Paquetes Estadísticos Con Licencia Libre (I) Free Statistical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Emacs Speaks Statistics (ESS): a Multi-Platform, Multi-Package Intelligent Environment for Statistical Analysis
Emacs Speaks Statistics (ESS): A multi-platform, multi-package intelligent environment for statistical analysis A.J. Rossini Richard M. Heiberger Rodney A. Sparapani Martin Machler¨ Kurt Hornik ∗ Date: 2003/10/22 17:34:04 Revision: 1.255 Abstract Computer programming is an important component of statistics research and data analysis. This skill is necessary for using sophisticated statistical packages as well as for writing custom software for data analysis. Emacs Speaks Statistics (ESS) provides an intelligent and consistent interface between the user and software. ESS interfaces with SAS, S-PLUS, R, and other statistics packages under the Unix, Microsoft Windows, and Apple Mac operating systems. ESS extends the Emacs text editor and uses its many features to streamline the creation and use of statistical software. ESS understands the syntax for each data analysis language it works with and provides consistent display and editing features across packages. ESS assists in the interactive or batch execution by the statistics packages of statements written in their languages. Some statistics packages can be run as a subprocess of Emacs, allowing the user to work directly from the editor and thereby retain a consistent and constant look- and-feel. We discuss how ESS works and how it increases statistical programming efficiency. Keywords: Data Analysis, Programming, S, SAS, S-PLUS, R, XLISPSTAT,STATA, BUGS, Open Source Software, Cross-platform User Interface. ∗A.J. Rossini is Research Assistant Professor in the Department of Biostatistics, University of Washington and Joint Assis- tant Member at the Fred Hutchinson Cancer Research Center, Seattle, WA, USA mailto:[email protected]; Richard M. -
An Introduction to the SAS System
An Introduction to the SAS System Dileep K. Panda Directorate of Water Management Bhubaneswar-751023 [email protected] Introduction The SAS – Statistical Analysis System (erstwhile expansion of SAS) - is the one of the most widely used Statistical Software package by the academic circles and Industry. The SAS software was developed in late 1960s at North Carolina State University and in 1976 SAS Institute was formed. The SAS system is a collection of products, available from the SAS Institute in North Carolina. SAS software is a combination of a statistical package, a data – base management system, and a high level programming language. The SAS is an integrated system of software solutions that performs the following tasks: Data entry, retrieval, and management Report writing and graphics design Statistical and mathematical analysis Business forecasting and decision support Operations research and project management Applications development At the core of the SAS System is the Base SAS software. The Base SAS software includes a fourth-generation programming language and ready-to-use programs called procedures. These integrated procedures handle data manipulation, information storage and retrieval, statistical analysis, and report writing. Additional components offer capabilities for data entry, retrieval, and management; report writing and graphics; statistical and mathematical analysis; business planning, forecasting, and decision support; operations research and project management; quality improvement; and applications development. In general, the Base SAS software has the following capabilities A data management facility A programming language Data analysis and reporting utilities Learning to use Base SAS enables you to work with these features of SAS. It also prepares you to learn other SAS products, because all SAS products follow the same basic rules. -
XLISP-STAT a Statistical Environment Based on the XLISP Language (Version 2.0)
I XLISP-STAT A Statistical Environment Based on the XLISP Language (Version 2.0) by Luke Tierney l.5i1 University of Minnesota School of Statistics Technical Report Number 528 July 1989 Contents Preface .. 3 1 Starting and Finishing 6 2 Introduction to Basics 8 2.1 Data ........ 8 2.2 The Listener and the Evaluator . 8 3 Elementary Statistical Operations 11 3.1 First Steps ......... 11 3.2 Summary Statistics and Plots 12 3.3 Two Dimensional Plots 16 3.4 Plotting Functions ..... 19 4 More on Generating and Modifying Data 20 4.1 Generating Random Data . 20 4.2 Generating Systematic Data . 20 4.3 Forming Subsets and .Deleting Cases 21 4.4 Combining Several Lists 22 4.5 Modifying Data . 22 5 Some Useful Shortcuts 24 5.1 Getting Help . 24 5.2 Listing and Undefining Variables .. 26 5.3 More on the XLISP-STAT Listener .. 26 5 .4 Loading Files . 28 5.5 Saving Your Work ..... 28 5.6 The XLISP-STAT Editor 29 5.7 Reading Data Files .. 29 5.8 User Initialization File 29 6 More Elaborate Plots 30 6.1 Spinning Plots . ..... 30 6.2 Scatterplot Matrices • It ••••• 32 6.3 Interacting with Individual Plots 35 6.4 Linked Plots ....... 35 6.5 Modifying a Scatter Plot . 36 6.6 Dynamic Simulations . 39 7 Regression 42 8 Defining Your Own Functions and Methods 47 8.1 Defining Functions .... 47 8.2 Anonymous Functions .. 48 8.3 Some Dynamic Simulations 48 8.4 Defining Methods . 51 8.5 Plot Methods . 52 9 Matrices and Arrays 53 10 Nonlinear Regression 54 1 11 One Way ANOVA 57 12 Maximization and Maximum Likeliho~d Estimation 58 13 Approximate Bayesian Computations 61 A XLISP-STAT on UNIX Systems 68 A.1 XLISP-STAT Under the X11 Window System. -
Information Technology Laboratory Technical Accomplishments
CONTENTS Director’s Foreword 1 ITL at a Glance 4 ITL Research Blueprint 6 Accomplishments of our Research Program 7 Foundation Research Areas 8 Selected Cross-Cutting Themes 26 Industry and International Interactions 36 Publications 44 NISTIR 7169 Conferences 47 February 2005 Staff Recognition 50 U.S. DEPARTMENT OF COMMERCE Carlos M. Gutierrez, Secretary Technology Administration Phillip J. Bond Under Secretary of Commerce for Technology National Institute of Standards and Technology Hratch G. Semerjian, Jr., Acting Director About ITL For more information about ITL, contact: Information Technology Laboratory National Institute of Standards and Technology 100 Bureau Drive, Stop 8900 Gaithersburg, MD 20899-8900 Telephone: (301) 975-2900 Facsimile: (301) 840-1357 E-mail: [email protected] Website: http://www.itl.nist.gov INFORMATION TECHNOLOGY LABORATORY D IRECTOR’S F OREWORD n today’s complex technology-driven world, the Information Technology Laboratory (ITL) at the National Institute of Standards and Technology has the broad mission of supporting U.S. industry, government, and Iacademia with measurements and standards that enable new computational methods for scientific inquiry, assure IT innovations for maintaining global leadership, and re-engineer complex societal systems and processes through insertion of advanced information technology. Through its efforts, ITL seeks to enhance productivity and public safety, facilitate trade, and improve the Dr. Shashi Phoha, quality of life. ITL achieves these goals in areas of Director, Information national priority by drawing on its core capabilities in Technology Laboratory cyber security, software quality assurance, advanced networking, information access, mathematical and computational sciences, and statistical engineering. utilizing existing and emerging IT to meet national Information technology is the acknowledged engine for priorities that reflect the country’s broad based social, national and regional economic growth. -
Spatial Tools for Econometric and Exploratory Analysis
Spatial Tools for Econometric and Exploratory Analysis Michael F. Goodchild University of California, Santa Barbara Luc Anselin University of Illinois at Urbana-Champaign http://csiss.org Outline ¾A Quick Tour of a GIS ¾Spatial Data Analysis ¾CSISS Tools Spatial Data Analysis Principles: 1. Integration ¾Linking data through common location the layer cake ¾Linking processes across disciplines spatially explicit processes e.g. economic and social processes interact at common locations 2. Spatial analysis ¾Social data collected in cross- section longitudinal data are difficult to construct ¾Cross-sectional perspectives are rich in context can never confirm process though they can perhaps falsify useful source of hypotheses, insights 3. Spatially explicit theory ¾Theory that is not invariant under relocation ¾Spatial concepts (location, distance, adjacency) appear explicitly ¾Can spatial concepts ever explain, or are they always surrogates for something else? 4. Place-based analysis ¾Nomothetic - search for general principles ¾Idiographic - description of unique properties of places ¾An old debate in Geography The Earth's surface ¾Uncontrolled variance ¾There is no average place ¾Results depend explicitly on bounds ¾Places as samples ¾Consider the model: y = a + bx Tract Pop Location Shape 1 3786 x,y 2 2966 x,y 3 5001 x,y 4 4983 x,y 5 4130 x,y 6 3229 x,y 7 4086 x,y 8 3979 x,y Iij = EiAjf (dij) / ΣkAkf (dik) Aj d Ei ij Types of Spatial Data Analysis ¾ Exploratory Spatial Data Analysis • exploring the structure of spatial data • determining -
The Statistics Tutor's Pocket Book Guide
statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence Stcp-marshall_owen-pocket The Statistics Tutor’s Pocket Book Guide to Statistics Resources Version 1.0 Dated 25/08/2016 Please note that if printed, this guide has been designed to be printed as an A5 booklet double sided on A4 paper. © Alun Owen (University of Worcester), Ellen Marshall (University of Sheffield) www.statstutor.ac.uk and Jonathan Gillard (Cardiff University). Reviewer: Mark Johnston (University of Worcester) Page 2 of 51 Contents INTRODUCTION ................................................................................................................................................................................. 4 SECTION 1 MOST POPULAR RESOURCES .................................................................................................................................... 7 THE MOST RECOMMENDED STATISTICS BOOKS ......................................................................................................................................... 8 THE MOST RECOMMENDED ONLINE STATISTICS RESOURCES ........................................................................................................................ 9 SECTION 2 DESIGNING A STUDY AND CHOOSING A TEST ......................................................................................................... 11 DESIGNING AN EXPERIMENT OR SURVEY AND CHOOSING A TEST ............................................................................................................... -
High Dimensional Data Analysis Via the SIR/PHD Approach
High dimensional data analysis via the SIR/PHD approach April 6, 2000 Preface Dimensionality is an issue that can arise in every scientific field. Generally speaking, the difficulty lies on how to visualize a high dimensional function or data set. This is an area which has become increasingly more important due to the advent of computer and graphics technology. People often ask : “How do they look?”, “What structures are there?”, “What model should be used?” Aside from the differences that underly the various scientific con- texts, such kind of questions do have a common root in Statistics. This should be the driving force for the study of high dimensional data analysis. Sliced inverse regression(SIR) and principal Hessian direction(PHD) are two basic di- mension reduction methods. They are useful for the extraction of geometric information underlying noisy data of several dimensions - a crucial step in empirical model building which has been overlooked in the literature. In this Lecture Notes, I will review the theory of SIR/PHD and describe some ongoing research in various application areas. There are two parts. The first part is based on materials that have already appeared in the literature. The second part is just a collection of some manuscripts which are not yet published. They are included here for completeness. Needless to say, there are many other high dimensional data analysis techniques (and we may encounter some of them later on) that should deserve more detailed treatment. In this complex field, it would not be wise to anticipate the existence of any single tool that can outperform all others in every practical situation. -
Pl a N a Ss E Ss De V Elo P E X P Lo R E R E S E a Rc H B U Ild C O N Ta C T P
PLAN ACTION VERBS Use consistent verb tense (generally past tense). Start phrases with descriptive action verbs. Supply quantitative data whenever possible. Adapt terminology to include key words. Incorporate action verbs with keywords and current “hot” topics, programs, tools, testing terms, and instrumentation to develop concise, yet highly descriptive phrases. Remember that résumés are scanned for such words, so do everything possible to incorporate important phraseology and current keywords into your résumé. ASSESS From What Color is Your Parachute, Richard Bolles, 2005 achieved delivered founded motivated resolved adapted detailed gathered navigated responded analyzed detected generated operated restored arbitrated determined guided perceived retrieved DEVELOP ascertained devised hypothesized persuaded reviewed assessed diagnosed identified piloted risked attained discovered illustrated predicted scheduled audited displayed implemented problem-solved selected built dissected improvised proofread served collected distributed influenced projected shaped conceptualized diverted initiated promoted summarized EXPLORE compiled eliminated innovated publicized supplied computed enforced inspired purchased surveyed conducted established installed reasoned synthesized conserved evaluated integrated recommended taught consolidated examined investigated referred tested constructed expanded maintained rehabilitated transcribed consulted experimented mediated rendered trouble-shot controlled expressed mentored reported tutored RESEARCH counseled -
The R Project for Statistical Computing a Free Software Environment For
The R Project for Statistical Computing A free software environment for statistical computing and graphics that runs on a wide variety of UNIX platforms, Windows and MacOS OpenStat OpenStat is a general-purpose statistics package that you can download and install for free. It was originally written as an aid in the teaching of statistics to students enrolled in a social science program. It has been expanded to provide procedures useful in a wide variety of disciplines. It has a similar interface to SPSS SOFA A basic, user-friendly, open-source statistics, analysis, and reporting package PSPP PSPP is a program for statistical analysis of sampled data. It is a free replacement for the proprietary program SPSS, and appears very similar to it with a few exceptions TANAGRA A free, open-source, easy to use data-mining package PAST PAST is a package created with the palaeontologist in mind but has been adopted by users in other disciplines. It’s easy to use and includes a large selection of common statistical, plotting and modelling functions AnSWR AnSWR is a software system for coordinating and conducting large-scale, team-based analysis projects that integrate qualitative and quantitative techniques MIX An Excel-based tool for meta-analysis Free Statistical Software This page links to free software packages that you can download and install on your computer from StatPages.org Free Statistical Software This page links to free software packages that you can download and install on your computer from freestatistics.info Free Software Information and links from the Resources for Methods in Evaluation and Social Research site You can sort the table below by clicking on the column names. -
Cumulation of Poverty Measures: the Theory Beyond It, Possible Applications and Software Developed
Cumulation of Poverty measures: the theory beyond it, possible applications and software developed (Francesca Gagliardi and Giulio Tarditi) Siena, October 6th , 2010 1 Context and scope Reliable indicators of poverty and social exclusion are an essential monitoring tool. In the EU-wide context, these indicators are most useful when they are comparable across countries and over time. Furthermore, policy research and application require statistics disaggregated to increasingly lower levels and smaller subpopulations. Direct, one-time estimates from surveys designed primarily to meet national needs tend to be insufficiently precise for meeting these new policy needs. This is particularly true in the domain of poverty and social exclusion, the monitoring of which requires complex distributional statistics – statistics necessarily based on intensive and relatively small- scale surveys of households and persons. This work addresses some statistical aspects relating to improving the sampling precision of such indicators in EU countries, in particular through the cumulation of data over rounds of regularly repeated national surveys. 2 EU-SILC The reference data for this purpose are EU Statistics on Income and Living Conditions, the major source of comparative statistics on income and living conditions in Europe. A standard integrated design has been adopted by nearly all EU countries. It involves a rotational panel, with a new sample of households and persons introduced each year to replace one-fourth of the existing sample. Persons enumerated in each new sample are followed-up in the survey for four years. The design yields each year a cross- sectional sample, as well as longitudinal samples of 2, 3 and 4 year duration. -
Emacs Speaks Statistics: One Interface — Many Programs
DSC 2001 Proceedings of the 2nd International Workshop on Distributed Statistical Computing March 15-17, Vienna, Austria http://www.ci.tuwien.ac.at/Conferences/DSC-2001 K. Hornik & F. Leisch (eds.) ISSN 1609-395X Emacs Speaks Statistics: One Interface | Many Programs Richard M. Heiberger∗ Abstract Emacs Speaks Statistics (ESS) is a user interface for developing statisti- cal applications and performing data analysis using any of several powerful statistical programming languages: currently, S, S-Plus, R, SAS, XLispStat, Stata. ESS provides a common editing environment, tailored to the grammar of each statistical language, and similar execution environments, in which the statistical program is run under the control of Emacs. The paper discusses the capabilities and advantages of using ESS as the primary interface for sta- tistical programming, and the design issues addressed in providing a common interface for differently structured languages on different computational plat- forms. 1 Introduction Complex statistical analyses require multiple computational tools, each targeted for a particular statistical analysis. The tools are usually designed with the assump- tion of a specific style of interaction with the software. When tools with conflicting styles are chosen, the interference can partially negate the efficiency gain of using appropriate tools. ESS (Emacs Speaks Statistics) [7] provides a single interface to most of the tools that a statistician is likely to use and therefore mitigates many of the incompatibility issues. ESS provides a -
Comparison of Three Common Statistical Programs Available to Washington State County Assessors: SAS, SPSS and NCSS
Washington State Department of Revenue Comparison of Three Common Statistical Programs Available to Washington State County Assessors: SAS, SPSS and NCSS February 2008 Abstract: This summary compares three common statistical software packages available to county assessors in Washington State. This includes SAS, SPSS and NCSS. The majority of the summary is formatted in tables which allow the reader to more easily make comparisons. Information was collected from various sources and in some cases includes opinions on software performance, features and their strengths and weaknesses. This summary was written for Department of Revenue employees and county assessors to compare statistical software packages used by county assessors and as a result should not be used as a general comparison of the software packages. Information not included in this summary includes the support infrastructure, some detailed features (that are not described in this summary) and types of users. Contents General software information.............................................................................................. 3 Statistics and Procedures Components................................................................................ 8 Cost Estimates ................................................................................................................... 10 Other Statistics Software ................................................................................................... 13 General software information Information in this section was