THE FORMATION of ESTROGENS by LIVER TISSUE in VITRO By

Total Page:16

File Type:pdf, Size:1020Kb

THE FORMATION of ESTROGENS by LIVER TISSUE in VITRO By THE FORMATION OF ESTROGENS BY LIVER TISSUE IN VITRO by David Richard Usher, B. Se. A thesis submitted to the faeulty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science. Department of Investigative Medicine, McGill University, Montreal. April 1961 ACKNOWLEDGMENTS The author wishes to thank the Banting Research Foundation for financial support1 and the Research Director1 Dr. R. Hobkirk1 for much-appreciated advice and help througbout all aspects of this problem. Acknowledgment is also extended to Dr. R.H. Common for donation of the avian liver and to Mr. J. Knowles for assistance in the preparation of the figures. TABLE OF CONTENTS SECTION PAGE 1- Estrogen Nomenclature 1 2- Introduction 4 3- H:l.storical Survey i) Earliest work 5 ii) Experimental hepatic posioning 6 iii) Splenic implantation techniques 7 iv) Vitamin and protein-deficiency effects 7 v) Enterohepatic circulation of estrogens 9 vi) Species differences 11 vii) Estrogen content in adult liver 11 viii) In vivo - in vitro deficiency studies 12 ix) Investigations of the enzyme systems 12 x) Estrogens and hepatic disease 13 xi) Sex difference 15 xii) Role or the retieulo- endothelial system 15 xiii) Early in vivo estrogen interconversion 16 xiv) Perfusion studies 17 xv) The effect of partial hepatectomy 17 xvi) Incubation with cu1tured liver ce11s 17 xvii) In vitro estradiol conversion to estrone 18 xviii) Review of bioassay procedures 18 xix) Chemica 1 assays 19 i SECTION PAGE 3- Historical Survey - cont'd. xx) Countercurrent distribution 20 xxi) Radioactive isotopes 21 xxii) Isotopie evidence for enterohepatic hypothesis 22 xxiii) Estrogens in the newborn 23 xxiv) Estriol formation 24 xxv) Androgen-estrogen conversion 24 xxvi) Progesterone relationships 28 xxvii) Estradiol metabolism in avian liver 29 xxviii) Hepatic sulfate conjugation 29 xxix) The role of the newer estrogens 29 xxx) Estriol metabolism 34 xxxi) Transmethylation reactions 34 4" Purpose of this Study 36 5- Methods i) Incubation 1 (adult liver): estradiol-cl4 and 16-ketoestradiol-c14 as substrates 37 (a) Incubation procedure 37 (b) Extraction procedures 37 (c) Counting procedure 39 (d) Countercurrent distribution 39 (e) Chromatography 40 (f) Methylation 41 ii SECTIO.N PAGE 5" Methods - cont'd. i) (g) Detection of contamination of 16-keto­ estradiol-c14 by labelled estriol 41 ii) Incubation 2 (newborn liver): estradiol-cl4 as substrate 42 iii) Countercurrent distribution of estriol methylMether standard 43 iv) Incubation 3 (newborn liver): 16-keto- estradiol-C14 as substrate 43 v) Incubation 4 (adult liver): testosterone-c14 and progesterone-c14 as substrates 44 vi) Incubation 5 (avian liver): estradiol-cl4 as substrate 46 (a) Separation of 6 fractions by column chro~~atography 47 (b) Sodium borohydride reduction 49 (c) Countercurrent distribution of 16-epiestriol 50 6- Resulta i) Incubation 1 51 (a) Estradiol-cl4 as substrate 51 (b) 16-Ketoestradiol-C14 as substrate 51 (c) Percentage contamination by labelled es triol 52 ii) Incubation 2 52 iii SECTION PAGE 6- Resulta - cont 1 d. iii) Incubation 3 53 iv) Incubation 4 54 (a) Testosterone-c14 as substrate 54 (b) Progesterone-c14 as substrate 54 v) Incubation 5 55 7... Discussion i) The problem of radiochemical purity as exemplified by the resulta or Incubation 5 57 ii) Significance of percentage conversion 59 iii) Definitive conversions in Incubation 1 59 iv) Pattern interpretation in Incubation 2 59 v) Incubation 3 60 vi) Lack of conversion of progesterone 60 vii) Difficulties in analysis or the testosterone incubation 60 8- Summary 62 9- Tables 63 10- Countercurrent distribution patterns and radioautographs 70 11- Bibliography 78 iv ESTROGEN NOMENCLATUHB (The trivial name is listed first, and then the proper name). Estrio1 A1:3:5(10)-estratriene-3,16«1 17J-trio1 Es trone A1:3:5(10)"estratriene"3-o1-17-one Estradio1-17p A1:3:5(10)_estratriene"3,17ft"dio1 Estradio1-17~ Â1:3:5(10)~estratr1ene-3,17~-dio1 16-Ketoestrone 61:3:5(10)-estratriene-3-o1"161 17-dione 16-Ketoestradio1-17p ~1:3:5(10)_estratriene-3 1 17p-dio1-16-one 16-Ketoestradio1-17~ ~1:3:5(10)_estratriene-3,17~-dio1-16-one 16p-Hydroxyestrone ~1:3:5(10).estratriene-3,16fl-diol-17-one 1~-Hydroxyestrone b1:3:5(10)-estratriene-3,16~-dio1-17-one 16.. ep1Estriol 61:3: 5(10)-estra triene .. 3,16! 1 17) -triol 17... ep1Estriol ~1:3:5(10) .. estratriene-3 1 16«,17~-triol 161 17-epiEstriol ~1:3:5(10) ... estratriene-3,16p,l7~-triol 6p-Hydroxyestradiol-17J 41:3:5(10) ... estratriene-3,6p,l7ft-triol 6p-Hydroxyestrone 61:3:5(10) ... estratriene-3,6p-diol-17-one 6c(-Hydroxyestradiol-l7f3 61:3: 5(10).estra triene-3,6«1 17fl ... triol 6~Ketoestradiol-17fi ~1:3:5(10).estratriene-3 1 17p-diol-6~one 2-Hydroxyestriol ~1:3:5(10) ... estratriene -2,3,16~1 17p-tetrol 2-Hydroxyestradio1-17fl ~1:3:5(10)_estratriene-2 1 3 1 17ft-triol 2-Methoxyestriol ~1:3:5(10).estratriene-2-methoxy-3,16~17J-triol - 2 ... 2-Methoxyestrone Âl:3:5(10)_estratriene-2-methoxy-3-ol-17~one 2~Methoxyestradiol-17p ~1:3:5(10)_estratriene-2-methoxy-3 1 17p-diol - 3 " INTRODUCTION The capacity of both the human liver and hepatic tissue from various animal species to synthesize, interconvert and destroy many, if not a.ll, of the large number of estrogens now known to exist, has been amply demonstrated by numerous workers. Techniques have so changed and improved in the past decade that it is now possible to have definitive and quantitative concepts about the different reaction sequences. lt is fully realized that these same advances present grave difficulties (such as the determination of radiochemical purity) which will be discussed later in this work. - 4 ... HISTORICAL SURVEY Zondek (11 2) 1 in 19341 was the first to demonstrate any connection between estrogen metabolisa and the liver. He showed that after oral or subcutaneous administration of large amounts of estrogenic hormone (up to 5401 000 mouse units in women, and 401 000 mouse units in infantile rats) only 1 - 3% of the administered dose was recoverable in the urine. He also found that estrogenic hormone was inactivated after incubation with liver mince. H~ therefor~ postulated that the liver was probably responsible for the low in vivo recoveries. No further work was published unti1 1937. In that year1 Israel et al (3) were the first, and are still one of the few groups, to have used perfusion techniques in this field. They reported that a heart-lung system did not effectively inactivate administered estrogen, whereas rapid inactivation occurred using a ~-lung-liver system. At the same time1 Engel and Navratil (4) proved that the liver was not the only organ able toœstroy estrogens in the case of cold-blooded animals, since they were able to demonstrate estrone inactiva­ tion in the hepatectomized frog. In the following year1 Parker and Tenney (5) analysed the estrogen content of fetal and maternai organa. They found that both fetal and maternai livers contained considerably more estrogens than did the placenta or other organs; and reasoned - rather vaguely - - 5 - that the increased level of estrogens in pregnancy was not due to placenta! manufacture, but involved an increase in the "general cholesterol metabolism" of the liver and adrenal. Haller et al (6-8) 1 working between 1939 and 19431 extended Zondek's in vitro observations. They showed that ~-estradiol, now known as estradiol-17J (9) and hereafter termed simply estradi>l, was eompletely inactivated by rabbit liver slices. Rat liver destroyed both estradiol and estriol, but renal tissue bad less effect, and after incubation with other tissues the estrogens still retained their original poteney. Working with non-pregnant and pregnant animals, Heller et al demonstrated that all three classieal estrogens (estradiol, estrone and estriol) were m8tabolized to the same extent by liver slices from either group. They postulated a hepatic threshold for exogenous estradiol destruction. Above this threshold level, greater biliary and urinary excretion would occur. At this time, experimental poisoning o~ the liver (~ vivo or in vitro) was first attempted. Talbot (10) used 21-day old female rats, causing acute hepatic damage with carbon tetrachloride and ethanol. At the time of greatest prostrati on, the uterus was stimulated with estrogens. Increased uterine weight, along with oedema and congestion, proved that the liver was no longer capable of inactivating estrogens. Pincus and Martin (11) confirmed Talbot's work. - 6 - Heller (7) extended this by showing that hepatic tissue treated with sodium cyanide (inhibiting oxidative enzymes) was less effective in inactivating estrone. He suggested that the liver contains an enzyme system reducing estrone to estradiol, plus an estradiol-destroying system, inactiva­ ting the estradiol formed. He also reasoned that estriol must be less affected by the liver, in order to explain its higher oral potency. Biskind et al (12-18) did much in vivo work, using the technique of implantation of estrone pellets into adult, castrated, female rats. Normally, one would expect a con­ stant estrus to occur, but in this situation the estrone had to first pass through the liver. Estrus did occur, but only for a period of from three to fourteen days with constant anestrus thereafter. If the pellet was placed outside the portal circulation, constant estrus occurred (even if the pellet was placed in the liver). Testosterone propionate pellets were also inactivated when placed in the spleen, and reactivated when the spleen was transplanted outside the portal circulation. Partial inactivation occurred when these latter pellets were placed in the liver. Biskind et al suggested that part of the hormone may have been taken up by the hepatic venules before being acted upon by the liver cells.
Recommended publications
  • United States July 2016 2 Table of Contents
    Deuterium Labelled Compounds United States July 2016 2 Table of Contents International Distributors 3 Corporate Overview 4 General Information 5 Pricing and Payment 5 Quotations 5 Custom Synthesis 5 Shipping 5 Quality Control 6 Quotations 6 Custom Synthesis 6 Shipping 6 Quality Control 6 Chemical Abstract Service Numbers 6 Handling Hazardous Compounds 6 Our Products are Not Intended for Use in Humans 7 Limited Warranty 7 Packaging Information 7 Alphabetical Listings 8 Stock Clearance 236 Products by Category 242 n-Alkanes 243 α-Amino Acids, N-Acyl α-Amino Acids, N-t-BOC Protected α-Amino Acid 243 and N-FMOC Protected α-Amino Acids Buffers and Reagents for NMR Studies 245 Detergents 245 Environmental Standards 246 Fatty Acids and Fatty Acid Esters 249 Flavours and Fragrances 250 Gases 253 Medical Research Products 254 Nucleic Acid Bases and Nucleosides 255 Pesticides and Pesticide Metabolites 256 Pharmaceutical Standards 257 Polyaromatic Hydrocarbons (PAHs), Alkyl-PAHs, Amino-PAHs, 260 Hydroxy-PAHs and Nitro-PAHs Polychlorinated Biphenyls (PCBs) 260 Spin Labels 261 Steroids 261 3 International Distributors C Beijng Zhenxiang H EQ Laboratories GmbH Australia K Technology Company Graf-von-Seyssel-Str. 10 Rm. 15A01, Changyin Bld. 86199 Augsburg Austria H No. 88, YongDingLu Rd. Germany Beijing 100039 Tel.: (49) 821 71058246 Belgium J China Fax: (49) 821 71058247 Tel.: (86) 10-58896805 [email protected] China C Fax: (86) 10-58896158 www.eqlabs.de Czech Republic H [email protected] Germany, Austria, China Czech Republic, Greece, Denmark I Hungary,
    [Show full text]
  • C:\Data\Ndaenjuvia\AP LTR 05-07-04
    NDA 21-443 Package Insert ENJUVIA™ (synthetic conjugated estrogens, B) Tablets Rx only ESTROGENS INCREASE THE RISK OF ENDOMETRIAL CANCER Close clinical surveillance of all women taking estrogens is important. Adequate diagnostic measures, including endometrial sampling when indicated, should be undertaken to rule out malignancy in all cases of undiagnosed persistent or recurring abnormal vaginal bleeding. There is no evidence that the use of “natural” estrogens results in a different endometrial risk profile than synthetic estrogens at equivalent estrogen doses. (See WARNINGS, Malignant neoplasms, Endometrial cancer.) CARDIOVASCULAR AND OTHER RISKS Estrogens with or without progestins should not be used for the prevention of cardiovascular disease. (See WARNINGS, Cardiovascular disorders.) The Women’s Health Initiative (WHI) study reported increased risks of myocardial infarction, stroke, invasive breast cancer, pulmonary emboli, and deep vein thrombosis in postmenopausal women (50 to 79 years of age) during 5 years of treatment with oral conjugated estrogens (CE 0.625 mg) combined with medroxyprogesterone acetate (MPA 2.5 mg) relative to placebo. (See CLINICAL PHARMACOLOGY, Clinical Studies). The Women’s Health Initiative Memory Study (WHIMS), a substudy of WHI, reported increased risk of developing probable dementia in postmenopausal women 65 years of age or older during 4 years of treatment with oral conjugated estrogens plus medroxyprogesterone acetate relative to placebo. It is unknown whether this finding applies to younger postmenopausal women or to women taking estrogen alone therapy. (See CLINICAL PHARMACOLOGY, Clinical Studies.) Other doses of oral conjugated estrogens with medroxyprogesterone acetate, and other combinations and dosage forms of estrogens and progestins were not studied in the WHI clinical trials and, in the absence of comparable data, these risks should be assumed to be similar.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,723,320 B2 Bunschoten Et Al
    US007723320B2 (12) United States Patent (10) Patent No.: US 7,723,320 B2 Bunschoten et al. (45) Date of Patent: May 25, 2010 (54) USE OF ESTROGEN COMPOUNDS TO DE 23,36434. A 4, 1975 INCREASE LIBDO IN WOMEN WO WO96 O3929 A 2, 1996 (75) Inventors: Evert Johannes Bunschoten, Heesch OTHER PUBLICATIONS (NL); Herman Jan Tijmen Coelingh Bennink, Driebergen (NL); Christian Holinka CF et al: “Comparison of Effects of Estetrol and Taxoxifen Franz Holinka, New York, NY (US) with Those of Estriol and Estradiol on the Immature Rat Uterus'; Biology of Reproduction; 1980; pp. 913-926; vol. 22, No. 4. (73) Assignee: Pantarhei Bioscience B.V., Al Zeist Holinka CF et al; "In-Vivo Effects of Estetrol on the Immature Rat (NL) Uterus'; Biology of Reproduction; 1979: pp. 242-246; vol. 20, No. 2. Albertazzi Paola et al.; "The Effect of Tibolone Versus Continuous Combined Norethisterone Acetate and Oestradiol on Memory, (*) Notice: Subject to any disclaimer, the term of this Libido and Mood of Postmenopausal Women: A pilot study': Data patent is extended or adjusted under 35 base Biosis "Online!; Oct. 31, 2000: pp. 223-229; vol. 36, No. 3; U.S.C. 154(b) by 1072 days. Biosciences Information Service.: Philadelphia, PA, US. Visser et al., “In vitro effects of estetrol on receptor binding, drug (21) Appl. No.: 10/478,264 targets and human liver cell metabolism.” Climacteric (2008) 11(1) Appx. II: 1-5. (22) PCT Filed: May 17, 2002 Visser et al., “First human exposure to exogenous single-dose oral estetrol in early postmenopausal women.” Climacteric (2008) 11(1): (86).
    [Show full text]
  • Labeling and Synthesis of Estrogens and Their Metabolites
    Labeling and Synthesis of Estrogens and Their Metabolites Paula Kiuru University of Helsinki Faculty of Science Department of Chemistry Laboratory of Organic Chemistry P.O. Box 55, 00014 University of Helsinki, Finland ACADEMIC DISSERTATION To be presented with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium A110 of the Department of Chemistry, A. I. Virtasen Aukio 1, Helsinki, on June 18th, 2005 at 12 o'clock noon Helsinki 2005 ISBN 952-91-8812-9 (paperback) ISBN 952-10-2507-7 (PDF) Helsinki 2005 Valopaino Oy. 1 ABSTRACT 3 ACKNOWLEDGMENTS 4 LIST OF ORIGINAL PUBLICATIONS 5 LIST OF ABBREVIATIONS 6 1. INTRODUCTION 7 1.1 Nomenclature of estrogens 8 1.2 Estrogen biosynthesis 10 1.3 Estrogen metabolism and cancer 10 1.3.1 Estrogen metabolism 11 1.3.2 Ratio of 2-hydroxylation and 16α-hydroxylation 12 1.3.3 4-Hydroxyestrogens and cancer 12 1.3.4 2-Methoxyestradiol 13 1.4 Structural and quantitative analysis of estrogens 13 1.4.1 Structural elucidation 13 1.4.2 Analytical techniques 15 1.4.2.1 GC/MS 16 1.4.2.2 LC/MS 17 1.4.2.3 Immunoassays 18 1.4.3 Deuterium labeled internal standards for GC/MS and LC/MS 19 1.4.4 Isotopic purity 20 1.5 Labeling of estrogens with isotopes of hydrogen 20 1.5.1 Deuterium-labeling 21 1.5.1.1 Mineral acid catalysts 21 1.5.1.2 CF3COOD as deuterating reagent 22 1.5.1.3 Base-catalyzed deuterations 24 1.5.1.4 Transition metal-catalyzed deuterations 25 1.5.1.5 Deuteration without catalyst 27 1.5.1.6 Halogen-deuterium exchange 27 1.5.1.7 Multistep labelings 28 1.5.1.8 Summary of deuterations 30 1.5.2 Enhancement of deuteration 30 1.5.2.1 Microwave irradiation 30 1.5.2.2 Ultrasound 31 1.5.3 Tritium labeling 32 1.6 Deuteration estrogen fatty acid esters 34 1.7 Synthesis of 2-methoxyestradiol 35 1.7.1 Halogenation 35 1.7.2 Nitration of estrogens 37 1.7.3 Formylation 38 1.7.4 Fries rearrangement 39 1.7.5 Other syntheses of 2-methoxyestradiol 39 1.7.6 Synthesis of 4-methoxyestrone 40 1.8 Synthesis of 2- and 4-hydroxyestrogens 41 2.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep
    USOO6284263B1 (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep. 4, 2001 (54) BUCCAL DRUG ADMINISTRATION IN THE 4,755,386 7/1988 Hsiao et al. TREATMENT OF FEMALE SEXUAL 4,764,378 8/1988 Keith et al.. DYSFUNCTION 4,877,774 10/1989 Pitha et al.. 5,135,752 8/1992 Snipes. 5,190,967 3/1993 Riley. (76) Inventor: Virgil A. Place, P.O. Box 44555-10 5,346,701 9/1994 Heiber et al. Ala Kahua, Kawaihae, HI (US) 96743 5,516,523 5/1996 Heiber et al. 5,543,154 8/1996 Rork et al. ........................ 424/133.1 (*) Notice: Subject to any disclaimer, the term of this 5,639,743 6/1997 Kaswan et al. patent is extended or adjusted under 35 6,180,682 1/2001 Place. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/626,772 Primary Examiner Thurman K. Page ASSistant Examiner-Rachel M. Bennett (22) Filed: Jul. 27, 2000 (74) Attorney, Agent, or Firm-Dianne E. Reed; Reed & Related U.S. Application Data ASSciates (62) Division of application No. 09/237,713, filed on Jan. 26, (57) ABSTRACT 1999, now Pat. No. 6,117,446. A buccal dosage unit is provided for administering a com (51) Int. Cl. ............................. A61F 13/02; A61 K9/20; bination of Steroidal active agents to a female individual. A61K 47/30 The novel buccal drug delivery Systems may be used in (52) U.S. Cl. .......................... 424/435; 424/434; 424/464; female hormone replacement therapy, in female 514/772.3 contraception, to treat female Sexual dysfunction, and to treat or prevent a variety of conditions and disorders which (58) Field of Search ....................................
    [Show full text]
  • The Structural Biology of Oestrogen Metabolism
    Journal of Steroid Biochemistry & Molecular Biology 137 (2013) 27–49 Contents lists available at ScienceDirect Journal of Steroid Biochemistry and Molecular Biology jo urnal homepage: www.elsevier.com/locate/jsbmb Review The structural biology of oestrogen metabolism ∗ Mark P. Thomas, Barry V.L. Potter Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK a r t i c l e i n f o a b s t r a c t Article history: Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reac- Received 11 September 2012 tions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation Received in revised form and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, 10 December 2012 despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing Accepted 12 December 2012 the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or Keywords: progression of the disease and inhibitors of these enzymes are briefly discussed. Oestrogen This article is part of a Special Issue entitled ‘CSR 2013’. Protein structure © 2012 Elsevier Ltd. Open access under CC BY license. Reaction mechanism Aromatase Sulfatase Sulfotransferase 17␤-Hydroxysteroid dehydrogenase Contents 1. Introduction . 27 2. Methods . 29 3. Oestrogen sulfotransferase . 29 4. Steroid sulfatase. 31 5. 17␤-Hydroxysteroid dehydrogenases . 33 6. Aromatase (cytochrome P450 19A1, oestrogen synthase) . 36 7. Enzymes of steroid hydroxylation .
    [Show full text]
  • Xerox University Microfilms
    INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Mutagens and Reproductive Toxins Chemical Class Standard Operating Procedure
    1 Mutagens and Reproductive Toxins Chemical Class Standard Operating Procedure Mutagens and Reproductive Toxins H340 H341 H360 H361 H362 This SOP is not a substitute for hands-on training. Print a copy and insert into your laboratory SOP binder. Department: Chemistry Date SOP was written: Thursday, July 1, 2021 Date SOP was approved by PI/lab supervisor: Thursday, July 1, 2021 Name: F. Fischer Principal Investigator: Signature: ______________________________ Name: Matthew Rollings Internal Lab Safety Coordinator or Lab Manager: Lab Phone: 510.301.1058 Office Phone: 510.643.7205 Name: Felix Fischer Emergency Contact: Phone Number: 510.643.7205 Tan Hall 674, 675, 676, 679, 680, 683, 684 Location(s) covered by this SOP: Hildebrand Hall: D61, D32 1. Purpose This SOP covers the precautions and safe handling procedures for the use of Mutagens and Reproductive Toxins. For a list of Mutagens and Reproductive Toxins covered by this SOP and their use(s), see the “List of Chemicals”. Procedures described in Section 12 apply to all materials covered in this SOP. A change to the “List of Chemicals” does not constitute a change in the SOP requiring review or retraining. If you have questions concerning the applicability of any recommendation or requirement listed in this procedure, contact the Principal Investigator/Laboratory Supervisor or the campus Chemical Hygiene Officer at [email protected]. 2. Physical & Chemical Properties/Definition of Chemical Group Germ Cell Mutagenicity is a hazard class that is primarily concerned with chemicals that may cause mutations in the germ cell of humans that can be transmitted to the progeny. Rev.
    [Show full text]
  • The Selective Estrogen Enzyme Modulators in Breast Cancer: a Review
    Biochimica et Biophysica Acta 1654 (2004) 123–143 www.bba-direct.com Review The selective estrogen enzyme modulators in breast cancer: a review Jorge R. Pasqualini* Hormones and Cancer Research Unit, Institut de Pue´riculture, 26 Boulevard Brune, 75014 Paris, France Received 21 January 2004; accepted 12 March 2004 Available online 15 April 2004 Abstract It is well established that increased exposure to estradiol (E2) is an important risk factor for the genesis and evolution of breast tumors, most of which (approximately 95–97%) in their early stage are estrogen-sensitive. However, two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissular concentrations of these hormones are significantly higher than those found in the plasma or in the area of the breast considered as normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these hormones. Several factors could be implicated in this process, including higher uptake of steroids from plasma and local formation of the potent E2 by the breast cancer tissue itself. This information extends the concept of ‘intracrinology’ where a hormone can have its biological response in the same organ where it is produced. There is substantial information that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of E2 from circulating precursors. Two principal pathways are implicated in the last steps of E2 formation in breast cancer tissues: the ‘aromatase pathway’ which transforms androgens into estrogens, and the ‘sulfatase pathway’ which converts estrone sulfate (E1S) into E1 by the estrone-sulfatase.
    [Show full text]
  • ESTROGENS, CONJUGATED Estrogeni Coniuncti A
    Estrogens, conjugated EUROPEAN PHARMACOPOEIA 8.0 – impurities B, C, D, E, F, G: for each impurity, not more than 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.5 per cent); – unspecified impurities:foreachimpurity,notmorethan 0.1 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.10 per cent); E. estra-1,3,5(10)-triene-3,16α,17α-triol (17-epi-estriol), – sum of impurities other than A: not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (1 per cent); – disregard limit: 0.05 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.05 per cent). F. estra-1,3,5(10)-triene-3,16β,17β-triol (16-epi-estriol), Loss on drying (2.2.32): maximum 0.5 per cent, determined on 1.000 g by drying in an oven at 105 °C for 3 h. ASSAY Dissolve 25.0 mg in ethanol (96 per cent) R and dilute to 50.0mLwiththesamesolvent.Dilute10.0mLofthis solution to 50.0 mL with ethanol (96 per cent) R.Measurethe absorbance (2.2.25)attheabsorptionmaximumat281nm. G. estra-1,3,5(10)-triene-3,16β,17α-triol (16,17-epi-estriol), Calculate the content of C18H24O3 taking the specific absorbance to be 72.5. IMPURITIES Specified impurities: A, B, C, D, E, F, G. Other detectable impurities (the following substances would, H. 3,16α-dihydroxyestra-1,3,5(10)-trien-17-one, if present at a sufficient level, be detected by one or other of the tests in the monograph.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,068,830 Diamandis Et Al
    US00606883OA United States Patent (19) 11 Patent Number: 6,068,830 Diamandis et al. (45) Date of Patent: May 30, 2000 54) LOCALIZATION AND THERAPY OF FOREIGN PATENT DOCUMENTS NON-PROSTATIC ENDOCRINE CANCER 0217577 4/1987 European Pat. Off.. WITH AGENTS DIRECTED AGAINST 0453082 10/1991 European Pat. Off.. PROSTATE SPECIFIC ANTIGEN WO 92/O1936 2/1992 European Pat. Off.. WO 93/O1831 2/1993 European Pat. Off.. 75 Inventors: Eleftherios P. Diamandis, Toronto; Russell Redshaw, Nepean, both of OTHER PUBLICATIONS Canada Clinical BioChemistry vol. 27, No. 2, (Yu, He et al), pp. 73 Assignee: Nordion International Inc., Canada 75-79, dated Apr. 27, 1994. Database Biosis BioSciences Information Service, AN 21 Appl. No.: 08/569,206 94:393008 & Journal of Clinical Laboratory Analysis, vol. 8, No. 4, (Yu, He et al), pp. 251-253, dated 1994. 22 PCT Filed: Jul. 14, 1994 Bas. Appl. Histochem, Vol. 33, No. 1, (Papotti, M. et al), 86 PCT No.: PCT/CA94/00392 Pavia pp. 25–29 dated 1989. S371 Date: Apr. 11, 1996 Primary Examiner Yvonne Eyler S 102(e) Date: Apr. 11, 1996 Attorney, Agent, or Firm-Banner & Witcoff, Ltd. 87 PCT Pub. No.: WO95/02424 57 ABSTRACT It was discovered that prostate-specific antigen is produced PCT Pub. Date:Jan. 26, 1995 by non-proStatic endocrine cancers. It was further discov 30 Foreign Application Priority Data ered that non-prostatic endocrine cancers with Steroid recep tors can be stimulated with Steroids to cause them to produce Jul. 14, 1993 GB United Kingdom ................... 93.14623 PSA either initially or at increased levels.
    [Show full text]