Textures, Model Building, and Orbifold Gauge Anomalies: Research in Three Topics in Physics Beyond the Standard Model

Total Page:16

File Type:pdf, Size:1020Kb

Textures, Model Building, and Orbifold Gauge Anomalies: Research in Three Topics in Physics Beyond the Standard Model TEXTURES, MODEL BUILDING, AND ORBIFOLD GAUGE ANOMALIES: RESEARCH IN THREE TOPICS IN PHYSICS BEYOND THE STANDARD MODEL DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Leslie J. Schradin III, B.S., M.S. ***** The Ohio State University 2006 Dissertation Committee: Approved by Professor Stuart Raby, Adviser Professor Richard Kass Adviser Professor Junko Shigemitsu Graduate Program in Professor Terrence Walker Physics ABSTRACT We introduce the Standard Model, list a large sector of the low energy data, and present extensions to the Standard Model including grand unification, supersymme- try, and orbifold extra dimensions. These foundations underly the research presented in this dissertation, which is from three separate projects. Texture models are Ans¨atze for the undiagonalized Yukawa matrices in which some of the matrix elements have been chosen to vanish. Recent precise measurements of sin 2β from the B-factories (BABAR and BELLE) and a better known strange quark mass from lattice QCD make precision tests of predictive texture models possible. We show that in a set of these models, their maximal sin 2β values rule them out at the 3σ level. While at present sin 2β and V /V are equally good for testing N-zero | ub cb| texture models, in the near future the former will surpass the latter in constraining power. We construct a supersymmetric SO(10) D grand unified model with an orbifold × 3 1 extra dimension S /(Z Z′ ). The model uses 11 parameters to fit the 13 independent 2 × 2 low energy observables of the charged fermion Yukawa matrices and predicts the val- ues of two quark mass combinations, mu/mc and mdmsmb, to each be approximately 1σ above their experimental values. The remaining observables are successfully fit at the 5% level. This model is shown to have a gauge anomaly on one of the fixed points and we discuss the alterations in field content necessary to repair it. ii Extra dimensional orbifold theories have gauge anomaly structures which are more complicated than those of Minkowski space. We review previous work done by von Gersdorff and Quiros to derive general expressions for orbifold gauge anomalies. These equations are applied to a supersymmetric 6D orbifold model with E6 gauge symme- try presented by Kobayashi, Raby, and Zhang in order to verify the gauge anomaly cancellations. From this illustration we conclude that the constraining power of orb- ifold gauge anomalies on the field content of the theory is about as great as the usual case in Minkowski space and depends highly on the gauge groups and number of dimensions present. iii For my parents. iv ACKNOWLEDGMENTS There are many people who contributed in many ways to my graduate educa- tion. In the area of research, I’d like to thank my advisor Stuart Raby and fellow collaborator Hyung Do Kim for giving me the opportunity to work with them. My research would not have been possible without their guidance. I am also indebted to the rest of Stuart’s high energy group over the last several years, particularly Radovan Dermisek, Motomichi Harada, and Akin Wingerter for discussions over my research. In the area of my dissertation, I owe thanks to those past graduate students who created the osudissert96 Latex template I used to create this document. I also thank Patrick Randerson and Ashish Saxena for their help with questions on the construction of my dissertation, Stuart Raby for input on content, Ed Smith for his services as a courier, and my dissertation committee for their time and effort. My understanding of physics and mathematics was formed in the classrooms of Ohio State, Yale, Turpin, and Sherwood. Many fine teachers contributed to my education and I would not be where I am today without their instruction. I am grateful for the many friends and acquaintances I have made over the years of graduate school. In particular I am glad for my friendship with Patrick and Susan Blanderson. My parents and family are my foundation. Their constant love, encouragement, and belief in me through all of my years have created the person I am today. v Most importantly, I am thankful to Meredith Howard. Her friendship, support, understanding, and love helped me to survive the black times and to celebrate the occasional successes that made up graduate school. She provided useful advice on most aspects of my written dissertation and defense presentation, including discus- sions over content and emphasis, Latex formatting, and the use of PowerPoint. I would not have made it without her. vi VITA October 2, 1975 ............................Born - Cincinnati, Ohio, USA 1998 ........................................B.S., Physics, Yale University 2003 ........................................M.S., Physics, The Ohio State University 1999-2002 ..................................Graduate Fellow, The Ohio State University 2002-present ................................Graduate Teaching or Research Asso- ciate, The Ohio State University PUBLICATIONS Research Publications H.D. Kim, S. Raby, and L. Schradin, “Quark Mass Textures and sin 2β”, Physical Review D 69, 092002 (2004). H.D. Kim, S. Raby, and L. Schradin, “Quark and Lepton Masses in 5D SO(10)”, The Journal of High Energy Physics 0505, 036 (2005). FIELDS OF STUDY Major Field: Physics Studies in Physics beyond the Standard Model: Professor Stuart Raby vii TABLE OF CONTENTS Page Abstract....................................... ii Dedication...................................... iv Acknowledgments.................................. v Vita ......................................... vii ListofTables.................................... xii ListofFigures ................................... xiv Chapters: 1. Introduction.................................. 1 1.1 Quantum Field Theory and Gauge Symmetry . 1 1.2 TheStandardModel.......................... 1 1.3 ExtensionstotheStandardModel . 3 1.4 OriginalWork ............................. 5 2. StandardModel................................ 7 2.1 TheStandardModelDefined . 7 2.2 Deficiencies of the Standard Model . 14 2.2.1 NeutrinoMasses ........................ 15 2.2.2 HierarchyProblem . 17 2.2.3 DarkMatter .......................... 18 2.2.4 TheUnexplained ........................ 18 2.2.5 OtherProblems......................... 19 viii 3. Data...................................... 20 3.1 ChargedFermionMasses. 20 3.2 CKMelements ............................. 22 3.3 GaugeSector .............................. 24 4. ExtensionstotheStandardModel . 25 4.1 GrandUnifiedTheories(GUTS) . 25 4.1.1 Predictions ........................... 26 4.1.2 Problems ............................ 29 4.1.3 Groups ............................. 30 4.2 Supersymmetry(SUSY) . 35 4.2.1 Motivation ........................... 35 4.2.2 SomeFinerPoints ....................... 36 4.2.3 Minimal Supersymmetric Standard Model . 39 4.3 FamilySymmetry ........................... 41 4.4 ExtraDimensionsandOrbifolds . 42 4.5 Conclusion ............................... 44 5. Texture Models and Sin 2 β ......................... 45 5.1 Introduction .............................. 45 5.2 Setup .................................. 48 5.3 Analysis................................. 51 5.3.1 2 2LightQuarkMatrices . 51 × 5.3.2 3 3QuarkMatrices ..................... 51 × 5.4 Discussion ............................... 57 5.4.1 ComparisonoftheTwoCases. 57 5.4.2 FutureProspects ........................ 58 6. 5D SUSY SO(10) D GUTModel..................... 59 × 3 6.1 Introduction .............................. 59 6.2 Setup .................................. 66 6.2.1 Background .......................... 66 6.2.2 YukawaMatrix ........................ 73 6.3 Analysis ................................ 82 6.3.1 AnalyticFitting ........................ 82 6.3.2 NumericalFitting . .. .. 93 6.4 Justificationin6D ........................... 97 6.5 Pati-SalamBraneGaugeAnomaly . 101 ix 6.6 SummaryandDiscussion . 102 7. OrbifoldAnomalies.............................. 106 7.1 IntroductionandMotivation. 106 7.2 AnomalyBackground . .. .. 108 7.2.1 FujikawaMethod . .. .. 109 7.2.2 GaugeTheories ........................ 113 7.2.3 ExtraDimensions . 117 7.3 OrbifoldAnomalies .......................... 119 7.3.1 Orbifolds ............................ 119 7.3.2 OrbifoldAnomalyEquations . 123 7.4 Applications .............................. 131 7.4.1 Model A1 of Kobayashi, Raby, and Zhang . 131 7.4.2 5DModel ........................... 151 7.5 Discussion ............................... 158 8. Conclusion................................... 163 Appendices: A. LorentzSpinors................................ 167 A.1 General Notation in d Dimensions .................. 167 A.2 d =4Dimensions............................ 169 A.3 d =6Dimensions............................ 172 B. Diagonalization of 2 2Matrices...................... 177 × B.1 GeneralNotation............................ 177 B.2 Approximate Diagonalization for Hierarchical Matrices ....... 178 B.3 Exact Diagonalization for 12 = 21 and11=0........... 179 | | | | C. LoopRephasingMethod ........................... 184 D. D3 FamilySymmetry............................. 193 E. Massless States and Wavefunctions . 196 x F. ALifted4DModel .............................. 198 G. CalculationofSpatialTraces. 209 H. CalculationofGroupTraces . 211 Bibliography .................................... 217 xi LIST OF TABLES Table Page 2.1 TheStandardModelfields.. .. .. 9 2.2 The independent Standard Model parameters. ... 15 4.1 The Minimal Supersymmetric Standard
Recommended publications
  • Affine Springer Fibers and Affine Deligne-Lusztig Varieties
    Affine Springer Fibers and Affine Deligne-Lusztig Varieties Ulrich G¨ortz Abstract. We give a survey on the notion of affine Grassmannian, on affine Springer fibers and the purity conjecture of Goresky, Kottwitz, and MacPher- son, and on affine Deligne-Lusztig varieties and results about their dimensions in the hyperspecial and Iwahori cases. Mathematics Subject Classification (2000). 22E67; 20G25; 14G35. Keywords. Affine Grassmannian; affine Springer fibers; affine Deligne-Lusztig varieties. 1. Introduction These notes are based on the lectures I gave at the Workshop on Affine Flag Man- ifolds and Principal Bundles which took place in Berlin in September 2008. There are three chapters, corresponding to the main topics of the course. The first one is the construction of the affine Grassmannian and the affine flag variety, which are the ambient spaces of the varieties considered afterwards. In the following chapter we look at affine Springer fibers. They were first investigated in 1988 by Kazhdan and Lusztig [41], and played a prominent role in the recent work about the “fun- damental lemma”, culminating in the proof of the latter by Ngˆo. See Section 3.8. Finally, we study affine Deligne-Lusztig varieties, a “σ-linear variant” of affine Springer fibers over fields of positive characteristic, σ denoting the Frobenius au- tomorphism. The term “affine Deligne-Lusztig variety” was coined by Rapoport who first considered the variety structure on these sets. The sets themselves appear implicitly already much earlier in the study of twisted orbital integrals. We remark that the term “affine” in both cases is not related to the varieties in question being affine, but rather refers to the fact that these are notions defined in the context of an affine root system.
    [Show full text]
  • Dynamics for Discrete Subgroups of Sl 2(C)
    DYNAMICS FOR DISCRETE SUBGROUPS OF SL2(C) HEE OH Dedicated to Gregory Margulis with affection and admiration Abstract. Margulis wrote in the preface of his book Discrete subgroups of semisimple Lie groups [30]: \A number of important topics have been omitted. The most significant of these is the theory of Kleinian groups and Thurston's theory of 3-dimensional manifolds: these two theories can be united under the common title Theory of discrete subgroups of SL2(C)". In this article, we will discuss a few recent advances regarding this missing topic from his book, which were influenced by his earlier works. Contents 1. Introduction 1 2. Kleinian groups 2 3. Mixing and classification of N-orbit closures 10 4. Almost all results on orbit closures 13 5. Unipotent blowup and renormalizations 18 6. Interior frames and boundary frames 25 7. Rigid acylindrical groups and circular slices of Λ 27 8. Geometrically finite acylindrical hyperbolic 3-manifolds 32 9. Unipotent flows in higher dimensional hyperbolic manifolds 35 References 44 1. Introduction A discrete subgroup of PSL2(C) is called a Kleinian group. In this article, we discuss dynamics of unipotent flows on the homogeneous space Γn PSL2(C) for a Kleinian group Γ which is not necessarily a lattice of PSL2(C). Unlike the lattice case, the geometry and topology of the associated hyperbolic 3-manifold M = ΓnH3 influence both topological and measure theoretic rigidity properties of unipotent flows. Around 1984-6, Margulis settled the Oppenheim conjecture by proving that every bounded SO(2; 1)-orbit in the space SL3(Z)n SL3(R) is compact ([28], [27]).
    [Show full text]
  • ADELIC VERSION of MARGULIS ARITHMETICITY THEOREM Hee Oh 1. Introduction Let R Denote the Set of All Prime Numbers Including
    ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM Hee Oh Abstract. In this paper, we generalize Margulis’s S-arithmeticity theorem to the case when S can be taken as an infinite set of primes. Let R be the set of all primes including infinite one ∞ and set Q∞ = R. Let S be any subset of R. For each p ∈ S, let Gp be a connected semisimple adjoint Qp-group without any Qp-anisotropic factors and Dp ⊂ Gp(Qp) be a compact open subgroup for almost all finite prime p ∈ S. Let (GS , Dp) denote the restricted topological product of Gp(Qp)’s, p ∈ S with respect to Dp’s. Note that if S is finite, (GS , Dp) = Qp∈S Gp(Qp). We show that if Pp∈S rank Qp (Gp) ≥ 2, any irreducible lattice in (GS , Dp) is a rational lattice. We also present a criterion on the collections Gp and Dp for (GS , Dp) to admit an irreducible lattice. In addition, we describe discrete subgroups of (GA, Dp) generated by lattices in a pair of opposite horospherical subgroups. 1. Introduction Let R denote the set of all prime numbers including the infinite prime ∞ and Rf the set of finite prime numbers, i.e., Rf = R−{∞}. We set Q∞ = R. For each p ∈ R, let Gp be a non-trivial connected semisimple algebraic Qp-group and for each p ∈ Rf , let Dp be a compact open subgroup of Gp(Qp). The adele group of Gp, p ∈ R with respect to Dp, p ∈ Rf is defined to be the restricted topological product of the groups Gp(Qp) with respect to the distinguished subgroups Dp.
    [Show full text]
  • On the Trace Anomaly of a Weyl Fermion in a Gauge Background
    On the trace anomaly of a Weyl fermion in a gauge background Fiorenzo Bastianelli,a;b;c Matteo Broccoli,a;c aDipartimento di Fisica ed Astronomia, Universit`adi Bologna, via Irnerio 46, I-40126 Bologna, Italy bINFN, Sezione di Bologna, via Irnerio 46, I-40126 Bologna, Italy cMax-Planck-Institut f¨ur Gravitationsphysik (Albert-Einstein-Institut) Am M¨uhlenberg 1, D-14476 Golm, Germany E-mail: [email protected], [email protected] Abstract: We study the trace anomaly of a Weyl fermion in an abelian gauge background. Although the presence of the chiral anomaly implies a breakdown of gauge invariance, we find that the trace anomaly can be cast in a gauge invariant form. In particular, we find that it does not contain any odd-parity contribution proportional to the Chern-Pontryagin density, which would be allowed by the con- sistency conditions. We perform our calculations using Pauli-Villars regularization and heat kernel methods. The issue is analogous to the one recently discussed in the literature about the trace anomaly of a Weyl fermion in curved backgrounds. Keywords: Anomalies in Field and String Theories, Conformal Field Theory arXiv:1808.03489v2 [hep-th] 7 May 2019 Contents 1 Introduction1 2 Actions and symmetries3 2.1 The Weyl fermion3 2.1.1 Mass terms5 2.2 The Dirac fermion8 2.2.1 Mass terms9 3 Regulators and consistent anomalies 10 4 Anomalies 13 4.1 Chiral and trace anomalies of a Weyl fermion 13 4.1.1 PV regularization with Majorana mass 14 4.1.2 PV regularization with Dirac mass 15 4.2 Chiral and trace anomalies of a Dirac fermion 16 4.2.1 PV regularization with Dirac mass 16 4.2.2 PV regularization with Majorana mass 17 5 Conclusions 18 A Conventions 19 B The heat kernel 21 C Sample calculations 22 1 Introduction In this paper we study the trace anomaly of a chiral fermion coupled to an abelian gauge field in four dimensions.
    [Show full text]
  • A Quasideterminantal Approach to Quantized Flag Varieties
    A QUASIDETERMINANTAL APPROACH TO QUANTIZED FLAG VARIETIES BY AARON LAUVE A dissertation submitted to the Graduate School—New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Mathematics Written under the direction of Vladimir Retakh & Robert L. Wilson and approved by New Brunswick, New Jersey May, 2005 ABSTRACT OF THE DISSERTATION A Quasideterminantal Approach to Quantized Flag Varieties by Aaron Lauve Dissertation Director: Vladimir Retakh & Robert L. Wilson We provide an efficient, uniform means to attach flag varieties, and coordinate rings of flag varieties, to numerous noncommutative settings. Our approach is to use the quasideterminant to define a generic noncommutative flag, then specialize this flag to any specific noncommutative setting wherein an amenable determinant exists. ii Acknowledgements For finding interesting problems and worrying about my future, I extend a warm thank you to my advisor, Vladimir Retakh. For a willingness to work through even the most boring of details if it would make me feel better, I extend a warm thank you to my advisor, Robert L. Wilson. For helpful mathematical discussions during my time at Rutgers, I would like to acknowledge Earl Taft, Jacob Towber, Kia Dalili, Sasa Radomirovic, Michael Richter, and the David Nacin Memorial Lecture Series—Nacin, Weingart, Schutzer. A most heartfelt thank you is extended to 326 Wayne ST, Maria, Kia, Saˇsa,Laura, and Ray. Without your steadying influence and constant comraderie, my time at Rut- gers may have been shorter, but certainly would have been darker. Thank you. Before there was Maria and 326 Wayne ST, there were others who supported me.
    [Show full text]
  • Chiral Gauge Theories Revisited
    CERN-TH/2001-031 Chiral gauge theories revisited Lectures given at the International School of Subnuclear Physics Erice, 27 August { 5 September 2000 Martin L¨uscher ∗ CERN, Theory Division CH-1211 Geneva 23, Switzerland Contents 1. Introduction 2. Chiral gauge theories & the gauge anomaly 3. The regularization problem 4. Weyl fermions from 4+1 dimensions 5. The Ginsparg–Wilson relation 6. Gauge-invariant lattice regularization of anomaly-free theories 1. Introduction A characteristic feature of the electroweak interactions is that the left- and right- handed components of the fermion fields do not couple to the gauge fields in the same way. The term chiral gauge theory is reserved for field theories of this type, while all other gauge theories (such as QCD) are referred to as vector-like, since the gauge fields only couple to vector currents in this case. At first sight the difference appears to be mathematically insignificant, but it turns out that in many respects chiral ∗ On leave from Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany 1 νµ ν e µ W W γ e Fig. 1. Feynman diagram contributing to the muon decay at two-loop order of the electroweak interactions. The triangular subdiagram in this example is potentially anomalous and must be treated with care to ensure that gauge invariance is preserved. gauge theories are much more complicated. Their definition beyond the classical level, for example, is already highly non-trivial and it is in general extremely difficult to obtain any solid information about their non-perturbative properties. 1.1 Anomalies Most of the peculiarities in chiral gauge theories are related to the fact that the gauge symmetry tends to be violated by quantum effects.
    [Show full text]
  • Twisted Loop Groups and Their Affine Flag Varieties
    TWISTED LOOP GROUPS AND THEIR AFFINE FLAG VARIETIES G. PAPPAS* AND M. RAPOPORT Introduction Loop groups are familiar objects in several branches of mathematics. Let us mention here three variants. The first variant is differential-geometric in nature. One starts with a Lie group G (e.g., a compact Lie group or its complexification). The associated loop group is then the group of (C0-, or C1-, or C∞-) maps of S1 into G, cf. [P-S] and the literature cited there. A twisted version arises from an automorphism α of G. The associated twisted loop group is the group of maps γ : R → G such that γ(θ + 2π) = α(γ(θ)) . The second variant is algebraic and arises in the context of Kac-Moody algebras. Here one constructs an infinite-dimensional algebraic group variety with Lie algebra equal or closely related to a given Kac-Moody algebra. (This statement is an oversimplification and the situation is in fact more complicated: there exist various constructions at a formal, a minimal, and a maximal level which produce infinite-dimensional groups with Lie algebras closely related to the given Kac-Moody Lie algebra, see [Ma2], also [T2], [T3] and the literature cited there). The third variant is algebraic-geometric in nature and is our main concern in this paper. Let us recall the basic definitions in the untwisted case. Let k be a field and let G0 be an algebraic group over Spec (k). We consider the functor LG0 on the category of k-algebras, R 7→ LG0(R) = G0(R((t))).
    [Show full text]
  • On Some Recent Developments in the Theory of Buildings
    On some recent developments in the theory of buildings Bertrand REMY∗ Abstract. Buildings are cell complexes with so remarkable symmetry properties that many groups from important families act on them. We present some examples of results in Lie theory and geometric group theory obtained thanks to these highly transitive actions. The chosen examples are related to classical and less classical (often non-linear) group-theoretic situations. Mathematics Subject Classification (2010). 51E24, 20E42, 20E32, 20F65, 22E65, 14G22, 20F20. Keywords. Algebraic, discrete, profinite group, rigidity, linearity, simplicity, building, Bruhat-Tits' theory, Kac-Moody theory. Introduction Buildings are cell complexes with distinguished subcomplexes, called apartments, requested to satisfy strong incidence properties. The notion was invented by J. Tits about 50 years ago and quickly became useful in many group-theoretic situations [75]. By their very definition, buildings are expected to have many symmetries, and this is indeed the case quite often. Buildings are relevant to Lie theory since the geometry of apartments is described by means of Coxeter groups: apartments are so to speak generalized tilings, where a usual (spherical, Euclidean or hyper- bolic) reflection group may be replaced by a more general Coxeter group. One consequence of the existence of sufficiently large automorphism groups is the fact that many buildings admit group actions with very strong transitivity properties, leading to a better understanding of the groups under consideration. The beginning of the development of the theory is closely related to the theory of algebraic groups, more precisely to Borel-Tits' theory of isotropic reductive groups over arbitrary fields and to Bruhat-Tits' theory of reductive groups over non-archimedean valued fields.
    [Show full text]
  • FINITE GROUP ACTIONS on REDUCTIVE GROUPS and BUILDINGS and TAMELY-RAMIFIED DESCENT in BRUHAT-TITS THEORY by Gopal Prasad Dedicat
    FINITE GROUP ACTIONS ON REDUCTIVE GROUPS AND BUILDINGS AND TAMELY-RAMIFIED DESCENT IN BRUHAT-TITS THEORY By Gopal Prasad Dedicated to Guy Rousseau Abstract. Let K be a discretely valued field with Henselian valuation ring and separably closed (but not necessarily perfect) residue field of characteristic p, H a connected reductive K-group, and Θ a finite group of automorphisms of H. We assume that p does not divide the order of Θ and Bruhat-Tits theory is available for H over K with B(H=K) the Bruhat-Tits building of H(K). We will show that then Bruhat-Tits theory is also available for G := (HΘ)◦ and B(H=K)Θ is the Bruhat-Tits building of G(K). (In case the residue field of K is perfect, this result was proved in [PY1] by a different method.) As a consequence of this result, we obtain that if Bruhat-Tits theory is available for a connected reductive K-group G over a finite tamely-ramified extension L of K, then it is also available for G over K and B(G=K) = B(G=L)Gal(L=K). Using this, we prove that if G is quasi-split over L, then it is already quasi-split over K. Introduction. This paper is a sequel to our recent paper [P2]. We will assume fa- miliarity with that paper; we will freely use results, notions and notations introduced in it. Let O be a discretely valued Henselian local ring with valuation !. Let m be the maximal ideal of O and K the field of fractions of O.
    [Show full text]
  • Nonperturbative Definition of the Standard Models
    PHYSICAL REVIEW RESEARCH 2, 023356 (2020) Nonperturbative definition of the standard models Juven Wang 1,2,* and Xiao-Gang Wen3 1School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA 2Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138, USA 3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 14 June 2019; accepted 21 May 2020; published 17 June 2020) The standard models contain chiral fermions coupled to gauge theories. It has been a longstanding problem to give such gauged chiral fermion theories a quantum nonperturbative definition. By classification of quantum anomalies (including perturbative local anomalies and nonperturbative global anomalies) and symmetric interacting invertible topological orders via a mathematical cobordism theorem for differentiable and triangulable manifolds, and by the existence of a symmetric gapped boundary (designed for the mirror sector) on the trivial symmetric invertible topological orders, we propose that Spin(10) chiral fermion theories with Weyl fermions in 16-dimensional spinor representations can be defined on a 3 + 1D lattice without fermion doubling, and subsequently dynamically gauged to be a Spin(10) chiral gauge theory. As a result, the standard models from the 16n-chiral fermion SO(10) grand unification can be defined nonperturbatively via a 3 + 1D local lattice model of bosons or qubits. Furthermore, we propose that standard models from the 15n-chiral fermion
    [Show full text]
  • U(1) Gauge Extensions of the Standard Model
    U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start 1 Contents • Anomaly Freedom of the Standard Model • B − L • Le − Lµ and B − 3Lτ • U(1)Σ • Supersymmetric U(1)X • Some Remarks U(1) Gauge Extensions of the Standard Model (int08) back to start 2 Anomaly Freedom of the Standard Model Gauge Group: SU(3)C × SU((2)L × U(1)Y . Consider the fermion multiplets: (u, d)L ∼ (3, 2, n1), uR ∼ (3, 1, n2), dR ∼ (3, 1, n3), (ν, e)L ∼ (1, 2, n4), eR ∼ (1, 1, n5). Bouchiat/Iliopolous/Meyer(1972): The SM with n1 = 1/6, n2 = 2/3, n3 = −1/3, n4 = −1/2, n5 = −1, is free of axial-vector anomalies, i.e. 2 [SU(3)] U(1)Y : 2n1 − n2 − n3 = 0. 2 [SU(2)] U(1)Y : 3n1 + n4 = 0. 3 3 3 3 3 3 [U(1)Y ] : 6n1 − 3n2 − 3n3 + 2n4 − n5 = 0. U(1) Gauge Extensions of the Standard Model (int08) back to start 3 It is also free of the mixed gravitational-gauge anomaly, U(1)Y : 6n1 − 3n2 − 3n3 + 2n4 − n5 = 0. Geng/Marshak(1989), Minahan/Ramond/Warner(1990) : Above 4 equations ⇒ n1(4n1 − n2)(2n1 + n2) = 0. n2 = 4n1 ⇒ SM; n2 = −2n1 ⇒ SM (uR ↔ dR); n1 = 0 ⇒ n4 = n5 = n2 + n3 = 0. Here eR ∼ (1, 1, 0) may be dropped. (u, d)L, (ν, e)L have charges (1/2, −1/2) and (uR, dR) have charges (n2, −n2).
    [Show full text]
  • Matrices Lie: an Introduction to Matrix Lie Groups and Matrix Lie Algebras
    Matrices Lie: An introduction to matrix Lie groups and matrix Lie algebras By Max Lloyd A Journal submitted in partial fulfillment of the requirements for graduation in Mathematics. Abstract: This paper is an introduction to Lie theory and matrix Lie groups. In working with familiar transformations on real, complex and quaternion vector spaces this paper will define many well studied matrix Lie groups and their associated Lie algebras. In doing so it will introduce the types of vectors being transformed, types of transformations, what groups of these transformations look like, tangent spaces of specific groups and the structure of their Lie algebras. Whitman College 2015 1 Contents 1 Acknowledgments 3 2 Introduction 3 3 Types of Numbers and Their Representations 3 3.1 Real (R)................................4 3.2 Complex (C).............................4 3.3 Quaternion (H)............................5 4 Transformations and General Geometric Groups 8 4.1 Linear Transformations . .8 4.2 Geometric Matrix Groups . .9 4.3 Defining SO(2)............................9 5 Conditions for Matrix Elements of General Geometric Groups 11 5.1 SO(n) and O(n)........................... 11 5.2 U(n) and SU(n)........................... 14 5.3 Sp(n)................................. 16 6 Tangent Spaces and Lie Algebras 18 6.1 Introductions . 18 6.1.1 Tangent Space of SO(2) . 18 6.1.2 Formal Definition of the Tangent Space . 18 6.1.3 Tangent space of Sp(1) and introduction to Lie Algebras . 19 6.2 Tangent Vectors of O(n), U(n) and Sp(n)............. 21 6.3 Tangent Space and Lie algebra of SO(n).............. 22 6.4 Tangent Space and Lie algebras of U(n), SU(n) and Sp(n)..
    [Show full text]