Anomalies and the Standard Model of Particle Physics

Total Page:16

File Type:pdf, Size:1020Kb

Anomalies and the Standard Model of Particle Physics Anomalies and the Standard Model of Particle Physics Nakarin Lohitsiri Supervisor: Professor David Tong Department of Applied Mathematics and Theoretical Physics University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Trinity College August 2020 For my parents Declaration This dissertation is based on original research done by the author while he was a graduate student at the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, between October 2016 and August 2020. The material in Chapters2 and5 is based on the work done by the author under the supervision of David Tong and has been partly published in References [97, 96], while Chapters3 and4 are based on research done in collaboration with Joe Davighi, part of which is published in References [53, 52]. Except for part of Chapter3 that has been previously submitted for a degree of doctor of philosophy by Joe Davighi at the University of Cambridge, no other part of this work has been submitted, or is being concurrently submitted, for a degree or other qualification at the University of Cambridge or any other university or similar institution. Nakarin Lohitsiri August 2020 Anomalies and the Standard Model of Particle Physics Nakarin Lohitsiri This dissertation aims to study quantum anomalies and some other aspects of the Standard Model of Particle physics. In any quantum gauge field theory, anomalies place a very restrictive condition on the matter content and the dynamics. The former is due to the cancellation of gauge anomalies while ’t Hooft anomaly matching constraints produce the latter. As the Standard Model, which is our most fundamental and most accurate description of particle physics, is constructed as a gauge field theory, it is also subject to these anomalies. Here we explore subtleties in anomalies that could arise from the Standard Model and also use them to provide a consistency check as we explore its phase diagram. We start by reexamining local anomaly cancellation in the Standard Model. It has long been known that the requirement that all gauge anomalies and the mixed gauge-gravitational anomaly cancel lead to the quantisation of hypercharge and essentially give the unique hypercharge assignment to the fermion content of the theory. However, if we take the view that hypercharge must be quantised from the outset, then it is enough to prove that the fermions have the Nature-assigned hypercharges using the cancellation of gauge anomalies alone. This remarkable result is made more astounding by the fact that Fermat’s Last Theorem plays a crucial role in completing the proof. We then move on to search for subtler global anomalies in the Standard Model and beyond from the modern viewpoint of cobordism theory, where a global anomaly can be computed as a homomorphism from a bordism group of manifolds equipped with appropriate spin and gauge bundle structure to a circle group. Since the gauge interaction depends on the gauge group G only through its Lie algebra, there are many possibilities for the gauge group of a gauge theory as long as the global structure is consistent with the matter content. In the Standard Model, the options for the gauge group G are U(1) SU(2) SU(3), U(2) SU(3), × × × SU(2) U(3), or U(2) SU(3)=Z3. We compute the fifth spin-bordism group of manifolds × × Spin equipped with these G-bundle structures W5 (BG) and show that it is at most Z2. Therefore, the global anomaly that can appear in the Standard Model is a mod 2 anomaly which can be identified with the well-known Witten anomaly in the gauge group SU(2). We repeat the bordism group calculation for some beyond the Standard Model gauge groups and obtain a similar result: there is a mod 2 anomaly whenever there is an SU(2) factor in the gauge group. A curious fact from these bordism calculations is that the bordism group is trivial when U(2) appears in lieu of SU(2). Driven by this curiosity, we investigate further and find that there is an interplay between the local and the global anomaly. The condition for the gauge viii anomaly cancellation on the SU(2)-representations of the fermions coupled to a gauge theory is the same whether the gauge group is SU(2) or U(2). However, the condition comes from the cancellation of the global Witten anomaly in the former case while it arises from the mixed anomaly cancellation between the U(1) sector and SU(2) sector in the latter case. We investigate further to see whether we can give the same interpretation to the new SU(2) anomaly of Wang, Wen, and Witten when we place a U(2) gauge theory on a non-spin manifold. We find that even though the requirement that the mixed gauge and the mixed gauge-gravitational anomalies cancel automatically cancel the new SU(2) anomaly, it cannot be thought of as arising from the local anomalies. The reason is essentially because the transformation that induces the new SU(2) anomaly involves a non-trivial diffeomorphism on the underlying manifold. Mathematically, we can compute the bordism group and still see a factor of Z2 associated with this new global SU(2) anomaly. Finally, we turn our attention towards the Standard Model itself, leaving anomalies as a tool we occasionally use to provide a consistency check on the IR dynamics. We apply the philosophy that one can get information and intuition on a theory by studying a collection of theories in the parameter space to the Standard Model. In these variations of the Standard Model, we deviate the Yukawa couplings from the actual values so that they are insensitive to the generations of fermions. We then vary the relative strength between the strong nuclear force and the weak nuclear force and see what happens. The results are surprising. No phase transition seems to be present when there is only one generation of fermions. More remarkably, the leptons seem to smoothly mutate into quarks as we slowly dial the relative strength between the weak and the strong gauge group. When more than one generations of fermions are present, however, the global symmetry group on either end of the phase diagram is not a subgroup of the other, and a first-order phase transition is expected to occur. Acknowledgements First and foremost, I would like to express my enormous gratitude to my supervisor, David Tong. Through his excellent examples in teaching, writing, and his constant guidance on research, during my PhD years and when I was still an undergraduate, I have learned and enjoyed a lot of physics and gained a glimpse of understanding and experience how to progress in Academia. His delight when discussing physics is extremely contagious, and it has played a significant role to drive me forward. His supportive and caring words have pulled me out whenever I am stuck academically or emotionally. I could not wish for a better supervisor. I would like to thank my collaborators Aristomenis Donos and Joe Davighi. My first taste of theoretical physics research started with Aristos who generously accepted my request for a summer internship to work with him on the subject of holography. His encouragement made me feel a little more confident in myself to carry on along this path. Joe has been myoffice mate since my first day as a graduate student in DAMTP. His energy for physics andhis willingness to share and discuss all sorts of ideas are very stimulating and conducive to doing exciting research. I would also like to extend my gratitude to my other collaborators: Carl Turner, Nick Dorey, Alec Barnes-Graham, Mike Blake, and Ben Gripaios. I have learned a lot from them in and outside our collaboration. Of course, I cannot leave out Alex Abbott, Amanda Stagg, Sam Crew, Daniel Zhang, Josh Kirklin, Leong-Khim Wong, Amelia Louise, Jonathan Rawlinson, Ed Walton, Antoni Woss, Muntazir Abbidi, Hasan Mahmood, Wuhyun Sohn, Shayan Iranipour, Toby Crisford, Theodor Björkmo, Alice Waterhouse, Bogdan Ganchev, Philip Boyle-Smith, Roland Bittleston, Pietro Benetti Genolini, Avner Karasik, Masazumi Honda, and countless others, who have made coming to work at the CMS a pleasant experience. I can count myself very lucky to be in such a delightful work environment thanks to all of them. It is not an overstatement to say that I owe most of my success to my parents and grandparents. I am free to explore and choose my own path in life due to their openness and support. Moreover, my father and my maternal grandfather (as well as my aunts and my uncle) are bibliophiles. They have a large and diverse collection of books lying around in the houses, ranging from programming, history, sciences, mathematics, languages, waiting for x me to pick up. This spurred me to read widely from a very young age and has built a habit so essential to a researcher. Therefore, I would like to thank them all for what they have done and gone through to raise me up. Three of my Thai friends, Jiraborrirak Charoenpattarapreeda, Puthipong Worasaran, and Methawi Chomthong, have been a fixture of my life at most weekends when we take a break from research to enjoy eating out and board games. I want to thank them for interspersing my time here in Cambridge with many joyful moments. Last but not least, I am infinitely indebted to my wife Huilan, whose love and companion provide invaluable emotional support for me throughout the years. Hopefully, she will be here to support my life and research for many more years to come. Table of contents 1 Introduction1 1.1 What are anomalies? .
Recommended publications
  • On the Trace Anomaly of a Weyl Fermion in a Gauge Background
    On the trace anomaly of a Weyl fermion in a gauge background Fiorenzo Bastianelli,a;b;c Matteo Broccoli,a;c aDipartimento di Fisica ed Astronomia, Universit`adi Bologna, via Irnerio 46, I-40126 Bologna, Italy bINFN, Sezione di Bologna, via Irnerio 46, I-40126 Bologna, Italy cMax-Planck-Institut f¨ur Gravitationsphysik (Albert-Einstein-Institut) Am M¨uhlenberg 1, D-14476 Golm, Germany E-mail: [email protected], [email protected] Abstract: We study the trace anomaly of a Weyl fermion in an abelian gauge background. Although the presence of the chiral anomaly implies a breakdown of gauge invariance, we find that the trace anomaly can be cast in a gauge invariant form. In particular, we find that it does not contain any odd-parity contribution proportional to the Chern-Pontryagin density, which would be allowed by the con- sistency conditions. We perform our calculations using Pauli-Villars regularization and heat kernel methods. The issue is analogous to the one recently discussed in the literature about the trace anomaly of a Weyl fermion in curved backgrounds. Keywords: Anomalies in Field and String Theories, Conformal Field Theory arXiv:1808.03489v2 [hep-th] 7 May 2019 Contents 1 Introduction1 2 Actions and symmetries3 2.1 The Weyl fermion3 2.1.1 Mass terms5 2.2 The Dirac fermion8 2.2.1 Mass terms9 3 Regulators and consistent anomalies 10 4 Anomalies 13 4.1 Chiral and trace anomalies of a Weyl fermion 13 4.1.1 PV regularization with Majorana mass 14 4.1.2 PV regularization with Dirac mass 15 4.2 Chiral and trace anomalies of a Dirac fermion 16 4.2.1 PV regularization with Dirac mass 16 4.2.2 PV regularization with Majorana mass 17 5 Conclusions 18 A Conventions 19 B The heat kernel 21 C Sample calculations 22 1 Introduction In this paper we study the trace anomaly of a chiral fermion coupled to an abelian gauge field in four dimensions.
    [Show full text]
  • Chiral Gauge Theories Revisited
    CERN-TH/2001-031 Chiral gauge theories revisited Lectures given at the International School of Subnuclear Physics Erice, 27 August { 5 September 2000 Martin L¨uscher ∗ CERN, Theory Division CH-1211 Geneva 23, Switzerland Contents 1. Introduction 2. Chiral gauge theories & the gauge anomaly 3. The regularization problem 4. Weyl fermions from 4+1 dimensions 5. The Ginsparg–Wilson relation 6. Gauge-invariant lattice regularization of anomaly-free theories 1. Introduction A characteristic feature of the electroweak interactions is that the left- and right- handed components of the fermion fields do not couple to the gauge fields in the same way. The term chiral gauge theory is reserved for field theories of this type, while all other gauge theories (such as QCD) are referred to as vector-like, since the gauge fields only couple to vector currents in this case. At first sight the difference appears to be mathematically insignificant, but it turns out that in many respects chiral ∗ On leave from Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany 1 νµ ν e µ W W γ e Fig. 1. Feynman diagram contributing to the muon decay at two-loop order of the electroweak interactions. The triangular subdiagram in this example is potentially anomalous and must be treated with care to ensure that gauge invariance is preserved. gauge theories are much more complicated. Their definition beyond the classical level, for example, is already highly non-trivial and it is in general extremely difficult to obtain any solid information about their non-perturbative properties. 1.1 Anomalies Most of the peculiarities in chiral gauge theories are related to the fact that the gauge symmetry tends to be violated by quantum effects.
    [Show full text]
  • Nonperturbative Definition of the Standard Models
    PHYSICAL REVIEW RESEARCH 2, 023356 (2020) Nonperturbative definition of the standard models Juven Wang 1,2,* and Xiao-Gang Wen3 1School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA 2Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138, USA 3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 14 June 2019; accepted 21 May 2020; published 17 June 2020) The standard models contain chiral fermions coupled to gauge theories. It has been a longstanding problem to give such gauged chiral fermion theories a quantum nonperturbative definition. By classification of quantum anomalies (including perturbative local anomalies and nonperturbative global anomalies) and symmetric interacting invertible topological orders via a mathematical cobordism theorem for differentiable and triangulable manifolds, and by the existence of a symmetric gapped boundary (designed for the mirror sector) on the trivial symmetric invertible topological orders, we propose that Spin(10) chiral fermion theories with Weyl fermions in 16-dimensional spinor representations can be defined on a 3 + 1D lattice without fermion doubling, and subsequently dynamically gauged to be a Spin(10) chiral gauge theory. As a result, the standard models from the 16n-chiral fermion SO(10) grand unification can be defined nonperturbatively via a 3 + 1D local lattice model of bosons or qubits. Furthermore, we propose that standard models from the 15n-chiral fermion
    [Show full text]
  • U(1) Gauge Extensions of the Standard Model
    U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start 1 Contents • Anomaly Freedom of the Standard Model • B − L • Le − Lµ and B − 3Lτ • U(1)Σ • Supersymmetric U(1)X • Some Remarks U(1) Gauge Extensions of the Standard Model (int08) back to start 2 Anomaly Freedom of the Standard Model Gauge Group: SU(3)C × SU((2)L × U(1)Y . Consider the fermion multiplets: (u, d)L ∼ (3, 2, n1), uR ∼ (3, 1, n2), dR ∼ (3, 1, n3), (ν, e)L ∼ (1, 2, n4), eR ∼ (1, 1, n5). Bouchiat/Iliopolous/Meyer(1972): The SM with n1 = 1/6, n2 = 2/3, n3 = −1/3, n4 = −1/2, n5 = −1, is free of axial-vector anomalies, i.e. 2 [SU(3)] U(1)Y : 2n1 − n2 − n3 = 0. 2 [SU(2)] U(1)Y : 3n1 + n4 = 0. 3 3 3 3 3 3 [U(1)Y ] : 6n1 − 3n2 − 3n3 + 2n4 − n5 = 0. U(1) Gauge Extensions of the Standard Model (int08) back to start 3 It is also free of the mixed gravitational-gauge anomaly, U(1)Y : 6n1 − 3n2 − 3n3 + 2n4 − n5 = 0. Geng/Marshak(1989), Minahan/Ramond/Warner(1990) : Above 4 equations ⇒ n1(4n1 − n2)(2n1 + n2) = 0. n2 = 4n1 ⇒ SM; n2 = −2n1 ⇒ SM (uR ↔ dR); n1 = 0 ⇒ n4 = n5 = n2 + n3 = 0. Here eR ∼ (1, 1, 0) may be dropped. (u, d)L, (ν, e)L have charges (1/2, −1/2) and (uR, dR) have charges (n2, −n2).
    [Show full text]
  • Green-Schwarz Anomaly Cancellation
    Green-Schwarz anomaly cancellation Paolo Di Vecchia Niels Bohr Instituttet, Copenhagen and Nordita, Stockholm Collège de France, 05.03.10 Paolo Di Vecchia (NBI+NO) GS anomaly cancellation Collège de France, 05.03.10 1 / 30 Plan of the talk 1 Introduction 2 A quick look at the abelian axial anomaly 3 Few words on forms 4 Anomaly cancellation in type IIB superstring theory 5 Anomaly cancellation in type I superstring 6 Conclusions Paolo Di Vecchia (NBI+NO) GS anomaly cancellation Collège de France, 05.03.10 2 / 30 Introduction I The theory of general relativity for gravity was formulated by Einstein in 1915. I It is a four-dimensional theory that extends the theory of special relativity. I While special relativity is invariant under the transformations of the Lorentz group, general relativity is invariant under an arbitrary change of coordinates. I In the twenties it was proposed by Theodor Kaluza and Oskar Klein to unify electromagnetism with gravity by starting from general relativity in a five-dimensional space-time and compactify the extra-dimension on a small circle. I In this way one obtains general relativity in four dimensions, a vector gauge field satisfying the Maxwell equations and a scalar. I This idea of extra dimensions was not pursued in the years after. I In the sixties and seventies, when I started to work in the physics of the elementary particles, everybody was strictly working in four dimensions. Paolo Di Vecchia (NBI+NO) GS anomaly cancellation Collège de France, 05.03.10 3 / 30 I Also the dual resonance model, being a model for hadrons, was obviously formulated in four dimensions.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Topics in supersymmetric gauge theories and the gauge-gravity duality A dissertation submitted to the office of research and advanced studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in the department of physics of the College of Arts and Sciences B.Sc., Sharif University of Technology, Tehran, Iran, June 2001 Mohammad Edalati Ahmadsaraei June 1, 2007 Dissertation committee chair: Professor Philip C. Argyres Topics in supersymmetric gauge theories and the gauge-gravity duality Mohammad Edalati Ahmadsaraei Department of Physics, University of Cincinnati, P.O. Box 210011, Cincinnati, OH 45221-0011, U.S.A. [email protected] Abstract: In this thesis we use supersymmetry and the gauge-gravity duality to shed light on some dynamical features of strongly-coupled non-Abelian gauge theories. In the first half of the thesis, we consider singular superpotentials of four dimensional = 1 supersymmetric QCD N and show that they must exist. In particular, using some non-trivial consistency checks, we show that these superpotentials, albeit singular, are perfectly sensible, and can be used to reproduce in a simple way both the low energy effective dynamics as well as some special higher-derivative terms. In the second half of the thesis, we investigate the behavior of timelike, spacelike and Euclidean stationary string configurations on a five-dimensional AdS black hole background which, in the context of the gauge-gravity duality, correspond to quark-antiquark pairs steadily moving in an = 4 supersymmetric Yang-Mills thermal N bath.
    [Show full text]
  • Anomaly-Free Supergravities in Six Dimensions
    Anomaly-Free Supergravities in Six Dimensions Ph.D. Thesis arXiv:hep-th/0611133v1 12 Nov 2006 Spyros D. Avramis National Technical University of Athens School of Applied Mathematics and Natural Sciences Department of Physics Spyros D. Avramis Anomaly-Free Supergravities in Six Dimensions Dissertation submitted to the Department of Physics of the National Technical University of Athens in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics. Thesis Advisor: Alex Kehagias Thesis Committee: Alex Kehagias Elias Kiritsis George Zoupanos K. Anagnostopoulos A.B. Lahanas E. Papantonopoulos N.D. Tracas Athens, February 2006 Abstract This thesis reviews minimal N = 2 chiral supergravities coupled to matter in six dimensions with emphasis on anomaly cancellation. In general, six-dimensional chiral supergravities suffer from gravitational, gauge and mixed anomalies which, being associated with the breakdown of local gauge symmetries, render the theories inconsistent at the quantum level. Consistency of the theory is restored if the anomalies of the theory cancel via the Green-Schwarz mechanism or generalizations thereof, in a similar manner as in the case of ten-dimensional N = 1 supergravi- ties. The anomaly cancellation conditions translate into a certain set of constraints for the gauge group of the theory as well as on its matter content. For the case of ungauged theories these constraints admit numerous solutions but, in the case of gauged theories, the allowed solutions are remarkably few. In this thesis, we examine these anomaly cancellation conditions in detail and we present all solutions to these conditions under certain restrictions on the allowed gauge groups and representations, imposed for practical reasons.
    [Show full text]
  • Gauge Theory
    Preprint typeset in JHEP style - HYPER VERSION 2018 Gauge Theory David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html [email protected] Contents 0. Introduction 1 1. Topics in Electromagnetism 3 1.1 Magnetic Monopoles 3 1.1.1 Dirac Quantisation 4 1.1.2 A Patchwork of Gauge Fields 6 1.1.3 Monopoles and Angular Momentum 8 1.2 The Theta Term 10 1.2.1 The Topological Insulator 11 1.2.2 A Mirage Monopole 14 1.2.3 The Witten Effect 16 1.2.4 Why θ is Periodic 18 1.2.5 Parity, Time-Reversal and θ = π 21 1.3 Further Reading 22 2. Yang-Mills Theory 26 2.1 Introducing Yang-Mills 26 2.1.1 The Action 29 2.1.2 Gauge Symmetry 31 2.1.3 Wilson Lines and Wilson Loops 33 2.2 The Theta Term 38 2.2.1 Canonical Quantisation of Yang-Mills 40 2.2.2 The Wavefunction and the Chern-Simons Functional 42 2.2.3 Analogies From Quantum Mechanics 47 2.3 Instantons 51 2.3.1 The Self-Dual Yang-Mills Equations 52 2.3.2 Tunnelling: Another Quantum Mechanics Analogy 56 2.3.3 Instanton Contributions to the Path Integral 58 2.4 The Flow to Strong Coupling 61 2.4.1 Anti-Screening and Paramagnetism 65 2.4.2 Computing the Beta Function 67 2.5 Electric Probes 74 2.5.1 Coulomb vs Confining 74 2.5.2 An Analogy: Flux Lines in a Superconductor 78 { 1 { 2.5.3 Wilson Loops Revisited 85 2.6 Magnetic Probes 88 2.6.1 't Hooft Lines 89 2.6.2 SU(N) vs SU(N)=ZN 92 2.6.3 What is the Gauge Group of the Standard Model? 97 2.7 Dynamical Matter 99 2.7.1 The Beta Function Revisited 100 2.7.2 The Infra-Red Phases of QCD-like Theories 102 2.7.3 The Higgs vs Confining Phase 105 2.8 't Hooft-Polyakov Monopoles 109 2.8.1 Monopole Solutions 112 2.8.2 The Witten Effect Again 114 2.9 Further Reading 115 3.
    [Show full text]
  • Masaki Oshikawa (ISSP, Utokyo) 1 Lecture 1: Anomaly and Condensed Matter Physics
    Symmetry-protected critical phases and global anomaly Croucher Advanced Institute “Topology in Condensed Matter and High-Energy Physics” January 3-5, 2018 @ Chinese University of Hong Kong Masaki Oshikawa (ISSP, UTokyo) 1 Lecture 1: Anomaly and Condensed Matter Physics Lecture II: Symmetry-Protected Critical Phases and Global Anomaly 2 Dirac Fermion massless (m=0) “Dirac cone” 3 Axial Symmetry and Current Massless Dirac fermion Lagrangian density = ¯iγµ@ L µ “vector” U(1) symmetry ⇒ charge current conservation i✓ µ e V @µj =0 ! i✓ µ µ ¯ e− V ¯ j = ¯ ! 2 γµ, γ5 =0 γ5 =1 in even space-time dimensions { } “axial” U(1) symmetry if m=0 ⇒ axial current conservation ei✓A @µj5 =0 ! µ i✓ 5 5 ¯ e A ¯ j = ¯µγ ! µ 4 U(1) Chiral Anomaly Noether’s theorem (“classical”): Massless Dirac fermion ⇒ two conserved currents However, one of these conservation laws is inevitably broken in quantum theory through “regularization” of UV divergence = ¯iγµ(@ iA ) Adler/Bell-Jackiw (1969) L µ − µ Anomalous non-conservation of axial current! µ 5 γ γ 1 @µj5 = ✏ F µ⌫ F ⇢ µ 16⇡2 µ⌫⇢σ Decay of neutral pion ⇡0 γγ (in 3+1 dimensions) 5 ! Regularization/Renormalization “renormalization theory is simply a way to sweep the difficulties of the divergences of electrodynamics under the rug.” Richard Feynman, in Nobel Lecture (1965) 6 Modern Understanding of Renormalization Field theory = universal long-distance behavior of lattice model / condensed matter systems Exact symmetry in the lattice model remains exact in the long-distance limit → no anomaly? Kenneth G. Wilson How can we understand anomaly (1936-2013) in this context? 7 Chiral Anomaly in 1+1 Dim.
    [Show full text]
  • Anomalies in QFT and Index Theory
    Anomalies in QFT and Index Theory Seminar of Professor Walcher, Summer term 2016 Moritz Sch¨one Contents 1 Anomalies in QFT 1 2 Fibre bundles and Index 3 2.1 Fibre bundles . .4 2.1.1 A physicist introduction to fibre bundles . .5 2.1.2 Connections . .6 2.2 Index . .6 3 Calculation of the Anomaly 7 4 Non-linear sigma model 13 References 17 1 Anomalies in QFT The quantum field theory analogue of the Noether continuity equation is the Ward- Takahashi identity. It states that current conservation holds as an operator equation. Z −S[ ] α α Dφ e DαJ (x) = hDαJ (x)i = 0 (1) The necessary precondition for this is the invariance of the path integral (PI) measure. If the measure is not invariant under a global or a gauge symmetry of the system we speak of an anomaly. From a physical point of view, global anomalies pose no problem but are rather good for testing QFT. The absence of gauge anomalies is a important consistency condition for a QFT. An anomalous gauge symmetry renders the usual Fadeev-Popov gauge fixing procedure inconsistent and thus leads to negative norm states and/or non-renormalizable theories. An additional motivation for us is that we need the U(1)A symmetry for the twisting of our 2d chiral theories but this could be anomalous in some models. Although our main interest will be the 2d sigma model, we will give a general overview on anomalies for gauge theories. This will seem odd a priori, since the 2d sigma model is no gauge theory but our mathematical examination will show how close they are related.
    [Show full text]
  • Field Theory and the Standard Model
    Field theory and the Standard Model W. Buchmüller and C. Lüdeling Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany Abstract We give a short introduction to the Standard Model and the underlying con- cepts of quantum field theory. 1 Introduction In these lectures we shall give a short introduction to the Standard Model of particle physics with empha- sis on the electroweak theory and the Higgs sector, and we shall also attempt to explain the underlying concepts of quantum field theory. The Standard Model of particle physics has the following key features: – As a theory of elementary particles, it incorporates relativity and quantum mechanics, and therefore it is based on quantum field theory. – Its predictive power rests on the regularization of divergent quantum corrections and the renormal- ization procedure which introduces scale-dependent `running couplings'. – Electromagnetic, weak, strong and also gravitational interactions are all related to local symmetries and described by Abelian and non-Abelian gauge theories. – The masses of all particles are generated by two mechanisms: confinement and spontaneous sym- metry breaking. In the following chapters we shall explain these points one by one. Finally, instead of a summary, we briefly recall the history of `The making of the Standard Model' [1]. From the theoretical perspective, the Standard Model has a simple and elegant structure: it is a chiral gauge theory. Spelling out the details reveals a rich phenomenology which can account for strong and electroweak interactions, confinement and spontaneous symmetry breaking, hadronic and leptonic flavour physics etc. [2, 3]. The study of all these aspects has kept theorists and experimenters busy for three decades.
    [Show full text]
  • Textures, Model Building, and Orbifold Gauge Anomalies: Research in Three Topics in Physics Beyond the Standard Model
    TEXTURES, MODEL BUILDING, AND ORBIFOLD GAUGE ANOMALIES: RESEARCH IN THREE TOPICS IN PHYSICS BEYOND THE STANDARD MODEL DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Leslie J. Schradin III, B.S., M.S. ***** The Ohio State University 2006 Dissertation Committee: Approved by Professor Stuart Raby, Adviser Professor Richard Kass Adviser Professor Junko Shigemitsu Graduate Program in Professor Terrence Walker Physics ABSTRACT We introduce the Standard Model, list a large sector of the low energy data, and present extensions to the Standard Model including grand unification, supersymme- try, and orbifold extra dimensions. These foundations underly the research presented in this dissertation, which is from three separate projects. Texture models are Ans¨atze for the undiagonalized Yukawa matrices in which some of the matrix elements have been chosen to vanish. Recent precise measurements of sin 2β from the B-factories (BABAR and BELLE) and a better known strange quark mass from lattice QCD make precision tests of predictive texture models possible. We show that in a set of these models, their maximal sin 2β values rule them out at the 3σ level. While at present sin 2β and V /V are equally good for testing N-zero | ub cb| texture models, in the near future the former will surpass the latter in constraining power. We construct a supersymmetric SO(10) D grand unified model with an orbifold × 3 1 extra dimension S /(Z Z′ ). The model uses 11 parameters to fit the 13 independent 2 × 2 low energy observables of the charged fermion Yukawa matrices and predicts the val- ues of two quark mass combinations, mu/mc and mdmsmb, to each be approximately 1σ above their experimental values.
    [Show full text]