in carbon emissions, thereby helping to reduce global warming.[2][3][4] Indonesian and U.S. students Contents participating in an educational videoconference
    [Show full text]
  • NLS Visiting Researcher Guide Revised 09/10/18
    NLS Visiting Researcher Guide Revised 09/10/18 Contents Administrative Information ............................................................................................................2 Points of Contact ........................................................................................................................2 Data Access ....................................................................................................................................2 Onsite Appointments ..................................................................................................................2 Passwords ..................................................................................................................................2 Research Server ..........................................................................................................................3 Research Server Uploads ............................................................................................................3 How to Transfer Files using Tectia Secure File Transfer ................................................................3 Graphical User Interface (GUI) versions of SAS and STATA ...........................................................4 Navigating Graphical User Interface (GUI) of SAS .........................................................................5 Characteristics of NLS Data .............................................................................................................7 Non-Disclosure Review ..................................................................................................................
    [Show full text]
  • Design and Behavior of TSS/ 8: a PDP-8 Based Time-Sharing System
    Design and Behavior of TSS/ 8: a PDP-8 Based Time-sharing System _U) VhvDE GOOR, STUDENT mm~~,IEEE, C. GORDON BELL, ~EJIBER, IEEE, rn DONALD A. WITCIWFT dbstra::-TSS/8 is an existence proof for a small-scale tin.;- time-sharing system, but with an order of magnitude syxem. Design, development, and performance analysis decrease in the per console cost. &re occurred in quasiparallel. Performance analysis includes two The design was predicated on giving a user a very =c.Cels an2 rxo levels of simulation (using SIMULA). The final simu- kfon, an ticurate model of the real operating system, predicts the short response to a typelvriter or teletype input; but cbsened beharior. the user would have little arithmetic computing capa- bility. Thus, through specialization the systern would Index Tzrnts--Disk, PDP-8 computer, performance analysis, .--dub,-. s;k-ixion, text editing, time-sharing. be used as follows. 1) A preprocessor to larger, rnore general purpose systems. In this mode all trivial tasks (syntax S >I.\\-, 1967 Carnegie-JIellon University began checking, editing, etc.) would be handled by the design of a small-scale time-sharing system. TSS/8, in effect, at the lowcst (cheapest) organi- IThe prixlcipal design goal was a general purpose zational level. Sinlplc computational tasks (e.g., short BASIC programs) \voultl also be run at the \laccx<?: received June 9, 1969; revised July 7, 1969. This periphery. -.-.:-e: .-. w.15 :rexc.nted at the 1969 IEEE Computer Croup Conference, 2) Stand alone general purpose systern. Users not !.l:znc.~y.:~.\linn., June 17-19, 1969. This work was supported by 1 --i-e .-\.dv.\r.=:.d Fesearch Projects ;\gency of the Otlice of the Secretary requiring significant arithmetic capability and :i- -Ocier.;i.
    [Show full text]
  • SRI ARC Journal
    JHB 31-AUG-73 12:32 18790 draft report SECTION VI SUMMARY AND CONCLUSIONS This study has reported the findings during a seven month period during which the AHI System was implemented, users were trained, numerous problems were encountered and overcome, and the organization began to evolve toward an Augmented Knowledge WorkshOD, The study provided data to support many intuitive observations and documented the experiences with this first-of-a-kind situation. There was an important methodlogical finding that does directly pertian to the hypotheses. There was no significant difference between the mean attitude of the groups toward the general technology. However, all other findings strongly support conclusions about positive effects. Therefore, it must be concluded that the test instrument and its administration to this small sample, was not sensitve to the effects of the AHI system. It appears that measuring the attitude toward a general technology is not a reliable method of ascertaining the specific effects on a small population. The consistancy between the behavior and the responses to the other instruments did, however, detect strong attitudinal implications. 130 JHB 31-AUG-73 12:32 16790 draft report Learning to use the system: Effects on the individual Certain prerequisites were found that are necessary for the individual to begin to become an Augmented Knowledge Worker based primarily on subject responses, the proficiency exercise, and observation of behaviors, in general, the findings support the hypotheses, however, certain they were not pertinent to aspects of the hypotheses presented in Section I, The necessary hardware must be avaiable and in dependable operation.
    [Show full text]
  • Study of the US Darpa Model and Its Applicability to the Indian Defence Research and Development System
    MANEKSHAW PAPER No. 43, 2014 Study of the US DARPA Model and its Applicability to the Indian Defence Research and Development System Bikramdeep Singh D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Maj Gen Dhruv C Katoch SM, VSM (Retd) Managing Editor : Ms Avantika Lal D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2014, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of MoD (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents 1.
    [Show full text]
  • SRI ARC Journal
    PAW2 25-SEP-75 15125 33549 Qualifications For Sgt, Crabtree's process branch Two process commands branches were written for Sgt» Crabtree at Gunter to help him with his handling of Air Force Direps, (difficulty reports), This is a short explanation and list of qualifications and suggestions that should be useful to him in increasing the efficiency and smoothness of the process branches, (The branches have been journalized (journal, jrnl 30, J33432) 1 The process commands branches are in Sgt, Crabtree's directory, (DSDOSC,process,), Sgt, Crabtree will input all the incoming direps# (difficulty reports! *n a file called Active, The first branch moves all the problems with solutions into a file called Direp-status-peport, Both problems and solutions entered in this file are then printed out on a standard Air Force direp report form, 2 Every solution will be preceded by four numbers in parens. In the second branch a filter is set to search for solutions preceded by four numbers beginning with a 1 or a 5 and another to search for solutions preceeded by four numbers beginning with either a 2 or an 8, The solutions beginning with a 1 or a 5 along with the corresponding problems will be filed in the Interim«Direps file and those beginning with a 2 or an 8 will be filed in the Inactive«Direps file, 3 Before starting the process branch, a number, (the number of the report) will need to be substituted for the x in statement i of the Direps-Status'Report file. The date will also probably need to be changed, 3a In order to run the branch: 1, load
    [Show full text]
  • The Augmented Knowledge Workshop
    THE AUGMENTED Te KNOWLEDGE WORKSHOJ Doug Engelbart Introduction by Charles Irby hen left Glens group spent year working for Lytton Indus tries on the ground control system supporting precursor to skylab Then went to conference that was being held up in San Francisco It was the Fall Joint Computer Conference This particular conference because there was very very special for me and for lot of people was an hour and half session in which Douglas Engelbart from the Augmentation Research Center at SRI in Menlo Park California gave live video demonstration of highly interactive computer graphics and computer text manipulation system that had been developed at SRI went to that particular session not knowing what to expect and the was completely blown away happened to find afterward partic Bill ular person who seemed to be in charge technically his name was and think English cornered him and said This is really nifty can help you And he said Were looking for few good men Why dont you come by The next week went by and the personnel de partment said No we have no openings said Wrong Im going to sit here until Bill English comes to talk to me was fairly bold in those days And he did They hired me and it was the beginning of effort at SRI with sevenyear on my part Doug Engelbart great many of the concepts that people now think of as commonplace like the mouse and multiple windows editing across windows integrated of text and graphicsall those things originated from my point view from Doug and his group at SRI Id like to introduce Doug Engelbart and
    [Show full text]