Chapter 6: Things to Know
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1
Geometry Honors Mid-Year Exam Terms and Definitions Blue Class 1. Acute angle: Angle whose measure is greater than 0° and less than 90°. 2. Adjacent angles: Two angles that have a common side and a common vertex. 3. Alternate interior angles: A pair of angles in the interior of a figure formed by two lines and a transversal, lying on alternate sides of the transversal and having different vertices. 4. Altitude: Perpendicular segment from a vertex of a triangle to the opposite side or the line containing the opposite side. 5. Angle: A figure formed by two rays with a common endpoint. 6. Angle bisector: Ray that divides an angle into two congruent angles and bisects the angle. 7. Base Angles: Two angles not included in the legs of an isosceles triangle. 8. Bisect: To divide a segment or an angle into two congruent parts. 9. Coincide: To lie on top of the other. A line can coincide another line. 10. Collinear: Lying on the same line. 11. Complimentary: Two angle’s whose sum is 90°. 12. Concave Polygon: Polygon in which at least one interior angle measures more than 180° (at least one segment connecting two vertices is outside the polygon). 13. Conclusion: A result of summary of all the work that has been completed. The part of a conditional statement that occurs after the word “then”. 14. Congruent parts: Two or more parts that only have the same measure. In CPCTC, the parts of the congruent triangles are congruent. 15. Congruent triangles: Two triangles are congruent if and only if all of their corresponding parts are congruent. -
The Graphics Gems Series a Collection of Practical Techniques for the Computer Graphics Programmer
GRAPHICS GEMS IV This is a volume in The Graphics Gems Series A Collection of Practical Techniques for the Computer Graphics Programmer Series Editor Andrew Glassner Xerox Palo Alto Research Center Palo Alto, California GRAPHICS GEMS IV Edited by Paul S. Heckbert Computer Science Department Carnegie Mellon University Pittsburgh, Pennsylvania AP PROFESSIONAL Boston San Diego New York London Sydney Tokyo Toronto This book is printed on acid-free paper © Copyright © 1994 by Academic Press, Inc. All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. AP PROFESSIONAL 955 Massachusetts Avenue, Cambridge, MA 02139 An imprint of ACADEMIC PRESS, INC. A Division of HARCOURT BRACE & COMPANY United Kingdom Edition published by ACADEMIC PRESS LIMITED 24-28 Oval Road, London NW1 7DX Library of Congress Cataloging-in-Publication Data Graphics gems IV / edited by Paul S. Heckbert. p. cm. - (The Graphics gems series) Includes bibliographical references and index. ISBN 0-12-336156-7 (with Macintosh disk). —ISBN 0-12-336155-9 (with IBM disk) 1. Computer graphics. I. Heckbert, Paul S., 1958— II. Title: Graphics gems 4. III. Title: Graphics gems four. IV. Series. T385.G6974 1994 006.6'6-dc20 93-46995 CIP Printed in the United States of America 94 95 96 97 MV 9 8 7 6 5 4 3 2 1 Contents Author Index ix Foreword by Andrew Glassner xi Preface xv About the Cover xvii I. Polygons and Polyhedra 1 1.1. -
Classifying Polygons
Elementary Classifying Polygons Common Core: Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. (5.G.B.3) Classify two-dimensional figures in a hierarchy based on properties. (5.G.B.4) Objectives: 1) Students will learn vocabulary related to polygons. 2) Students will use that vocabulary to classify polygons. Materials: Classifying Polygons worksheet Internet access (for looking up definitions) Procedure: 1) Students search the Internet for the definitions and record them on the Classifying Polygons worksheet. 2) Students share and compare their definitions since they may find alternative definitions. 3) Introduce or review prefixes and suffixes. 4) Students fill in the Prefixes section, and share answers. 5) Students classify the polygons found on page 2 of the worksheet. 6) With time remaining, have students explore some extension questions: *Can a polygon be regular and concave? Show or explain your reasoning. *Can a triangle be concave? Show or explain your reasoning. *Could we simplify the definition of regular to just… All sides congruent? or All angles congruent? Show or explain your reasoning. *Can you construct a pentagon with 5 congruent angles but is not considered regular? Show or explain your reasoning. *Can you construct a pentagon with 5 congruent sides but is not considered regular? Show or explain your reasoning. Notes to Teacher: I have my students search for these answers and definitions online, however I am sure that some math textbook glossaries -
PESIT Bangalore South Campus Hosur Road, 1Km Before Electronic City, Bengaluru -100 Department of Computer Science and Engineering
USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science and Engineering INTERNAL ASSESSMENT TEST – 2 Solution Date : 03-04-18 Max Marks: 40 Subject & Code : Computer Graphics and Visualization (15CS62) Section: VI CSE A,B,C Name of faculty: Dr.Sarasvathi V / Ms. Evlin Time: 08.30 - 10.00AM Note: Answer FIVE full Questions 1 Explain the scan line polygon fill algorithm with necessary diagram. 8 Determine the intersection positions of the boundaries. For each scanline that crosses the polygon, edge-intersection are sorted from left to right, then pixel positions, b/w including each intersection pair is filled. Solving pair of simultaneous linear equations. Whenever a scan line passes through a vertex, it intersects two polygon edges at that point. Scan line y’- even number of edges – two pair correctly identify interior pixels Scanline y- five edges. Here we must count vertex intersection as one point. For scanline y, the two edges sharing an intersection vertex are on opposite sides of the scan line.For scan line y’, the two intersecting edges are both above the scan line. vertex that has adjoining edges on opposite sides of an intersecting scan line should be counted as just one. Trace around clockwise or counter clockwise and observing the relative changes in y values. VI CSE A, B &C USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science and Engineering Adjustment to vertex intersection count shorten some polygon edges to split those vertices that should be counted as one intersection. -
Unit 8 – Geometry QUADRILATERALS
Unit 8 – Geometry QUADRILATERALS NAME _____________________________ Period ____________ 1 Geometry Chapter 8 – Quadrilaterals ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1.____ (8-1) Angles of Polygons – Day 1- Pages 407-408 13-16, 20-22, 27-32, 35-43 odd 2. ____ (8-2) Parallelograms – Day 1- Pages 415 16-31, 37-39 3. ____ (8-3) Test for Parallelograms – Day 1- Pages 421-422 13-23 odd, 25 -31 odd 4. ____ (8-4) Rectangles – Day 1- Pages 428-429 10, 11, 13, 16-26, 30-32, 36 5. ____ (8-5) Rhombi and Squares – Day 1 – Pages 434-435 12-19, 20, 22, 26 - 31 6.____ (8-6) Trapezoids – Day 1– Pages 10, 13-19, 22-25 7. _____ Chapter 8 Review 2 (Reminder!) A little background… Polygon is the generic term for _____________________________________________. Depending on the number, the first part of the word - “Poly” - is replaced by a prefix. The prefix used is from Greek. The Greek term for 5 is Penta, so a 5-sided figure is called a _____________. We can draw figures with as many sides as we want, but most of us don’t remember all that Greek, so when the number is over 12, or if we are talking about a general polygon, many mathematicians call the figure an “n-gon.” So a figure with 46 sides would be called a “46-gon.” Vocabulary – Types of Polygons Regular - ______________________________________________________________ _____________________________________________________________________ Irregular – _____________________________________________________________ _____________________________________________________________________ Equiangular - ___________________________________________________________ Equilateral - ____________________________________________________________ Convex - a straight line drawn through a convex polygon crosses at most two sides . -
Discovering Geometry an Investigative Approach
Discovering Geometry An Investigative Approach Condensed Lessons: A Tool for Parents and Tutors Teacher’s Materials Project Editor: Elizabeth DeCarli Project Administrator: Brady Golden Writers: David Rasmussen, Stacey Miceli Accuracy Checker: Dudley Brooks Production Editor: Holly Rudelitsch Copyeditor: Jill Pellarin Editorial Production Manager: Christine Osborne Production Supervisor: Ann Rothenbuhler Production Coordinator: Jennifer Young Text Designers: Jenny Somerville, Garry Harman Composition, Technical Art, Prepress: ICC Macmillan Inc. Cover Designers: Jill Kongabel, Marilyn Perry, Jensen Barnes Printer: Data Reproductions Textbook Product Manager: James Ryan Executive Editor: Casey FitzSimons Publisher: Steven Rasmussen ©2008 by Kendall Hunt Publishing. All rights reserved. Cover Photo Credits: Background image: Doug Wilson/Westlight/Corbis. Construction site image: Sonda Dawes/The Image Works. All other images: Ken Karp Photography. Limited Reproduction Permission The publisher grants the teacher whose school has adopted Discovering Geometry, and who has received Discovering Geometry: An Investigative Approach, Condensed Lessons: A Tool for Parents and Tutors as part of the Teaching Resources package for the book, the right to reproduce material for use in his or her own classroom. Unauthorized copying of Discovering Geometry: An Investigative Approach, Condensed Lessons: A Tool for Parents and Tutors constitutes copyright infringement and is a violation of federal law. All registered trademarks and trademarks in this book are the property of their respective holders. Kendall Hunt Publishing 4050 Westmark Drive PO Box 1840 Dubuque, IA 52004-1840 www.kendallhunt.com Printed in the United States of America 10 9 8 7 6 5 4 3 2 13 12 11 10 09 08 ISBN 978-1-55953-895-4 Contents Introduction . -
Polygons and Convexity
Geometry Week 4 Sec 2.5 to ch. 2 test section 2.5 Polygons and Convexity Definitions: convex set – has the property that any two of its points determine a segment contained in the set concave set – a set that is not convex concave concave convex convex concave Definitions: polygon – a simple closed curve that consists only of segments side of a polygon – one of the segments that defines the polygon vertex – the endpoint of the side of a polygon 1 angle of a polygon – an angle with two properties: 1) its vertex is a vertex of the polygon 2) each side of the angle contains a side of the polygon polygon not a not a polygon (called a polygonal curve) polygon Definitions: polygonal region – a polygon together with its interior equilateral polygon – all sides have the same length equiangular polygon – all angels have the same measure regular polygon – both equilateral and equiangular Example: A square is equilateral, equiangular, and regular. 2 diagonal – a segment that connects 2 vertices but is not a side of the polygon C B C B D A D A E AC is a diagonal AC is a diagonal AB is not a diagonal AD is a diagonal AB is not a diagonal Notation: It does not matter which vertex you start with, but the vertices must be listed in order. Above, we have square ABCD and pentagon ABCDE. interior of a convex polygon – the intersection of the interiors of is angles exterior of a convex polygon – union of the exteriors of its angles 3 Polygon Classification Number of sides Name of polygon 3 triangle 4 quadrilateral 5 pentagon 6 hexagon 7 heptagon 8 octagon -
Chapter 1: Tools of Geometry
Tools of Geometry Then You graphed points on the coordinate plane and evaluated mathematical expressions. Now In Chapter 1, you will: Find distances between points and midpoints of line segments. Identify angle relationships. Find perimeters, areas, surface areas, and volumes. KY Program of Studies HS-G-S-SR6 Students will analyze and apply spatial relationships among points, lines and planes. HS-G-S-FS4 Students will perform constructions. Why? MAPS Geometric figures and terms can be used to represent and describe real-world situations. On a map, locations of cities can be represented by points, highways or streets by lines, and national parks by polygons that have both perimeter and area. The map itself is representative of a plane. Animation glencoe.com 2 Chapter 1 Tools of Geometry Get Ready for Chapter 1 Diagnose Readiness You have two options for checking Prerequisite Skills. Text Option Take the Quick Check below. Refer to the Quick Review for help. QuickCheck QuickReview Graph and label each point in the coordinate EXAMPLE 1 (Lesson 0-7) plane. Graph and label the point Q(−3, 4) in the 1. W(5, 2) 2. X(0, 6) coordinate plane. 3. Y(-3, -1) 4. Z(4, 2) Start at the origin. y Since the x-coordinate 2 -3, 4 abcdef g h 5. GAMES Carolina is is negative, move 3 using the diagram to 8 8 7 7 units to the left. Then record her chess 6 6 move 4 units up since moves. She moves 5 5 0 the y-coordinate is x her knight 2 spaces 4 4 3 3 positive. -
Solutions Key 6 Polygons and Quadrilaterals ARE YOU READY? PAGE 377 19
CHAPTER Solutions Key 6 Polygons and Quadrilaterals ARE YOU READY? PAGE 377 19. F (counterexample: with side lengths 5, 6, 10); if a triangle is an acute triangle, then it is a scalene 1. F 2. B triangle; F (counterexample: any equilateral 3. A 4. D triangle). 5. E 6-1 PROPERTIES AND ATTRIBUTES OF 6. Use Sum Thm. POLYGONS, PAGES 382–388 x ° + 42° + 32° = 180° x ° = 180° - 42° - 32° CHECK IT OUT! x ° = 106° 1a. not a polygon b. polygon, nonagon 7. Use Sum Thm. x ° + 53° + 90° = 180° c. not a polygon x ° = 180° - 53° - 90° 2a. regular, convex b. irregular, concave x ° = 37° 3a. Think: Use Polygon ∠ Sum Thm. 8. Use Sum Thm. (n - 2)180° x ° + x ° + 32° = 180° (15 - 2)180° 2 x ° = 180° - 34° 2340° 2 x ° = 146° b. (10 - 2)180° = 1440° x ° = 73° m∠1 + m∠2 + … + m∠10 = 1440° 9. Use Sum Thm. 10m∠1 = 1440° 2 x ° + x ° + 57° = 180° m∠1 = 144° 3 x ° = 180° - 57° 4a. Think: Use Polygon Ext. ∠ Sum Thm. 3 x ° = 123° m∠1 + m∠2 + … + m∠12 = 360° x ° = 41° 12m∠1 = 360° 10. By Lin. Pair Thm., 11. By Alt. Ext. Thm., m∠1 = 30° m∠1 + 56 = 180 m∠2 = 101° b. 4r + 7r + 5r + 8r = 360 m∠1 = 124° By Lin. Pair Thm., 24r = 360 By Vert. Thm., m∠1 + m∠2 = 180 r = 15 m∠2 = 56° m∠1 + 101 = 180 By Corr. Post., m∠1 = 79° 5. By Polygon Ext. ∠ Sum Thm., sum of ext. ∠ m∠3 = m∠1 = 124° Since ⊥ m, m n measures is 360°. -
Angles of Polygons
5.3 Angles of Polygons How can you fi nd a formula for the sum of STATES the angle measures of any polygon? STANDARDS MA.8.G.2.3 1 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. Find the sum of the angle measures of each polygon with n sides. a. Sample: Quadrilateral: n = 4 A Draw a line that divides the quadrilateral into two triangles. B Because the sum of the angle F measures of each triangle is 180°, the sum of the angle measures of the quadrilateral is 360°. C D E (A + B + C ) + (D + E + F ) = 180° + 180° = 360° b. Pentagon: n = 5 c. Hexagon: n = 6 d. Heptagon: n = 7 e. Octagon: n = 8 196 Chapter 5 Angles and Similarity 2 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. a. Use the table to organize your results from Activity 1. Sides, n 345678 Angle Sum, S b. Plot the points in the table in a S coordinate plane. 1080 900 c. Write a linear equation that relates S to n. 720 d. What is the domain of the function? 540 Explain your reasoning. 360 180 e. Use the function to fi nd the sum of 1 2 3 4 5 6 7 8 n the angle measures of a polygon −180 with 10 sides. −360 3 ACTIVITY: The Sum of the Angle Measures of a Polygon Work with a partner. A polygon is convex if the line segment connecting any two vertices lies entirely inside Convex the polygon. -
Side of the Polygon Polygon Vertex of the Diagonal Sides Angles Regular
King Geometry – Chapter 6 – Notes and Examples Section 1 – Properties and Attributes of Polygons Each segment that forms a polygon is a _______side__ _ of ____ _the____ ______________. polygon The common endpoint of two sides is a ____________vertex _____of _______ the ________________polygon . A segment that connects any two nonconsecutive vertices is a _________________.diagonal Number of Sides Name of Polygon You can name a polygon by the number of its 3 Triangle sides. The table shows the names of some common polygons. 4 Quadrilateral 5 Pentagon If the number of sides is not listed in the table, then the polygon is called a n-gon where n 6 Hexagon represents the number of sides. Example: 16 sided figure is called a 16-gon 7 Heptagon 8 Octagon Remember! A polygon is a closed plane figure formed by 9 Nonagon three or more segments that intersect only at their endpoints. 10 Decagon 12 Dodecagon n n-gon All of the __________sides are congruent in an equilateral polygon. All of the ____________angles are congruent in an equiangular polygon. A __________________________regular polygon is one that is both equilateral and equiangular. If a polygon is ______not regular, it is called _________________irregular . A polygon is ______________concave if any part of a diagonal contains points in the exterior of the polygon. If no diagonal contains points in the exterior, then the polygon is ____________convex . A regular polygon is always _____________convex . Examples: Tell whether the figure is a polygon. If it is a polygon, name it by the number of sides. not a not a polygon, not a polygon, heptagon polygon hexagon polygon polygon Tell whether the polygon is regular or irregular. -
CHAPTER 6 Polygons, Quadrilaterals, and Special Parallelograms
CHAPTER 6 Polygons, Quadrilaterals, and Special Parallelograms Table of Contents DAY 1: (Ch. 6-1) SWBAT: Find measures of interior and exterior angles of polygons Pgs: 1-7 HW: Pgs: 8-10 DAY 2: (6-2) SWBAT: Solve Problems involving Parallelograms Pgs: 11-16 HW: Pgs: 17-18 DAY 3: (6-4) SWBAT: Solve Problems involving Rectangles Pgs: 19-22 HW: Pg: 23 DAY 4: (6-4) SWBAT: Solve Problems involving Rhombi and Squares Pgs: 24-28 HW: Pgs: 29-30 DAY 5: (6-6) SWBAT: Solve Problems involving Trapezoids Pgs: 31-36 HW: Pgs: 37-39 DAY 6-7: (Review) SWBAT: Review of Quadrilaterals Pgs: 40-52 HW: Finish this section for homework Chapter 6 (Section 1) – Day 1 Angles in polygons A polygon is a closed plane figure formed by three or more segments that intersect only at their endpoints. Each segment that forms a polygon is a side of the polygon. The common endpoint of two sides is a vertex of the polygon. A segment that connects any two nonconsecutive vertices is a diagonal. You can name a polygon by the number of its sides. The table shows the names of some common polygons. All the sides are congruent in an equilateral polygon. All the angles are congruent in an equiangular polygon. A regular polygon is one that is both equilateral and equiangular. If a polygon is not regular, it is called irregular. A polygon is concave if any part of a diagonal contains points in the exterior of the polygon. If no diagonal contains points in the exterior, then the polygon is convex.