(12) Patent Application Publication (10) Pub. No.: US 2001/0047033 A1 Taylor Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2001/0047033 A1 Taylor Et Al US 20010047033A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2001/0047033 A1 Taylor et al. (43) Pub. Date: Nov. 29, 2001 (54) COMPOSITION FOR AND METHOD OF Publication Classification PREVENTING OR TREATING BREAST CANCER (51) Int. Cl." ........................ A61K 31/35; A61K 31/138 (52) U.S. Cl. ............................................ 514/456; 514/651 (75) Inventors: Richard B. Taylor, Valley Park, MO (US); Edna C. Henley, Athens, GA (57) ABSTRACT (US) The present invention is a composition for preventing, Correspondence Address: minimizing, or reversing the development or growth of Richard B. Taylor breast cancer. The composition contains a combination of a Protein Technologies International, Inc. Selective estrogen receptor modulator Selected from at least P.O. BOX 88940 one of raloxifene, droloxifene, toremifene, 4'-iodotamox St. Louis, MO 63188 (US) ifen, and idoxifene and at least one isoflavone Selected from genistein, daidzein, biochanin A, formononetin, and their (73) Assignee: Protein Technologies International, respective naturally occurring glucosides and glucoside con Inc., St. Louis, MO jugates. The present invention also provides a method of (21) Appl. No.: 09/900,573 preventing, minimizing, or reversing the development or growth of breast cancer in which a Selective estrogen (22) Filed: Jul. 6, 2001 receptor modulator Selected from at least one of raloxifene, droloxifene, toremifene, 4'-iodotamoxifen, and idoxifene is Related U.S. Application Data co-administered with at least one isoflavone Selected from genistein, daidzein, biochanin A, formononetin, and their (62) Division of application No. 09/294,519, filed on Apr. naturally occuring glucosides and glucoside conjugates to a 20, 1999. woman having or predisposed to having breast cancer. Patent Application Publication Nov. 29, 2001 Sheet 1 of 4 US 2001/0047033A1 FIG. 1 O CH N-1N-1 3 HC N CH, Patent Application Publication Nov. 29, 2001 Sheet 2 of 4 US 2001/0047033A1 FG 2 Compound Droloxifene NMe2 Toremifene CH2Cl NMe2 4-Iodotamoxifen CH NMe2 Idoxifene CH pyrrolidino Patent Application Publication Nov. 29, 2001 Sheet 3 of 4 US 2001/0047033A1 FIG. 3 'N-1\ O OH HO Compound Genistein Daidzein Glycitein Biochanin A Formononetin Patent Application Publication Nov. 29, 2001 Sheet 4 of 4 US 2001/0047033A1 Compound Genistin 6'-OMall genistin COCH2COH 6'-OAc genistin COCH, Daidzin H 6'-OMal daidzin COCHCO2H 6'-OAc daidzin COCH, Glycitin H 6'-OMal glycitin COCH US 2001/0047033 A1 Nov. 29, 2001 COMPOSITION FOR AND METHOD OF 0006 Tamoxifen, however, has an estrogenic effect on PREVENTING OR TREATING BREAST CANCER uterine tissues when endogenous estrogen levels are low, which occurs in postmenopausal women and Oopherectim FIELD OF THE INVENTION ized women. Uterine epithelial cell heights are significantly increased by the estrogenic effect of tamoxifen in postmeno 0001. The present invention relates to a composition pausal and oopherectimized women, leading to uterine containing a Selective estrogen receptor modulator and at hypertrophy. Tamoxifen also causes marked uterine eosino least one isoflavone, and a method of treating breast cancer philia. These effects have been associated with endometrial while inhibiting Selective estrogen receptor modulator carcinoma, and long term use of tamoxifen is linked to an induced uterotrophic effects. increased risk of endometrial cancer, up to a fivefold exceSS of risk relative to women not treated with tamoxifen therapy. BACKGROUND OF THE INVENTION Therefore, application of tamoxifen for long term breast 0002 Breast cancer is one of the leading causes of cancer cancer prevention and long term treatment of breast cancer mortality among Western women, and is predicted to has significant associated riskS. become a leading cause of cancer death in Oriental women 0007 Efforts have been made to develop new selective in countries Such as Japan in the near future. The American estrogen receptor modulators (“SERMS") which act in a Cancer Society estimates that 1 in 9 women face a lifetime mechanism similar to that of tamoxifen in breast tissue, risk of this disease, which will prove fatal for about one while avoiding the risks caused by the estrogenic effects of quarter of those afflicted with the disease. tamoxifen in uterine tissue. Several of these SERMS are 0003 Tamoxifen (FIG. 1), a synthetic nonsteroidal selec triphenylethylene tamoxifen analogs. As shown in FIG. 2, tive estrogen receptor modulator, has been used effectively droloxifene is a tamoxifen analog in which a 3'-hydroxyphe in the treatment of breast cancer for over twenty years. nyl moiety is Substituted in place of a phenyl moiety of Tamoxifen is one of the most widely prescribed antineoplas tamoxifen. Droloxifene has a binding affinity for the estro tic agents in the United States and Great Britain, and is one gen receptor which is ten times that of tamoxifen, has been of the initial hormonal treatments of choice in both pre shown to have antiestrogenic activity in breast tissue and to menopausal and postmenopausal women with estrogen be efficacious in treatment of advanced breast cancer, yet has receptor positive metastatic disease. Furthermore, adjuvant lower estrogenic effects in uterus tissue than tamoxifen. therapy Studies show a Substantial reduction of contralateral Droloxifene, a New Estrogen Antagonist/Agonist, Prevents primary breast carcinoma in tamoxifen treated women, Bone Loss in Ovariectomized Rats, Ke at al., Endocrinology which indicates that tamoxifen may be of use in breast 136:2435-2441 (1995). cancer prevention. 0008 Toremifene, shown in FIG. 2, is a tamoxifen 0004 Tamoxifen has tissue-specific estrogenic and anti analog having a 4-chloro Substituent. Pharmacologically estrogenic effects. Estrogen, an ovarian hormone, increases toremifene has quite similar effects as tamoxifen on breast the risk of breast and endometrial cancer by inducing an tissue, acting as potent antiestrogen. Toremifene also exhib estrogen receptor mediated increase in the frequency of its anti-tumor cytolytic effects at high doses which are breast and endometrial cell division. Cell division is essen independent of its antiestogenicity, effects which do not tial in the complex process of genesis of human cancer Since occur with high doses of tamoxifen. Antiestrogenic Potency it per Se increases the risk of genetic error-particularly of Toremifene and Tamoxifen in Postmenopausal Women, genetic errorS Such as inactivation of tumor Suppressor Homesley et al., Am. J. Clin. Onc., 16(2):117-122 (1993). geneS. 0009) 4-Iodotamoxifen, shown in FIG. 2, is another 0005 Tamoxifen has antiestrogenic effects in breast tis tamoxifen analog, having a 4'-iodophenyl Substituent in Sue. Tamoxifen's antiestrogenic effect in breast tissue is a place of a phenyl Substituent of tamoxifen. lodination of primary mechanism by which tamoxifen inhibits the prolif tamoxifen at the 4'-phenyl postion reduces estrogenic activ eration of breast cancer cells. Tamoxifen competes with ity, mimicking the high antiestrogenic activity of the tamox estrogen for binding to cytoplasmic estrogen receptors ifen metabolite 4'-hydroxytamoxifen, while giving the com (“ER”), with subsequent inhibition by the tamoxifen/ER pound a longer duration of action in Vivo by blocking complex of many of the activities of endogenous estrogen formation of the rapidly metabolized 4'-hydroxytamoxifen within tumor cells. Endogenous estrogen binds with ERS to metabolite. Pyrrolidino-4-iodotamoxifen and 4-Iodotamox promote cellular activities Such as estrogen/ER-mediated ifen, New Analogues of the AntieStrogen Tamoxifen for the gene transcription, DNA Synthesis, cancer cell growth, and Treatment of Breast Cancer, Chander et al., Cancer increases in autocrine polypeptides Such as transforming Research, 51:5851-5858 (Nov. 1, 1991); Idoxifene: Report growth factor-alpha, epidermal growth factor, insulin-like of a Phase I Study in Patients with Metastatic Breast Cancer, growth factor-II, and other growth factors that may be Coombes et al., Cancer Research, 55:1070-1074 (Mar. 1, involved in cell proliferation. Competitive inhibition of 1995). 4-Iodotamoxifen has been shown to have less estro estrogen binding to ERS by tamoxifen reduces or prevents genic agonist activity in uterine tissue than tamoxifen, and, Such cancer growth inducing cellular activities. As a result therefore, is less likely to cause endometrial cancer when of tamoxifen's antiestrogenic activity in breast tissue, administered over a long term. tamoxifen prevents the transition of breast cancer cells from the early G1 phase to the mid-G1 phase of the cell cycle and 0010 Idoxifene, also known as pyrrolidino-4-iodotamox exhibits a cytostatic effect on breast cancer cells. Tamoxifen ifen, shown in FIG. 2, is another tamoxifen analog, and is has been shown to reduce distant breast cancer metastasis as modeled on the 4'-iodotamoxifen analog. Idoxifene has the well as local-regional recurrence of Such cancers in both Same general molecular structure as 4'-iodotamoxifen, node-negative and node-positive women. except that the N,N-dimethylamino moiety of 4'-iodotamox US 2001/0047033 A1 Nov. 29, 2001 ifen is replaced with a pyrrolidino moiety. Substitution of the 0017 FIG. 3 is a molecular representation of the selec pyrrolidino group for the dimethylamino group reduces tive estrogen receptor modulator raloxifene. possible toxic side effects by inhibiting the metabolization of the compound by the liver to a desmethyl metabolite with 0018 FIG. 4 is
Recommended publications
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Abnormal Uterine Bleeding, 108, 113 Acupuncture, 159-160
    Cambridge University Press 978-1-107-45182-7 - Managing the Menopause: 21st Century Solutions Edited by Nick Panay, Paula Briggs and Gab Kovacs Index More information Index abnormal uterine bleeding, 108, American Society of Clinical potential role as reproductive 113 Oncology (ASCO) biomarker, 6 acupuncture, 159–160 guidelines, 143 predicting the menopause, adenomyosis American Society of 14–17 effects of the menopause, 108 Reproductive Medicine, anti-ovarian antibodies, 16 management, 115 198 antral follicle count (AFC), 16 pathophysiology, 109 androgen therapy antral follicles, 2 aging adverse events in women, anxiety and risk of VTE, 185 139–140 cognitive behavior therapy and sexual decline, 104 androgen physiology in (CBT), 88 risk factor for CVD, 36 women, 137 Aristotle, 20 Albright, Fuller, 58 causes of androgen asoprisnil, 125 alendronate, 76–77 insufficiency in women, assisted reproduction, 13–14, alternative therapies 137–138 16 claims made by proponents, considerations when oocyte vitrification, 17–18 158 prescribing for FSD, atherosclerosis, 38 common misunderstandings 140–141 atractylodes in herbal medicine, about, 161 description, 136–137 22 definition, 157 DHEA, 136 atrophic vaginitis direct risks, 159 effectiveness in treating FSD, definition, 52 evidence for effectiveness, 138–139 local estrogen therapies, 48 158–159 for female sexual dysfunction See also vulvo-vaginal expectations of users, (FSD), 137 atrophy. 157–158 indications for, 137 autoimmune disease extent of use for menopausal postmenopausal therapies, and premature
    [Show full text]
  • Nontargeted Discovery of Xenobiotics in Human Urine by Maldi-Tof/Tof-Ms
    NONTARGETED DISCOVERY OF XENOBIOTICS IN HUMAN URINE BY MALDI-TOF/TOF-MS Dissertation Presented by Yuanyuan Yao To The Bouve’ Graduate School of Health Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Sciences with specialization in Biomedical Sciences NORTHEASTERN UNIVERSITY BOSTON, MASSACHUSETTS April 2018 ABSTRACT In this dissertation research, nontargeted analysis of the urine metabolome, including xenobiotics, was studied using LC (Liquid Chromatography)-MALDI (Matrix Assisted Laser Desorption Ionization) MS (Mass Spectrometry) techniques. MALDI is a sensitive soft ionization MS technique that has been mainly used to analyze large molecules such as peptides, proteins, and nucleic acids. Here, MALDI MS methods were employed for detection of urine metabolites. To increase the recovery of nonpolar metabolites, a novel porous extraction paddle (PEP) was validated with co-workers and used for urine extraction. A method for sample preparation including UHPLC (Ultra High-Performance Liquid Chromatography) was optimized to facilitate detection of nonpolar urine sulfate metabolites by MALDI MS. Using this approach, the detection coverage of such compounds was greatly expanded as compared to prior methods. Detection of 1129 MS precursor ions corresponding to putative sulfate and glucuronide metabolites was achieved. Combining MS and MS/MS experiments, a strategy was developed for tentative identification of the detected metabolites. This led to the first nontargeted analysis of environmental contaminants in urine. It was shown that the detection sensitivity of positive-mode MALDI MS can be enhanced using enzymatic deconjugation and cationic tagging methods. Also, an evaporative derivatization method was developed to increase the sensitivity of negative-mode MALDI MS for detection of phenolic compounds.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Blockade of the Stimulatory Effect of Estrogens, OH-Tamoxifen, OH
    ICANCERRESEARCH57,3494-3497.August15.19971 Blockade of the Stimulatory Effect of Estrogens, OH-Tamoxifen, OH-Toremifene, Droloxifene, and Raloxifene on Alkaline Phosphatase Activity by the Antiestrogen EM-800 in Human Endometrial Adenocarcinoma Ishikawa Cells1 Jacques Simard,2 Rocio Sanchez, Donald Poirier, Sylvain Gauthier, Shankar M. Singh, Yves Merand, Alarn Belanger, Claude Labrie, and Fernand Labile Laboratory of Molecular Endocrinology, CHUL Research Center, Quebec, Quebec, GI V 4G2, Canada ABSTRACT Because data suggest that continuous long-term tamoxifen therapy is preferable to its usual short-term use (5), and studies are already in Although temporary benefits of tamoxifen therapy are observed in up progress on the long-term administration of tamoxifen to prevent to 40% of women with breast cancer, this compound, which is known to breast cancer (13), it becomes important to make available a pure possess mixed estrogenic and antiestrogenic activities, has been associated with increased risk of endometrial carcinoma. This study compares the antiestrogen that, due to its lack of estrogenic activity, should theo effects of the novel nonsteroidal pure antiestrogen EM-800 and related retically be more efficient than tamoxifen in treating breast cancer compounds with those of a series of antiestrogens on the estrogen-sensitive while simultaneously eliminating the risk of developing uterine car alkaline phosphatase (AP) activity in human endometrial adenocarcinoma cinoma during its long-term use. This study compares the effect of Ishikawa cells. Exposure to increasing concentrations of up to 1000 nM EM-800 or its active metabolite, EM-652, with those of OH-tamox EM-SOO or its active metabolite EM-652 alone failed to affect basal AP ifen, OH-toremifene, droloxifene, raloxifene, and !CI-182780 (14— activity.
    [Show full text]
  • Design and Synthesis of Selective Estrogen Receptor Β Agonists and Their Hp Armacology K
    Marquette University e-Publications@Marquette Dissertations (2009 -) Dissertations, Theses, and Professional Projects Design and Synthesis of Selective Estrogen Receptor β Agonists and Their hP armacology K. L. Iresha Sampathi Perera Marquette University Recommended Citation Perera, K. L. Iresha Sampathi, "Design and Synthesis of Selective Estrogen Receptor β Agonists and Their hP armacology" (2017). Dissertations (2009 -). 735. https://epublications.marquette.edu/dissertations_mu/735 DESIGN AND SYNTHESIS OF SELECTIVE ESTROGEN RECEPTOR β AGONISTS AND THEIR PHARMACOLOGY by K. L. Iresha Sampathi Perera, B.Sc. (Hons), M.Sc. A Dissertation Submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Milwaukee, Wisconsin August 2017 ABSTRACT DESIGN AND SYNTHESIS OF SELECTIVE ESTROGEN RECEPTOR β AGONISTS AND THEIR PHARMACOLOGY K. L. Iresha Sampathi Perera, B.Sc. (Hons), M.Sc. Marquette University, 2017 Estrogens (17β-estradiol, E2) have garnered considerable attention in influencing cognitive process in relation to phases of the menstrual cycle, aging and menopausal symptoms. However, hormone replacement therapy can have deleterious effects leading to breast and endometrial cancer, predominantly mediated by estrogen receptor-alpha (ERα) the major isoform present in the mammary gland and uterus. Further evidence supports a dominant role of estrogen receptor-beta (ERβ) for improved cognitive effects such as enhanced hippocampal signaling and memory consolidation via estrogen activated signaling cascades. Creation of the ERβ selective ligands is challenging due to high structural similarity of both receptors. Thus far, several ERβ selective agonists have been developed, however, none of these have made it to clinical use due to their lower selectivity or considerable side effects.
    [Show full text]
  • Analytics for Improved Cancer Screening and Treatment John
    Analytics for Improved Cancer Screening and Treatment by John Silberholz B.S. Mathematics and B.S. Computer Science, University of Maryland (2010) Submitted to the Sloan School of Management in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Operations Research at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2015 ○c Massachusetts Institute of Technology 2015. All rights reserved. Author................................................................ Sloan School of Management August 10, 2015 Certified by. Dimitris Bertsimas Boeing Leaders for Global Operations Professor Co-Director, Operations Research Center Thesis Supervisor Accepted by . Patrick Jaillet Dugald C. Jackson Professor Department of Electrical Engineering and Computer Science Co-Director, Operations Research Center 2 Analytics for Improved Cancer Screening and Treatment by John Silberholz Submitted to the Sloan School of Management on August 10, 2015, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Operations Research Abstract Cancer is a leading cause of death both in the United States and worldwide. In this thesis we use machine learning and optimization to identify effective treatments for advanced cancers and to identify effective screening strategies for detecting early-stage disease. In Part I, we propose a methodology for designing combination drug therapies for advanced cancer, evaluating our approach using advanced gastric cancer. First, we build a database of 414 clinical trials testing chemotherapy regimens for this cancer, extracting information about patient demographics, study characteristics, chemother- apy regimens tested, and outcomes. We use this database to build statistical models to predict trial efficacy and toxicity outcomes. We propose models that use machine learning and optimization to suggest regimens to be tested in Phase II and III clinical trials, evaluating our suggestions with both simulated outcomes and the outcomes of clinical trials testing similar regimens.
    [Show full text]
  • Pure Oestrogen Antagonists for the Treatment of Advanced Breast Cancer
    Endocrine-Related Cancer (2006) 13 689–706 REVIEW Pure oestrogen antagonists for the treatment of advanced breast cancer Anthony Howell CRUK Department of Medical Oncology, University of Manchester, Christie Hospital NHS Trust, Manchester M20 4BX, UK (Requests for offprints should be addressed to A Howell; Email: [email protected]) Abstract For more than 30 years, tamoxifen has been the drug of choice in treating patients with oestrogen receptor (ER)-positive breast tumours. However, research has endeavoured to develop agents that match and improve the clinical efficacy of tamoxifen, but lack its partial agonist effects. The first ‘pure’ oestrogen antagonist was developed in 1987; from this, an even more potent derivative was developed for clinical use, known as fulvestrant (ICI 182,780, ‘Faslodex’). Mechanistic studies have shown that fulvestrant possesses high ER-binding affinity and has multiple effects on ER signalling: it blocks dimerisation and nuclear localisation of the ER, reduces cellular levels of ER and blocks ER-mediated gene transcription. Unlike anti-oestrogens chemically related to tamoxifen, fulvestrant also helps circumvent resistance to tamoxifen. There are extensive data to support the lack of partial agonist effects of fulvestrant and, importantly, its lack of cross-resistance with tamoxifen. In phase III studies in patients with locally advanced or metastatic breast cancer, fulvestrant was at least as effective as anastrozole in patients with tamoxifen-resistant tumours, was effective in the first-line setting and was also well tolerated. These data are supported by experience from the compassionate use of fulvestrant in more heavily pretreated patients. Further studies are now underway to determine the best strategy for sequencing oestrogen endocrine therapies and to optimise dosing regimens offulvestrant.
    [Show full text]
  • Recent Advances with SERM Therapies
    4376s Vol. 7, 4376s-4387s, December 2001 (Suppl.) Clinical Cancer Research Endocrine Manipulation in Advanced Breast Cancer: Recent Advances with SERM Therapies Stephen R. D. Johnston e gynecological side effects may prove more beneficial than Department of Medicine, Royal Marsden Hospital and Institute of either tamoxifen or AI. The issue is whether the current Cancer Research, London SW3 6JJ, United Kingdom clinical data for SERMs in advanced breast cancer are sufficiently strong to encourage that further development. Abstract Tamoxifen is one of the most effective treatments for Introduction breast cancer through its ability to antagonize estrogen- Ever since evidence emerged that human breast carcinomas dependent growth by binding estrogen receptors (ERs) and may be associated with estrogen, attempts have been made to inhibiting breast epithelial cell proliferation. However, ta- block or inhibit estrogen's biological effects as a therapeutic moxifen has estrogenic agonist effects in other tissues such strategy for women with breast cancer. Estrogen has important as bone and endometrium because of liganded ER-activating physiological effects on the growth and functioning of hormone- target genes in these different cell types. Several novel an- dependent reproductive tissues, including normal breast epithe- tiestrogen compounds have been developed that are also lium, uterus, vagina, and ovaries, as well as on the preservation selective ER modulators (SERMs) but that have a reduced of bone mineral density and reducing the risk of osteoporosis, agonist profile on breast and gynecological tissues. These the protection the cardiovascular system by reducing cholesterol SERMs offer the potential for enhanced efficacy and re- levels, and the modulation of cognitive function and behavior.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Idoxifene: Report of a Phase I Study in Patients with Metastatic Breast Cancer
    [CANCERRESEARCH55,1070-1074, March1, 1995] Idoxifene: Report of a Phase I Study in Patients with Metastatic Breast Cancer R. Charles Coombes,' Ben P. Haynes, Mitchell Dowsett, Mary Quigley, Jacqueline English, Ian R. Judson, Lesley J. Griggs, Gerry A. Potter, Ray McCague, and Michael Jarman Department of Medical Oncology. Charing Cross & Westminster Medical School, St. Dunstan s Road, London. W6 8RF (R. C. C., M. Q., I. El; CRC Centre for Cancer Therapeutics, Institute of Cancer Research. Royal Marsden Hospital, Sutton, Surrey. SM2 SNG (B. P. H., 1. R. I., L I. G., G. A. P., R. M., M. ii; and Department of Molecular Endocrinology, Royal Marsden Hospital, Fulham Road, London, SW3 6ff (M. DI, United Kingdom ABSTRACT higher affmity for the ER3 compared with tamoxifen (8, 9) and was 1.5-fold more effective in causing inhibition of estrogen-induced Idoxifene, a novel antlestrogen with reduced estrogenic activity when growth of MCF-7 cells (9). In vivo idoxifene was more effective in compared to tamoxifen, has been given to 20 women with metastatic causing tumor regression in the N-nitrosomethylurea-induced mam breast cancer, 19 of whom had received tamoxifen previously, In doses mary carcinoma model system (9). In the immature rat and mouse between 10—60mg.Idoxifene had an initial half-Me of 15 h and a terminal uterotrophic assays, idoxifene possessed less agonist activity than half-life of 23.3 days. At a maintenance dose of2O mg, a mean steady-state level of 173.5 ng/ml was achieved. Significant falls in lutelnizing hormone tamoxifen and inhibited estrogen-induced vaginal comification, and follicle-stimulating hormone were seen, but the falls were not dose whereas tamoxifen did not (9).
    [Show full text]
  • Report on Carcinogens, Fourteenth Edition for Table of Contents, See Home Page
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Tamoxifen not received tamoxifen (Magriples et al. 1993); this difference, how- ever, was not observed in six other studies (IARC 1996). CAS No. 10540-29-1 In a review, MacMahon (1997) concluded that the published re- sults suggested a causal association between tamoxifen use and en- Known to be a human carcinogen dometrial cancer but were not conclusive, because of confounding First listed in the Ninth Report on Carcinogens (2000) factors such as prior hysterectomy or hormone replacement therapy. Also known as (Z)-2-[4-(1,2-diphenylbut-1-enyl)phenoxy]-N,N- The International Agency for Research on Cancer examined the same dimethyl-ethanamine potentially confounding factors but considered them unlikely to have had a major effect on the reported relative risks; IARC therefore con- cluded that several of the studies cited supported a positive associ- ation between tamoxifen use and endometrial cancer (IARC 1996). H2 Cancer Studies in Experimental Animals C C CH3 C CH3 Uterine abnormalities, including endometrial cancer (carcinoma), H2 have been reported in experimental animals exposed to tamoxifen. N C H3C C O Rats receiving tamoxifen daily by stomach tube for 20 to 52 weeks H2 developed squamous-cell metaplasia, dysplasia, and carcinoma of the uterus; no comparable lesions were observed in controls (Mantyla et Carcinogenicity al. 1996). In newborn mice of both sexes, exposure to tamoxifen on days 1 to 5 of life significantly increased the incidence of reproduc- Tamoxifen is known to be a human carcinogen based on sufficient ev- tive-tract abnormalities, including uterine cancer and seminal-vesicle idence of carcinogenicity from studies in humans.
    [Show full text]