Anomalies in Quantum Field Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anyon Theory in Gapped Many-Body Systems from Entanglement
Anyon theory in gapped many-body systems from entanglement Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bowen Shi, B.S. Graduate Program in Department of Physics The Ohio State University 2020 Dissertation Committee: Professor Yuan-Ming Lu, Advisor Professor Daniel Gauthier Professor Stuart Raby Professor Mohit Randeria Professor David Penneys, Graduate Faculty Representative c Copyright by Bowen Shi 2020 Abstract In this thesis, we present a theoretical framework that can derive a general anyon theory for 2D gapped phases from an assumption on the entanglement entropy. We formulate 2D quantum states by assuming two entropic conditions on local regions, (a version of entanglement area law that we advocate). We introduce the information convex set, a set of locally indistinguishable density matrices naturally defined in our framework. We derive an isomorphism theorem and structure theorems of the information convex sets by studying the internal self-consistency. This line of derivation makes extensive usage of information-theoretic tools, e.g., strong subadditivity and the properties of quantum many-body states with conditional independence. The following properties of the anyon theory are rigorously derived from this framework. We define the superselection sectors (i.e., anyon types) and their fusion rules according to the structure of information convex sets. Antiparticles are shown to be well-defined and unique. The fusion rules are shown to satisfy a set of consistency conditions. The quantum dimension of each anyon type is defined, and we derive the well-known formula of topological entanglement entropy. -
Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings. -
Chiral Matrix Model of the Semi-Quark Gluon Plasma in QCD
BNL-113249-2016-JA Chiral matrix model of the semi-Quark Gluon Plasma in QCD Robert D. Pisarski, Vladimir V. Skokov Accepted for publication in Physical Review D August 2016 Physics Department/Nuclear Theory Group/Office of Science Brookhaven National Laboratory U.S. Department of Energy USDOE Office Of Science USDOE Office of Under Secretary for Science Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. -
D-Instanton Perturbation Theory
D-instanton Perturbation Theory Ashoke Sen Harish-Chandra Research Institute, Allahabad, India Sao Paolo, June 2020 1 Plan: 1. Overview of the problem and the solution 2. Review of basic aspects of world-sheet string theory and string field theory 3. Some explicit computations A.S., arXiv:1908.02782, 2002.04043, work in progress 2 The problem 3 String theory began with Veneziano amplitude – tree level scattering amplitude of four tachyons in open string theory World-sheet expression for the amplitude (in α0 = 1 unit) Z 1 dy y2p1:p2 (1 − y)2p2:p3 0 – diverges for 2p1:p2 ≤ −1 or 2p2:p3 ≤ −1. Our convention: a:b ≡ −a0b0 + ~a:~b Conventional viewpoint: Define the amplitude for 2p1:p2 > −1, 2p2:p3 > −1 and then analytically continue to the other kinematic regions. 4 However, analytic continuation does not always work It may not be possible to move away from the singularity by changing the external momenta Examples: Mass renormalization, Vacuum shift – discussed earlier In these lectures we shall discuss another situation where analytic continuation fails – D-instanton contribution to string amplitudes 5 D-instanton: A D-brane with Dirichlet boundary condition on all non-compact directions including (euclidean) time. D-instantons give non-perturbative contribution to string amplitudes that are important in many situations Example: KKLT moduli stabilization uses non-perturbative contribution from D-instanton (euclidean D3-brane) Systematic computation of string amplitudes in such backgrounds will require us to compute amplitudes in the presence of D-instantons Problem: Open strings living on the D-instanton do not carry any continuous momenta ) we cannot move away from the singularities by varying the external momenta 6 Some examples: Let X be the (euclidean) time direction Since the D-instanton is localized at some given euclidean time, it has a zero mode that translates it along time direction 4-point function of these zero modes: Z 1 A = dy y−2 + (y − 1)−2 + 1 0 Derivation of this expression will be discussed later. -
Chiral Magnetism: a Geometric Perspective
SciPost Phys. 10, 078 (2021) Chiral magnetism: a geometric perspective Daniel Hill1, Valeriy Slastikov2 and Oleg Tchernyshyov1? 1 Department of Physics and Astronomy and Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218, USA 2 School of Mathematics, University of Bristol, Bristol BS8 1TW, UK ? [email protected] Abstract We discuss a geometric perspective on chiral ferromagnetism. Much like gravity be- comes the effect of spacetime curvature in theory of relativity, the Dzyaloshinski-Moriya interaction arises in a Heisenberg model with nontrivial spin parallel transport. The Dzyaloshinskii-Moriya vectors serve as a background SO(3) gauge field. In 2 spatial di- mensions, the model is partly solvable when an applied magnetic field matches the gauge curvature. At this special point, solutions to the Bogomolny equation are exact excited states of the model. We construct a variational ground state in the form of a skyrmion crystal and confirm its viability by Monte Carlo simulations. The geometric perspective offers insights into important problems in magnetism, e.g., conservation of spin current in the presence of chiral interactions. Copyright D. Hill et al. Received 15-01-2021 This work is licensed under the Creative Commons Accepted 25-03-2021 Check for Attribution 4.0 International License. Published 29-03-2021 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.10.3.078 Contents 1 Introduction2 1.1 The specific problem: the skyrmion crystal2 1.2 The broader impact: geometrization of chiral magnetism3 2 Chiral magnetism: a geometric perspective4 2.1 Spin vectors4 2.2 Local rotations and the SO(3) gauge field5 2.3 Spin parallel transport and curvature5 2.4 Gauged Heisenberg model6 2.5 Spin conservation7 2.5.1 Pure Heisenberg model7 2.5.2 Gauged Heisenberg model8 2.6 Historical note9 3 Skyrmion crystal in a two-dimensional chiral ferromagnet9 3.1 Bogomolny states in the pure Heisenberg model 10 3.2 Bogomolny states in the gauged Heisenberg model 11 3.2.1 False vacuum 12 1 SciPost Phys. -
Thermal Evolution of the Axial Anomaly
Thermal evolution of the axial anomaly Gergely Fej}os Research Center for Nuclear Physics Osaka University The 10th APCTP-BLTP/JINR-RCNP-RIKEN Joint Workshop on Nuclear and Hadronic Physics 18th August, 2016 G. Fejos & A. Hosaka, arXiv: 1604.05982 Gergely Fej}os Thermal evolution of the axial anomaly Outline aaa Motivation Functional renormalization group Chiral (linear) sigma model and axial anomaly Extension with nucleons Summary Gergely Fej}os Thermal evolution of the axial anomaly Motivation Gergely Fej}os Thermal evolution of the axial anomaly Chiral symmetry is spontaneuously broken in the ground state: < ¯ > = < ¯R L > + < ¯L R > 6= 0 SSB pattern: SUL(Nf ) × SUR (Nf ) −! SUV (Nf ) Anomaly: UA(1) is broken by instantons Details of chiral symmetry restoration? Critical temperature? Axial anomaly? Is it recovered at the critical point? Motivation QCD Lagrangian with quarks and gluons: 1 L = − G a G µνa + ¯ (iγ Dµ − m) 4 µν i µ ij j Approximate chiral symmetry for Nf = 2; 3 flavors: iT aθa iT aθa L ! e L L; R ! e R R [vector: θL + θR , axialvector: θL − θR ] Gergely Fej}os Thermal evolution of the axial anomaly Details of chiral symmetry restoration? Critical temperature? Axial anomaly? Is it recovered at the critical point? Motivation QCD Lagrangian with quarks and gluons: 1 L = − G a G µνa + ¯ (iγ Dµ − m) 4 µν i µ ij j Approximate chiral symmetry for Nf = 2; 3 flavors: iT aθa iT aθa L ! e L L; R ! e R R [vector: θL + θR , axialvector: θL − θR ] Chiral symmetry is spontaneuously broken in the ground state: < ¯ > = < ¯R L > + < ¯L R -
Estimation of Baryon Asymmetry of the Universe from Neutrino Physics
ESTIMATION OF BARYON ASYMMETRY OF THE UNIVERSE FROM NEUTRINO PHYSICS Manorama Bora Department of Physics Gauhati University This thesis is submitted to Gauhati University as requirement for the degree of Doctor of Philosophy Faculty of Science March 2018 I would like to dedicate this thesis to my parents . Abstract The discovery of neutrino masses and mixing in neutrino oscillation experiments in 1998 has greatly increased the interest in a mechanism of baryogenesis through leptogenesis, a model of baryogenesis which is a cosmological consequence. The most popular way to explain why neutrinos are massive but at the same time much lighter than all other fermions, is the see-saw mechanism. Thus, leptogenesis realises a highly non-trivial link between two completely independent experimental observations: the absence of antimatter in the observable universe and the observation of neutrino mixings and masses. Therefore, leptogenesis has a built-in double sided nature.. The discovery of Higgs boson of mass 125GeV having properties consistent with the SM, further supports the leptogenesis mechanism. In this thesis we present a brief sketch on the phenomenological status of Standard Model (SM) and its extension to GUT with or without SUSY. Then we review on neutrino oscillation and its implication with latest experiments. We discuss baryogenesis via leptogenesis through the decay of heavy Majorana neutrinos. We also discuss formulation of thermal leptogenesis. At last we try to explore the possibilities for the discrimination of the six kinds of Quasi- degenerate neutrino(QDN)mass models in the light of baryogenesis via leptogenesis. We have seen that all the six QDN mass models are relevant in the context of flavoured leptogenesis. -
Field Theory of Topological Defects an Introduction to Solitons and Cosmology
Field Theory of Topological Defects An Introduction to Solitons and Cosmology Viktor G. Matyas Abstract Topological defects are physical structures that may have arose during phase transitions in the early universe. In this report we provide a concise mathematical background in Group Theory and Algebraic Topology, which we use to systematically study soliton-like solutions to field equations. We then provide a link between these solutions and spontaneous symmetry breaking, which we use to explain how these defects might have formed during the early stages of the universe. We explicitly analyse multiple topo- logical defects such as Kinks and Vortices, and discuss the consequences they might have towards many aspects of modern cosmology and particle physics. Contents 1 Introduction 2 2 Topology and Homotopy Theory 2 2.1 Topological Spaces .................................... 2 2.2 Homotopy Classes and Groups .............................. 4 3 Lie Groups and Geometry 5 3.1 Groups, Representations and Orbits ........................... 5 3.2 Lie Groups and Manifolds ................................ 6 4 Field Theory and Solitons 7 4.1 Lagrangian Field Theory ................................. 7 4.2 Gauge Theory ...................................... 7 4.3 The Vacuum and Spotaneous Symmetry Breaking .................... 9 4.4 Vacuum Topology and Solitons .............................. 10 4.5 Bogomolny Bounds .................................... 11 5 Kinks 12 5.1 The φ4 Kink ....................................... 12 5.2 The Sine-Gordon Kink -
On the Trace Anomaly of a Weyl Fermion in a Gauge Background
On the trace anomaly of a Weyl fermion in a gauge background Fiorenzo Bastianelli,a;b;c Matteo Broccoli,a;c aDipartimento di Fisica ed Astronomia, Universit`adi Bologna, via Irnerio 46, I-40126 Bologna, Italy bINFN, Sezione di Bologna, via Irnerio 46, I-40126 Bologna, Italy cMax-Planck-Institut f¨ur Gravitationsphysik (Albert-Einstein-Institut) Am M¨uhlenberg 1, D-14476 Golm, Germany E-mail: [email protected], [email protected] Abstract: We study the trace anomaly of a Weyl fermion in an abelian gauge background. Although the presence of the chiral anomaly implies a breakdown of gauge invariance, we find that the trace anomaly can be cast in a gauge invariant form. In particular, we find that it does not contain any odd-parity contribution proportional to the Chern-Pontryagin density, which would be allowed by the con- sistency conditions. We perform our calculations using Pauli-Villars regularization and heat kernel methods. The issue is analogous to the one recently discussed in the literature about the trace anomaly of a Weyl fermion in curved backgrounds. Keywords: Anomalies in Field and String Theories, Conformal Field Theory arXiv:1808.03489v2 [hep-th] 7 May 2019 Contents 1 Introduction1 2 Actions and symmetries3 2.1 The Weyl fermion3 2.1.1 Mass terms5 2.2 The Dirac fermion8 2.2.1 Mass terms9 3 Regulators and consistent anomalies 10 4 Anomalies 13 4.1 Chiral and trace anomalies of a Weyl fermion 13 4.1.1 PV regularization with Majorana mass 14 4.1.2 PV regularization with Dirac mass 15 4.2 Chiral and trace anomalies of a Dirac fermion 16 4.2.1 PV regularization with Dirac mass 16 4.2.2 PV regularization with Majorana mass 17 5 Conclusions 18 A Conventions 19 B The heat kernel 21 C Sample calculations 22 1 Introduction In this paper we study the trace anomaly of a chiral fermion coupled to an abelian gauge field in four dimensions. -
Holography Principle and Topology Change in String Theory 1 Abstract
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server SNUTP 98-089 hep-th/9807241 Holography Principle and Topology Change in String Theory 1 Soo-Jong Rey Physics Department, Seoul National University, Seoul 151-742 KOREA abstract D-instantons of Type IIB string theory are Ramond-Ramond counterpart of Giddings-Strominger wormholes connecting two asymptotic regions of spacetime. Such wormholes, according to Coleman, might lead to spacetime topology change, third-quantized baby universes and prob- abilistic determination of fundamental coupling parameters. Utilizing correspondence between AdS5 × M5 Type IIB supergravity and d = 4 super Yang-Mills theory, we point out that topol- ogy change and sum over topologies not only take place in string theory but also are required for consistency with holography. Nevertheless, we argue that the effects of D-instanton wormholes remain completely deterministic, in sharp contrast to Coleman’s scenario. 1Work supported in part by KOSEF SRC-Program, Ministry of Education Grant BSRI 98-2418, SNU Re- search Fund and Korea Foundation for Advanced Studies Faculty Fellowship. One of the most vexing problems in quantum gravity has been the issue of spacetime topol- ogy change: whether topology of spacetime can fluctuate and, if so, spacetime of different topologies should be summed over. Any positive answer to this question would bear profound implications to the fundamental interactions of Nature. For example, in Coleman’s scenario [1] of baby universes [2], fluctuation of spacetime topology induce effective lon-local interactions and third quantization of the universe thereof 2. As a result, the cosmological constant is no longer a calculable, deterministic parameter but is turned into a quantity of probabilistic dis- tribution sharply peaked around zero. -
Spontaneous Breaking of Conformal Invariance and Trace Anomaly
Spontaneous Breaking of Conformal Invariance and Trace Anomaly Matching ∗ A. Schwimmera and S. Theisenb a Department of Physics of Complex Systems, Weizmann Institute, Rehovot 76100, Israel b Max-Planck-Institut f¨ur Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm, Germany Abstract We argue that when conformal symmetry is spontaneously broken the trace anomalies in the broken and unbroken phases are matched. This puts strong constraints on the various couplings of the dilaton. Using the uniqueness of the effective action for the Goldstone supermultiplet for broken = 1 supercon- formal symmetry the dilaton effective action is calculated. N arXiv:1011.0696v1 [hep-th] 2 Nov 2010 November 2010 ∗ Partially supported by GIF, the German-Israeli Foundation for Scientific Research, the Minerva Foundation, DIP, the German-Israeli Project Cooperation and the Einstein Center of Weizmann Institute. 1. Introduction The matching of chiral anomalies of the ultraviolet and infrared theories related by a massive flow plays an important role in understanding the dynamics of these theories. In particular using the anomaly matching the spontaneous breaking of chiral symmetry in QCD like theories was proven [1]. For supersymmetric gauge theories chiral anomaly matching provides constraints when different theories are related by “non abelian” duality in the infrared NS. The matching involves the equality of a finite number of parameters, “the anomaly coefficients” defined as the values of certain Green’s function at a very special singular point in phase space. The Green’s function themselves have very different structure at the two ends of the flow. The massive flows relate by definition conformal theories in the ultraviolet and infrared but the trace anomalies of the two theories are not matched: rather the flow has the property that the a-trace anomaly coefficient decreases along it [2]. -
Momentum-Dependent Mass and AC Hall Conductivity of Quantum Anomalous Hall Insulators and Their Relation to the Parity Anomaly
PHYSICAL REVIEW RESEARCH 2, 033193 (2020) Momentum-dependent mass and AC Hall conductivity of quantum anomalous Hall insulators and their relation to the parity anomaly Christian Tutschku, Jan Böttcher , René Meyer, and E. M. Hankiewicz* Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany (Received 9 March 2020; accepted 15 July 2020; published 4 August 2020) The Dirac mass of a two-dimensional QAH insulator is directly related to the parity anomaly of planar quantum electrodynamics, as shown initially by Niemi and Semenoff [Phys. Rev. Lett. 51, 2077 (1983)]. In this work, we connect the additional momentum-dependent Newtonian mass term of a QAH insulator to the parity anomaly. We reveal that in the calculation of the effective action, before renormalization, the Newtonian mass acts similar to a parity-breaking element of a high-energy regularization scheme. This calculation allows us to derive the finite frequency correction to the DC Hall conductivity of a QAH insulator. We predict that the leading order AC correction contains a term proportional to the Chern number. This term originates from the Newtonian mass and can be measured via electrical or magneto-optical experiments. Moreover, we prove that the Newtonian mass significantly changes the resonance structure of the AC Hall conductivity in comparison to pure Dirac systems like graphene. DOI: 10.1103/PhysRevResearch.2.033193 I. INTRODUCTION While the contribution of the Dirac mass to the effective ac- tion of a QED + systems was initially shown in Refs. [22,23], The discovery of Dirac materials, such as topological 2 1 the effective action of Chern insulator in the presence of a insulators [1–10] and Weyl or Dirac [11–16] semimetals Newtonian mass has not yet been analyzed.