UV SKY SURVEYS 3 Calculated with the Codes of Fioc & Rocca-Volmerange (Leitherer Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years. -
Esa Cosmic Vision – “The Four Themes”
ESA COSMIC VISION –“THE FOUR THEMES” Planets and Life ‐ The Solar System ‐ Fundamental laws ‐ The UiUniverse EUROPEAN ULTRAVIOLET‐VISIBLE OBSERVATORY Thierry Appourchaux –IAS France; Martin Barstow – University of Leicester UK; Mathieu Barthelemy ‐ IPAG, France; Fréderic Baudin “Building galaxies, stars, planets –IAS, France; Stefano Benetti –OAPD‐ INAF, Italy; Pere Blay ‐ Universidad de Valencia, Spain; Noah Brosch ‐ Tel Aviv University, and the ingredients for life between Israel; Enma Bunce ‐ University of Leicester, UK; Domitilla de Martino – OAC‐INAF, Italy; Ana Ines Gomez de Castro – the stars” Universidad Complutense de Madrid, Spain; Jean‐Michel Deharveng –Observatoire Astronomique Marseille‐Provence, France; Roger Ferlet ‐ Institute d'Astrophysique de Paris, France; Kevin France ‐ University of Colorado, USA; Miriam García –IAC, Spp;ain; Boris Gaensicke ‐University of Warwick, UK; Cecile Gry ‐ Observatoire Astronomique Marseille‐Provence, France; Lynne Hillenbrand – Caltech, USA; Eric Josselin ‐ University of Montpellier, France; Carolina Kehrig – Instituto de Astrofísica de Andalucía, Spain; Laurent Lamy ‐ LESIA, France; Jon Lapington – University of Leicester, UK; Alain Lecavelier des Etangs – Institute d'Astrophysique de Paris, France; Frank LePetit – Observatoire Paris‐Meudom, France; Javier Lopez Santiago ‐ Universidad Complutense de Madrid, Spain; Bruno Milliard‐ Observatoire Astronomique Marseille‐Provence, France; Richard Monier ‐ Université de Nice, France; Giampiero Naletto – University of Padova, Italy;Yael Nazé ‐ Liège -
Vitae-Balonek-Full-2019 May 13
Thomas J. Balonek Professor of Physics and Astronomy Department of Physics and Astronomy Colgate University 13 Oak Drive, Hamilton, NY 13346 (315) 228-7767 [email protected] EDUCATIONAL BACKGROUND Ph.D. (Astronomy) University of Massachusetts, Amherst, MA, 1982 M.S. (Astronomy) University of Massachusetts, Amherst, MA, 1977 B.A. (Physics) Cornell University, Ithaca, NY, 1974 PROFESSIONAL BACKGROUND Professor of Physics and Astronomy, Colgate University, Hamilton, NY (2002-present) Chair, Department of Physics and Astronomy, Colgate University, Hamilton, NY (2008-2011) Visiting Research Scientist, National Astronomy and Ionosphere Center, Cornell University, Ithaca, NY (2006-2007) Associate Professor of Physics and Astronomy, Colgate University, Hamilton, NY (1991-2002) Chair, Department of Physics and Astronomy, Colgate University, Hamilton, NY (1995-1998) Chair, New York Astronomical Corporation (1995-1998) Visiting Research Scientist, National Radio Astronomy Observatory, Tucson, AZ (1992-1993) Assistant Professor of Physics and Astronomy, Colgate University, Hamilton, NY (1985-1991) Visiting Assistant Professor of Astronomy, Williams College, Williamstown, MA (1983-1985) NASA-ASEE (National Aeronautics and Space Administration and American Society for Engineering Education) Summer Faculty Fellow, NASA-Ames Research Center, Moffett Field, CA (1983, 1984) Post-Doctoral Research Associate and Lecturer I, University of New Mexico, Albuquerque, NM (1982-1983) Planetarium Lecturer, Basset Planetarium, Amherst College, Amherst, MA (1979-1981) -
Prospects for Observations of Transient UV Events with the TAUVEX UV Observatory 3
Astrophysics and Space Science DOI 10.1007/sXXXXX-XXX-XXXX-X Prospects for Observations of Transient UV Events with the TAUVEX UV Observatory Margarita Safonova1 • C. Sivaram2 • Jayant Murthy3 c Springer-Verlag •••• Abstract Transient events have posed special prob- Because we obtain real-time telemetry with TAUVEX, lems in astronomy because of the intrinsic difficulty of we will be able to catch transients early in their evolu- their detection, and a new class of observatories such tion and to alert other observatories. We also present a as the Pan-STARRS and LSST are coming up specif- description of TAUVEX mission, including instrument ically to observe these energetic events. In this paper design and its estimated performance. we discuss the UV transient events from two specific sources, such as possible collisions in extrasolar plane- Keywords TAUVEX: — space missions: planetary tary systems and M dwarf flares, to find the probability collisions; UV flares of their detection by space UV observatories, in partic- ular, by the Tel Aviv University Explorer (TAUVEX). TAUVEX is an UV imaging experiment that will image 1 Introduction large parts of the sky in the wavelength region between 1200 and 3500 Å. TAUVEX is a collaborative effort be- Astrophysical transient events include bursts, flashes, tween the Indian Institute of Astrophysics (IIA) and flares, gamma-ray bursts (GRBs), supernovae (SN), Tel Aviv University, and is scheduled for an early-2009 etc. The discovery and study of highly transient launch with at least three years of operations. The sources, especially those that rise to high brightness scientific instrument has been fabricated at El-Op in and then fade, has always been a major part of modern Israel, with the satellite interfaces, launch and flight astrophysics. -
Tauvex and the Nature of the Cosmological Uv Background
TAUVEX AND THE NATURE OF THE COSMOLOGICAL UV BACKGROUND NOAH BROSCH The School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel TAUVEX is a three-telescope array intended to image wide sky areas in the UV. It is being constructed in Israel for flying on-board the Spec- trum X-7 (SRG) international high-energy observatory. SRG will be orbited by Russia in early 1996 for a three-year+ mission. TAUVEX will operate in parallel with X-ray imaging telescopes on board SRG to provide time- resolved photometry and deep UV imaging. Observations in the UV region longward of Lyman a up to the atmo- spheric limit at ~3000Â take advantage of reduced sky background be- cause of a fortuitous combination of zodiacal light decreasing shortward of ~3000Â and other backgrounds remaining low up to near the geocoronal Lyman a. In this spectral region it is therefore possible to observe faint astronomical sources with high signal-to-noise ratio, even with a modest telescope. The present design of TAUVEX includes three co-aligned 20 cm diame- ter telescopes in a linear array on the same mounting surface. Each telescope images a field of 0°.9 with 10" resolution onto photon-counting position- sensitive detectors with wedge-and-strip anodes, produced by DEP of Ro- den, Holland. The payload is designed and assembled by El-Op Electro- Optics Industries, Ltd., of Rehovot, the top electro-optical manufacturer of Israel, under close supervision of Tel Aviv University astronomers. The TAUVEX telescopes are equipped with a set of six filters, which sample the spectral segment 1400-2800Â. -
TAUVEX on GSAT4: Observational Prospects and Constraints
Bull. Astr. Soc. India (2007) 35, 209{222 TAUVEX on GSAT4: observational prospects and constraints Elhanan Almoznino¤ Wise-Observatory, Tel-Aviv University, Israel Abstract. In this paper we describe the observational constraints imposed on the TAUVEX space telescope due to scattered light entering its telescopes from outside the ¯eld of view. This stray light is a sunlight reflected from various spacecraft components into TAUVEX apertures. Based on these constraints, a basic strategy of observation is suggested, in which the major part of the observational time will be dedicated to sky survey, while the rest will be aimed at speci¯c targets. Keywords : space vehicles: instruments { instrumentation: miscellaneous { Sun: UV radiation { ultraviolet: Solar system 1. Introduction Installed on the Mounting Deck Plate (MDP) on the east face of GSAT-4, TAUVEX will scan the sky at a rate of one revolution per sidereal day. This sets the basic method of observation, which is to scan the 'ribbons' of constant declination, ±, for time periods of typically several hours. The Right Ascension (R.A.) is set by the time of observation while the declination, ±, is the angle commanded to the MDP. During the orbit the Sun illuminates the spacecraft at a varying angle causing a varying stray light noise in the TAUVEX detector. In order to maximize the scienti¯c yield of the mission, it is best to observe when the stray light is minimal and the exposure time (the time a celestial object crosses the ¯eld of view (FOV)) is maximal. In addition, for a survey mission, one should try to cover a sky area as large as possible, preferably with a uniform exposure time. -
Chapter Vi Report of Divisions, Commissions, and Working
CHAPTER VI REPORT OF DIVISIONS, COMMISSIONS, AND WORKING GROUPS Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 DIVISION I FUNDAMENTAL ASTRONOMY Division I provides a focus for astronomers studying a wide range of problems related to fundamental physical phenomena such as time, the intertial reference frame, positions and proper motions of celestial objects, and precise dynamical computation of the motions of bodies in stellar or planetary systems in the Universe. PRESIDENT: P. Kenneth Seidelmann U.S. Naval Observatory, 3450 Massachusetts Ave NW Washington, DC 20392-5100, US Tel. + 1 202 762 1441 Fax. +1 202 762 1516 E-mail: [email protected] BOARD E.M. Standish President Commission 4 C. Froeschle President Commisison 7 H. Schwan President Commisison 8 D.D. McCarthy President Commisison 19 E. Schilbach President Commisison 24 T. Fukushima President Commisison 31 J. Kovalevsky Past President Division I PARTICIPATING COMMISSIONS: COMMISSION 4 EPHEMERIDES COMMISSION 7 CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY COMMISSION 8 POSITIONAL ASTRONOMY COMMISSION 19 ROTATION OF THE EARTH COMMISSION 24 PHOTOGRAPHIC ASTROMETRY COMMISSION 31 TIME Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 24 Sep 2021 at 09:23:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0251107X00011937 COMMISSION 4: EPHEMERIDES President: H. Kinoshita Secretary: C.Y. Hohenkerk Commission 4 held one business meeting. -
Closing Gaps to Our Origins Euvo
CLOSING GAPS TO OUR ORIGINS THE UV WINDOW INTO THE UNIVERSE Spokesperson: Ana Inés Gómez de Castro Contact details: Space Astronomy Research Group – AEGORA/UCM Universidad Complutense de Madrid Plaza de Ciencias 3, 28040 Madrid, Spain email:[email protected] Phone: +34 91 3944058 Mobile: +34 659783338 1 MEMBERS OF THE CORE PROPOSING TEAM 1. Martin Barstow – University of Leicester, United Kingdom 2. Fréderic Baudin – IAS, France 3. Stefano Benetti – OAPD-INAF, Italy 4. Jean Claude Bouret – LAM, France 5. Noah Brosch - Tel Aviv University, Israel 6. Domitilla de Martino – OAC-INAF, Italy 7. Giulio del Zanna – Cambridge University, UK 8. Chris Evans – Astronomy Technology Centre, UK 9. Ana Ines Gomez de Castro – Universidad Complutense de Madrid, Spain 10. Miriam García – CAB-INTA, Spain 11. Boris Gaensicke -University of Warwick, United Kingdom 12. Carolina Kehrig – Instituto de Astrofísica de Andalucía, Spain 13. Jon Lapington – University of Leicester, United Kingdom 14. Alain Lecavelier des Etangs – Institute d'Astrophysique de Paris, France 15. Giampiero Naletto – University of Padova, Italy 16. Yael Nazé - Liège University, Belgium 17. Coralie Neiner - LESIA, France 18. Jonathan Nichols – University of Leicester, United Kingdom 19. Marina Orio – OAP-INAF, Italy 20. Isabella Pagano – OACT-INAF, Italy 21. Gregor Rauw – University of Liège, Belgium 22. Steven Shore – Universidad di Pisa, Italy 23. Gagik Tovmasian – UNAM, Mexico 24. Asif ud-Doula - Penn State University, USA 25. Kevin France - University of Colorado, USA 26. Lynne Hillenbrand – Caltech, USA The science in this WP grows from previous work carried by the European Astronomical Community to describe the science needs that demand the development of a European Ultraviolet Optical Observatory. -
Division Xi: Space & High-Energy Astrophysics
Transactions IAU, Volume XXVIB Proc. IAU XXVI General Assembly, August 2006 c 2008 International Astronomical Union Karel A. van der Hucht, ed. doi:10.1017/S1743921308024125 DIVISION XI SPACE & HIGH-ENERGY ASTROPHYSICS ASTROPHYSIQUE SPATIALE & DES HAUTES ENERGIES Division XI connects astronomers using space techniques or particle detectors for an extremely large range of investigations, from in-situ studies of bodies in the solar system to orbiting observa- tories studying the Universe in wavelenghts ranging from radio waves to γ-rays, to underground detectors for cosmic neutrino radiation. PRESIDENT Haruyuki Okuda VICE-PRESIDENT Guenther Hasinger PAST PRESIDENT Ganesan Srinivasan BOARD Monique D. Arnaud, Sidney A. Bludman, Jo˜ao Braga, Noah Brosch, Leonid I. Gurvitz, Hashima Hasan, George Helou, Ian D. Howarth, Hajime Inoue, Luigi Piro, Ganesan Srinivasan DIVISION XI COMMISSION Commission 44 Space & High-Energy Astrophysics DIVISION XI WORKING GROUPS Division XI WG Particle Astrophysics Division XI WG Astronomy from the Moon PROCEEDINGS BUSINESS AND SCIENCE MEETING on 17 August 2006 1. Introduction A business meeting of Division XI / Commission 44 was held during the IAU XXVI General Assembly, Prague, Chezc Republic, on August 17, 2006. Chair of the meeting was Prof. Haruyuki Okuda, president of the Division and the Commission 44. Vice-president Prof. Guenther Hasinger was also present. 2. Report of the Business Meeting At the beginning, a brief report on the scientific activities of the Division in the past pe- riod (2003-2006) was given by Prof. Okuda, in which he concluded that the past period was very successful and fruitful in every relevant fields of the Division; UV, X-ray/γ-ray, optical, IR/sub-millimeter as well as radio regions, having provided a variety of interesting results by the many ongoing missions as well as by newly launched missions, such as ASTRO-E/Suzaku, SIRTF/Spitzer,andASTRO-F/Akari. -
Moon-Proceedings-Part 1 2006.Pdf
1 INTERNATIONAL AND INTERDISCIPLINARY WORKSHOP ON POLICY AND LAW RELATING TO OUTER SPACE RESOURCES: EXAMPLES OF THE MOON, MARS, AND OTHER CELESTIAL BODIES Dedicated to Eilene Galloway, who has been advocating and promoting actively international cooperation and peaceful uses of outer space since 1957 WORKSHOP PROCEEDINGS organized by Institute of Air and Space Law (IASL), Faculty of Law, McGill University & International Institute of Space Law (IISL) in cooperation with the Cologne Institute of Air and Space Law, the Leiden International Institute of Air and Space Law and the University of Mississippi National Remote Sensing and Space Law Centre, and with the support of United Nations Office of Outer Space Affairs, Indian Space Research Organization, the Social Sciences and Humanities Research Council of Canada, Nicolas Mateesco Matte Fund for Space Law, MDA Corporation, and OPTECH Corporation at Institute of Air & Space Law, Faculty of Law, McGill University 3661 Peel Street, Montreal, Quebec, Canada, June 28-30, 2006. Published by the McGill University Center for Research of Air and Space Law 3661 Peel St. Montreal, QC Canada H3A 1X1 Copyright © 2007 by McGill University, Centre for Research of Air and Space Law ISSN 0701-158-07-02 First published in 2007 TABLE OF CONTENTS Page Preface by Ram Jakhu v Welcome Address by Nandasiri Jasentuliyana xiv Remarks by Eilene Galloway xviii Session 1: State-of-the-Art Technologies, Physical and Geological Composition of the Celestial Bodies and International Cooperation 1 “Role of the Moon in Reducing Technical and Programmatic Risks for Long-Duration Exploration Missions” by Carl Walz 2 “Present State of Lunar Exploration & Lunar ISRU Research in Japan” by Kai Matsui 18 “Chandrayaan-1 and Future Planetary Exploration Missions of India: Contributions to International Cooperation” by K.R. -
TAUVEX - an Ultraviolet Imager on the Indian GSAT-4 Satellite
Bull. Astr. Soc. India (2003) 31, 243-248 TAUVEX - An Ultraviolet Imager on the Indian GSAT-4 Satellite Jayant Murthyl.* I Indian Instirute for Astronomy, Korarnangala, Bangalore 560 034 Abstract. The TAUVEX instrument consists of three imagers operating in several bands in the mid to near UV. We have proposed to fly TAUVEX as a secondary payload on the GSAT-4mission to be launched in late 2004 and this proposal is currently under consideration by ISRO.The TAUVEX mission will consist of a series of scans over 1 degree wide bands in the sky which we will build up into a survey of the ultraviolet sky. The limiting magnitude in each of the three colours will be on the order of 19. We hope to make the data available to the Indian astronomical community soon after launch. Keywords : Space Missions - W; Sky Surveys - W 1. Introduction In collaboration with the Israeli TAUVEX team, we have proposed to fly an ultraviolet imager aboard the GSAT-4 satellite, to be launched by ISRO in late 2004. The TAUVEXpayload consists of three W imagers covering the wavelength region between 1400 A and 3200 A (for a full description see Brosch 1998). With moderate spatial resolution (7") over a large field of view (54'1, TAUVEX perfectly complements the Ultraviolet Imaging Telescope (WIT - Pati & Rao 1998) aboard the ASTROSAT mission (scheduled for launch in late 2006) which has a much higher spatial resolution f 1") but with only half the FOV.On the other hand, TAWEX is directly competetive with the recently launched GALEX mission (Burgarella et.