Growth of Cyclone Viyaru and Phailin – a Comparative Study

Total Page:16

File Type:pdf, Size:1020Kb

Growth of Cyclone Viyaru and Phailin – a Comparative Study Growth of cyclone Viyaru and Phailin – a comparative study SDKotal1, S K Bhattacharya1,∗, SKRoyBhowmik1 and P K Kundu2 1India Meteorological Department, NWP Division, New Delhi 110 003, India. 2Department of Mathematics, Jadavpur University, Kolkata 700 032, India. ∗Corresponding author. e-mail: [email protected] The tropical cyclone Viyaru maintained a unique quasi-uniform intensity during its life span. Despite beingincontactwithseasurfacefor>120 hr travelling about 2150 km, the cyclonic storm (CS) intensity, once attained, did not intensify further, hitherto not exhibited by any other system over the Bay of Bengal. On the contrary, the cyclone Phailin over the Bay of Bengal intensified into very severe cyclonic storm (VSCS) within about 48 hr from its formation as depression. The system also experienced rapid intensification phase (intensity increased by 30 kts or more during subsequent 24 hours) during its life time and maximum intensity reached up to 115 kts. In this paper, a comparative study is carried out to explore the evolution of the various thermodynamical parameters and possible reasons for such converse features of the two cyclones. Analysis of thermodynamical parameters shows that the development of the lower tropospheric and upper tropospheric potential vorticity (PV) was low and quasi-static during the lifecycle of the cyclone Viyaru. For the cyclone Phailin, there was continuous development of the lower tropospheric and upper tropospheric PV, which attained a very high value during its lifecycle. Also there was poor and fluctuating diabatic heating in the middle and upper troposphere and cooling in the lower troposphere for Viyaru. On the contrary, the diabatic heating was positive from lower to upper troposphere with continuous development and increase up to 6◦C in the upper troposphere. The analyses of cross sections of diabatic heating, PV, and the 1000–500 hPa geopotential metre (gpm) thickness contours indicate that the cyclone Viyaru was vertically tilted (westward) and lacked axisymmetry in its structure and converse features (axisymmetric and vertical) that occurred for the cyclone Phailin. In addition, there was a penetration of dry air in the middle troposphere of Viyaru, whereas high moisture existed in the middle troposphere of Phailin. The vertical wind shear (5–10 ms−1) near the core of the storm region between 850 and 200 hPa was favourable for both the systems but was higher in the northern region of the cyclone Viyaru. The divergent development of these thermodynamic features conspired to produce converse characteristic of the two cyclones. 1. Introduction few decades efforts have been made to tackle these challenges. Assimilation of enormous satellite data Operational forecasting of tropical cyclones pri- into the sophisticated numerical weather predic- marily involves genesis, track, and intensity predic- tion (NWP) models has enabled the researchers to tions before and after landfall. A major hurdle for look into the intricacies of the structure by study- the study of the structure of tropical cyclones had ing different important variables at various levels been lack of data over the seas. During the last of the atmosphere within and around the systems. Keywords. Cyclogenesis; diabatic heating; potential vorticity; vertical wind shear. J. Earth Syst. Sci. 123, No. 7, October 2014, pp. 1619–1635 c Indian Academy of Sciences 1619 1620 S D Kotal et al. Several studies have been carried out in fore- about 48 hr from its formation as depression. The casting tropical cyclone. A tropical cyclone gen- system also experienced rapid intensification phase esis parameter was defined by Gray (1968)asa (intensity increased by 30 kts or more during sub- product of three thermodynamic parameters, viz., sequent 24 hr) during its life time and maximum sea surface temperature (SST) (>26◦Cuptoa intensity reached up to 115 kts. An insight into depth of 60 m), mid-tropospheric relative humid- different aspects of both the systems is necessary ity, and three dynamical parameters, viz., Cori- to understand the mechanism of the growth of olis parameter, reciprocal of vertical wind shear, the system to cyclonic storm and maintenance of and relative vorticity in the lower levels of the the quasi-uniform intensity for an unusually long troposphere. DeMaria et al. (2001), McBride and duration for cyclone Viyaru and rapid intensifica- Zehr (1981) developed different methods to pre- tion of the cyclone Phailin. Therefore, this study dict cyclogenesis using various dynamical and ther- includes analyses of dynamical and thermodynam- modynamical atmospheric variables. Roy Bhowmik ical parameters to explain the converse feature of (2003) highlighted some threshold values of Genesis the cyclone Viyaru and Phailin. parameter to differentiate the degree of intensifi- The paper is organized as follows: brief lifecycle cation at early genesis stages over the Indian seas. of the cyclone Viyaru and Phailin is described in Kotal et al. (2009) developed a Genesis Potential section 2. The data sample used in this study is Parameter (GPP) consisting of various dynamical described in section 3. A synoptic overview of the and thermodynamical variables to differentiate environmental condition is given in section 4.Anal- between nondeveloping and developing low pres- yses of thermodynamic features are presented in sure systems over the North Indian Ocean. section 5. Summary and conclusions are given in Sanders and Gyakum (1980) defined ‘bomb’ as section 6. an extratropical surface cyclone with central pres- sure falling at the rate of 1 mb h−1 or more for 24 hours. Most of the studies on rapid cyclogene- 2. Cyclonic storms sis and rapid decay have been carried out for sys- tems over the Atlantic Ocean and Pacific Ocean 2.1 Cyclonic storm Viyaru (10–16 May 2013) (Anthes et al. 1983; Sanders 1986; Kuo and Reed A low pressure system that formed over south- 1988;Whitakeret al. 1988;Kuoet al. 1991; Bosart east Bay of Bengal on 8 May 2013 intensified into et al. 1995; Kaplan and DeMaria 2003;Martin depression at 0900 UTC of 10 May 2013 near lat. and Otkin 2004;Kaplanet al. 2009). Kotal et al. 5.0◦N and long. 92.0◦E. Initially it moved north- (2012) carried out a case study of rapid inten- westwards and intensified into a deep depression at sification of cyclone GIRI over the Bay of Ben- 1200 UTC of the same day and further intensified gal. They found the lower-tropospheric latent heat into a cyclonic storm (T.No. 2.5), Viyaru at 0300 release and the resulting increase of positive lower UTC of 11 May 2013. The cyclonic storm recurved PV anomaly by the effect of this latent heat release to north–northeasterly direction on 13 and 14 May played a major role for rapid intensification of and further intensified from T.No. 2.5 to T.No. the cyclone. Recently, Kotal and Roy Bhowmik 3.0 at 0600 UTC of 16 May 2013. Moving north– (2013) developed a statistical-dynamical technique northeastward direction the cyclonic storm crossed for probabilistic forecast of rapid intensification of ◦ ◦ Bangladesh coast near lat. 22.8 N and long. 91.4 E, cyclone. around 0800 UTC of 16 May 2013. After landfall, The average life span of tropical cyclones over it continued to move north–northeastwards and the North Indian Ocean is 4–5 days out of which weakened into a deep depression over Mizoram at 3–4 days are spent over the seas prior to landfall. 1200 UTC and into a depression over Manipur at Best track data of IMD during the period May 1990 1800 UTC of 16 May 2013. It further weakened into to May 2013 show that only nine tropical cyclones a well marked low pressure area over Nagaland at spent their journey, a period of 120 hr or more, over 0000 UTC 17 May 2013. The observed track of the the sea surface, from the stage of depression. Out cyclone Viyaru is shown in figure 1. of which, eight subsequently crossed coasts and one decayed over the seas without making land- fall. Barring cyclone Viyaru, all the eight cyclones 2.2 Very severe cyclonic storm Phailin attained a maximum intensity equal to or more (8–14 October 2013) than severe cyclonic strom (SCS) intensity (> 47 kts). The cyclone Viyaru maintained cyclone inten- A low pressure system that formed over North sity (34–47 kts) for 126 hr travelling about 2150 Andaman Sea on 7 October 2013 intensified into km, neither decayed nor intensified. Whereas, the depression at 0300 UTC of 8 October 2013 near cyclone Phailin over the Bay of Bengal intensi- lat. 12.0◦N and long. 96.0◦E. It moved northwest- fied into very severe cyclonic storm (VSCS) within wards and intensified into a deep depression at Growth of cyclone Viyaru and Phailin 1621 Figure 1. Observed track of the cyclone Viyaru. Figure 2. Observed track of the cyclone Phailin. 0000 UTC of 9 October 2013 and further intensified into a cyclonic storm (T.No. 2.5), Phailin at 1200 horizontal resolutions using IMD GFS-T574L64 UTC of the same day. The cyclonic storm contin- analysis as first guess and forecasts as bound- ued to move in northwesterly direction and intensi- ary conditions. Using analysis and boundary con- fied into severe cyclonic storm (T.No. 3.5) at 0300 ditions from the WRFDA, the WRF (ARW) is UTC of 10 October 2013 and subsequently inten- runfortheforecastupto3dayswithdouble sified into very severe cyclonic storm (T.No. 4.0) nested configuration with horizontal resolution of at 0600 UTC of same day. Moving northwestward 27 km and 9 km and 38 Eta levels in the verti- direction the system further rapidly intensified to cal. WRF at resolution 9 km data have been used T.No. 4.5, T.No. 5.0, and T.No. 5.5 at 1200, 1500, for the analyses of various thermodynamic para- and 2100 UTC of same day (10 October 2013), meters for the study of growth of tropical cyclone respectively.
Recommended publications
  • Natural Disaster Management
    Lesson Learned Presentation Ministry of Social Welfare, Relief and Resettlement, The Republic of the Union of Myanmar 1 Contents • Hazards Profile of Myanmar • Legislation • National Framework • Institutional Arrangement • AADMER Implementation and ASEAN Related Activities • DRR Activities of Ministry of Social Welfare, Relief and Resettlement • Experiences • Lesson Learned • Way Forward 2 Hazard Profile of Myanmar 33 Hazard Profile (Fire) (Flood) (Storm) (Earthquake) (Tsunami) (Landslide) (Drought) (Epidemic) 4 Potential Hazards and Prone Areas in Myanmar Fire All round the country Flood Annual flood occur in Kayin State, Bago Region, Mandalay Region, Ayaeyarwaddy Region. Especially townships and villages which are situated along the rivers banks of Ayaryarwaddy, Sittaung, Thanlwin, Madauk and Shwe Kyin. Cyclone Thanintharyi region, Mon State, Rakhine State, Yangon Region and AyaeyarWaddy Region 55 Earthquake can occur around the country, Nay Pyi Taw, Bago, Sagaing and Mandalay Regions and Shan State are earthquake prone areas. Tsunami Costal areas such as Rakhine and Mon States and Ayaeyarwaddy, Yangon and Thanintharyi Regions Drought Central Myanmar (Sagaing, Magwe,and Mandalay regions) Landslide Hilly Region (Kachin,Chin, Shan and Rakhine 66 St t d Th i th i Ri) Legislation 77 Legislation • The Disaster Management Law with (9) Chapters has been enacted on 31st July 2013. • Title and Definition • Objectives (a) to implement natural disaster management programmes systematically and expeditiously in order to reduce disaster risks; (b)
    [Show full text]
  • Cyclone Disaster Vulnerability and Response Experiences in Coastal
    Cyclone disaster vulnerability and response experiences in coastal Bangladesh Edris Alam Assistant Professor and Disaster and Development Centre Affiliate, Department of Geography and Environmental Studies, University of Chittagong, Bangladesh and Andrew E. Collins Reader in Disaster and Development, Disaster and Development Centre, School of Applied Sciences, Northumbria University, United Kingdom For generations, cyclones and tidal surges have frequently devastated lives and property in coastal and island Bangladesh. This study explores vulnerability to cyclone hazards using first-hand coping recollections from prior to, during and after these events. Qualitative field data suggest that, beyond extreme cyclone forces, localised vulnerability is defined in terms of response processes, infrastructure, socially uneven exposure, settlement development patterns, and livelihoods. Prior to cyclones, religious activities increase and people try to save food and valuable possessions. Those in dispersed settlements who fail to reach cyclone shelters take refuge in thatched-roof houses and big-branch trees. However, women and children are affected more despite the modification of traditional hierarchies during cyclone periods. Instinctive survival strategies and intra-community cooperation improve coping post cyclone. This study recommends that disaster reduction programmes encourage cyclone mitigation while being aware of localised realities, endogenous risk analyses, and coping and adaptation of affected communities (as active survivors rather than helpless victims). Keywords: coastal and island people of Bangladesh, coping, cyclone vulnerability, local response Introduction With the effects of natural hazards rising in terms of loss of life and injuries in poorer nations (ISDR, 2002; World Bank, 2005; CRED, 2007), institutional disaster reduction approaches (ISDR, 2004; UNDP, 2004; DFID, 2005) and approaches adaptable to individual social and livelihood experiences are required.
    [Show full text]
  • Download Report
    Emergency Market Mapping and Analysis (EMMA) Understanding the Fish Market System in Kyauk Phyu Township Rakhine State. Annex to the Final report to DfID Post Giri livelihoods recovery, Kyaukphyu Township, Rakhine State February 14 th 2011 – November 13 th 2011 August 2011 1 Background: Rakhine has a total population of 2,947,859, with an average household size of 6 people, (5.2 national average). The total number of households is 502,481 and the total number of dwelling units is 468,000. 1 On 22 October 2010, Cyclone Giri made landfall on the western coast of Rakhine State, Myanmar. The category four cyclonic storm caused severe damage to houses, infrastructure, standing crops and fisheries. The majority of the 260,000 people affected were left with few means to secure an income. Even prior to the cyclone, Rakhine State (RS) had some of the worst poverty and social indicators in the country. Children's survival and well-being ranked amongst the worst of all State and Divisions in terms of malnutrition, with prevalence rates of chronic malnutrition of 39 per cent and Global Acute Malnutrition of 9 per cent, according to 2003 MICS. 2 The State remains one of the least developed parts of Myanmar, suffering from a number of chronic challenges including high population density, malnutrition, low income poverty and weak infrastructure. The national poverty index ranks Rakhine 13 out of 17 states, with an overall food poverty headcount of 12%. The overall poverty headcount is 38%, in comparison the national average of poverty headcount of 32% and food poverty headcount of 10%.
    [Show full text]
  • Read Ebook {PDF EPUB} Storm Over Indianenland by Billy Brand 70 Million in the Path of Massive Tropical Storm Bill As It Hits the Coast and Travels North
    Read Ebook {PDF EPUB} Storm over indianenland by Billy Brand 70 Million in the Path of Massive Tropical Storm Bill as It Hits the Coast and Travels North. This transcript has been automatically generated and may not be 100% accurate. Historic floods in Louisiana, a tornado watch in upstate New York for the second time this week, and windshield-shattering hail put 18 million people on alert. Now Playing: More Severe and Dangerous Weather Cripples the Country. Now Playing: Naomi Osaka fined $15,000 for skipping press conference. Now Playing: Man publishes book to honor his wife. Now Playing: Hundreds gather to honor the lives lost in the Tulsa Race Massacre. Now Playing: Controversial voting measure set to become law in Texas. Now Playing: Business owner under fire over ‘Not Vaccinated’ Star of David patch. Now Playing: 7 presumed dead after plane crash near Nashville, Tennessee. Now Playing: Millions hit the skies for Memorial Day weekend. Now Playing: At least 2 dead, nearly 2 dozen wounded in mass shooting in Miami-Dade. Now Playing: Small jet crashes outside Nashville with 7 aboard. Now Playing: Millions traveling for Memorial Day weekend. Now Playing: Remarkable toddler stuns adults with her brilliance. Now Playing: Air fares reach pre-pandemic highs. Now Playing: Eric Riddick, who served 29 years for crime he didn't commit, fights to clear name. Now Playing: Man recovering after grizzly bear attack. Now Playing: US COVID-19 cases down 70% in last 6 weeks. Now Playing: Summer blockbusters return as movie theaters reopen. Now Playing: Harris delivers US Naval Academy commencement speech.
    [Show full text]
  • Development Letter Draft
    Issue JAN-MAR ‘21 A periodical by Research and Policy Integration for Development (RAPID) with the support from The Asia Foundation Strengthening Localisation of SDGs: Rethinking Bangladesh’s Fiscal Year Time Frame A Model Union Approach M Abu Eusuf | Page 17 Shamsul Alam | Page 1 Combatting Transfer Mispricing: Getting Ready for LDC Graduation A New Avenue for Bangladesh Customs Abdur Razzaque | Page 3 Nipun Chakma & Mohammad Fyzur Rahman | Page 20 World Rankings of Dhaka University: Do Natural Hazards Make Farmers from Coastal How to Improve? Areas More Productive? Evidence from Bangladesh Muhammed Shah Miran | Page 6 Syed Mortuza Asif Ehsan & Md Jakariya | Page 24 Economic Governance in Bangladesh: The Need for Valuing the Socio-Cultural Aspects of Potential Roles for the Planning Commission Wetland Ecosystem Services in Bangladesh Helal Ahammad | Page 8 Alvira Farheen Ria & Raisa Bashar | Page 27 Multidimensional Poverty in Bangladesh: Plugging Bangladesh into Global COVID-19 Measurement and Implications Vaccine Supply Chain Mahfuz Kabir | Page 13 Rabiul Islam Rabi & Md Shahiduzzaman Sarkar | Page 30 © All rights reserved by Research and Policy Integration for Development (RAPID) Editorial Team Editor-In-Chief Advisory Board Abdur Razzaque, PhD Atiur Rahman, PhD Chairman, RAPID and Research Director, Policy Former Governor, Bangladesh Bank, Dhaka, Bangladesh Research Institute (PRI), Dhaka, Bangladesh Ismail Hossain, PhD Managing Editor Pro Vice-Chancellor, North South University, M Abu Eusuf, PhD Dhaka, Bangladesh Professor, Department
    [Show full text]
  • Study on the Genesis of Low Intensity Tropical Cyclones in the Bay of Bengal Using WRF Model
    Study on the genesis of low intensity tropical cyclones in the Bay of Bengal using WRF Model M. Sc. Thesis BY DEVBROTA KUMAR BISWAS DEPARTMENT OF PHYSICS KHULNA UNIVERSITY OF ENGINEERING & TECHNOLOGY KHULNA-9203, BANGLADESH March-2018 i Study on the genesis of low intensity tropical cyclones in the Bay of Bengal using WRF Model M. Sc. Thesis BY DEVBROTA KUMAR BISWAS ROLL NO: 1655503 SESSION: January-2016 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Physics, Khulna University of Engineering & Technology, Khulna-9203 DEPARTMENT OF PHYSICS KHULNA UNIVERSITY OF ENGINEERING & TECHNOLOGY KHULNA-9203, BANGLADESH March-2018 i DECLARATION This is to certify that the thesis work entitled “Study on the genesis of low intensity tropical cyclones in the Bay Bengal using WRF model” has been carried out by DEVBROTA KUMAR BISWAS in the Department of Physics, Khulna University of Engineering & Technology, Khulna, Bangladesh. The above thesis work or any part of this work has not been submitted anywhere for the award of any degree or diploma. Signature of Supervisor Signature of Candidate (PROFESSOR DR. MD. ABDULLAH ELIAS AKHTER) (DEVBROTA KUMAR BISWAS) ii DEDICATED TO MY PARENTS iii ACKNOWLEDGEMENT With my great manner it is a pleasure for me to express my deepest sense of gratitude and indebtedness to my reverend supervisor Dr. Md. Abdullah Elias Akhter, Professor, Department of Physics, Khulna University of Engineering & Technology, Khulna, for his kind guidance and supervision and for his constant encouragement throughout the research work. His inspiration and friendly cooperation has accelerated my works.
    [Show full text]
  • Bangladesh Final Evaluation ACKNOWLEDGEMENTS
    Strengthening resilience through media in Bangladesh Final evaluation ACKNOWLEDGEMENTS The report was written by Aniqa Tasnim Hossain, Khandokar Hasanul Banna, Nicola Bailey and Md. Arif Al Mamun. The authors thank Sally Gowland, Gillian Kingston, Jack Cunliffe, Lisa Robinson, Sherene Chinfatt, Richard Lace, and the rest of the team in Bangladesh for their input. BBC Media Action, the international development organisation of the BBC, uses the power of media and communication to support people to shape their own lives. Working with broadcasters, governments, other organisations and donors, it provides information and stimulates positive change in the areas of governance, health, resilience and humanitarian response. This broad reach helps it to inform, connect and empower people around the world. It is independent of the BBC, but shares the BBC’s fundamental values and has partnerships with the BBC World Service and local and national broadcasters that reach millions of people. The content of this report is the responsibility of BBC Media Action. Any views expressed should not be taken to represent those of the BBC itself or of any donors supporting the work of the charity. This report was prepared thanks to funding from the UK Department for International Development (DFID), which supports the research and policy work of BBC Media Action. July 2017 Series editors Sophie Baskett & Sonia Whitehead | Editors Alexandra Chitty & Katy Williams | Designer Blossom Carrasco | Proofreader Lorna Fray Production editor Lucy Harley-McKeown 2 COUNTRY REPORT | BANGLADESH CONTENTS Acknowledgements 2 Executive summary: what’s the story? 6 1. Introduction 8 1.1 Project background 8 1.2 Project objectives 10 1.3 Project activities 14 1.3.1 Reality TV series: Amrai Pari 14 1.3.2 TV PSA: Working Together 16 1.3.3 Radio magazine programme: Amrai Pari 16 1.3.4 Social media: Amrai Pari Facebook page 16 1.3.5 Community outreach 16 1.3.6 Capacity strengthening of NGOs 16 1.3.7 Capacity strengthening of local media 17 2.
    [Show full text]
  • Manual on Cyclone
    Scope of the Manual This manual is developed with wider consultations and inputs from various relevant departments/ministries, UN Agencies, INGOs, Local NGOs, Professional organizations including some independent experts in specific hazards. This is intended to give basic information on WHY, HOW, WHAT of a disaster. It also has information on necessary measures to be taken in case of a particular disaster in pre, during and post disaster scenario, along with suggested mitigation measures. It is expected that this will be used for the school teachers, students, parents, NGOs, Civil Society Organizations, and practitioners in the field of Disaster Risk Reduction. Excerpts from the speech of Ban Ki-moon, Secretary-General of the United Nations Don’t Wait for Disaster No country can afford to ignore the lessons of the earthquakes in Chile and Haiti. We cannot stop such disasters from happening. But we can dramatically reduce their impact, if the right disaster risk reduction measures are taken in advance. A week ago I visited Chile’s earthquake zone and saw how countless lives were saved because Chile’s leaders had learned the lessons of the past and heeded the warnings of crises to come. Because stringent earthquake building codes were enforced, much worse casualties were prevented. Training and equipping first responders ahead of time meant help was there within minutes of the tremor. Embracing the spirit that governments have a responsibility for future challenges as well as current ones did more to prevent human casualties than any relief effort could. Deaths were in the hundreds in Chile, despite the magnitude of the earthquake, at 8.8 on the Richter Scale, the fifth largest since records began.
    [Show full text]
  • D. Numerical Experiments for Tropical Cyclones D-1. Forecast Experiment with a Nonhydrostatic Model and Simulation of Storm Surge on Cyclone Nargis1 D-1-1
    TECHNICAL REPORTS OF THE METEOROLOGICAL RESEARCH INSTITUTE No.65 2012 D. Numerical experiments for tropical cyclones D-1. Forecast experiment with a nonhydrostatic model and simulation of storm surge on cyclone Nargis1 D-1-1. Introduction Severe meteorological phenomena such as tropical cyclones (TCs) sometimes cause catastrophic damage to human society; therefore, their prediction is significantly important for preventing and mitigating meteorological disasters. In the areas around the Bay of Bengal, historically, there have been several cases in which storm surges induced by TCs gave rise to severe floods (Webster 2008). At the end of April 2008, cyclone Nargis was generated in the center of the bay and moved eastward in contrast with typical northward motion of cyclone of the bay such as the 1970 Bohla cyclone or the 1991 Bangladesh cyclone. Nargis reached its maximum intensity of category 4 around 06–12 UTC on 2 May, then it made landfall in southern Myanmar, and caused a destructive storm surge over the Irrawaddy Delta and other low-lying areas that claimed more than one hundred thousand lives. Figure D-1-1 shows the development of Nargis estimated by the Regional Specialized Meteorological Center (RSMC) New Delhi and the US Navy Joint Typhoon Warning Center (JTWC). The minimum center pressure by JTWC was 937 hPa, while the RSMC New Delhi estimated its intensity as 962 hPa. For disaster prediction and mitigation in these areas, forecasts of TCs and the associated storm surges based on numerical weather prediction (NWP) are particularly important. In this study, numerical simulations of the 2008 Myanmar cyclone Nargis and the associated storm surge were conducted using the Japan Meteorological Agency (JMA) Nonhydrostatic Model (NHM; Saito et al.
    [Show full text]
  • Cyclone Warning Division, New Delhi May, 2013
    GOVERNMENT OF INDIA MINISTRY OF EARTH SCIENCES INDIA METEOROLOGICAL DEPARTMENT A Preliminary Report on Cyclonic storm, Viyaru over Bay of Bengal (10-16 May , 2013) Kalpna imagery & DWR Khepupara at the time of landfall CYCLONE WARNING DIVISION, NEW DELHI MAY, 1201 3 Cyclonic Storm, Viyaru over Bay of Bengal (10 - 16 May, 2013) 1. Introduction A cyclonic storm, Viyaru crossed Bangladesh coast near lat.22.80N and long. 91.40E, about 30 km south of Feni around 1330 hrs IST of 16th May 2013 with a sustained maximum wind speed of about 85-95 kmph. The salient features of this storm are as follows. (i) The genesis of the disturbance took place in a lower latitude, near 5 degree North. (ii) It was one of the longest track over north Indian Ocean in recent period after the very severe cyclonic storm, Phet over the Arabian Sea (31 May-07 June, 2010) (iii) The cyclonic storm moved very fast (about 40-50 km per hour on the day of landfall, i.e. on 16th May 2013. Such type of fast movement of the cyclonic storm is very rare. (iv) Due to the faster movement, the adverse weather due to the cyclonic storm was relatively less. 2. Brief life history A depression formed over southeast Bay of Bengal at 1430 hrs IST of 10th May 2013 near latitude 5.00N and longitude 92.00E. It moved northwestwards and intensified into a deep depression in the evening of the same day. Continuing its northwestward movement, It further intensified into a cyclonic storm, Viyaru in the morning of 11th May 2013.
    [Show full text]
  • Full Version of Global Guide to Tropical Cyclone Forecasting
    WMO-No. 1194 © World Meteorological Organization, 2017 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix P.O. Box 2300 CH-1211 Geneva 2, Switzerland ISBN 978-92-63-11194-4 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. This publication has not been subjected to WMO standard editorial procedures. The views expressed herein do not necessarily have the endorsement of the Organization. Preface Tropical cyclones are amongst the most damaging weather phenomena that directly affect hundreds of millions of people and cause huge economic loss every year. Mitigation and reduction of disasters induced by tropical cyclones and consequential phenomena such as storm surges, floods and high winds have been long-standing objectives and mandates of WMO Members prone to tropical cyclones and their National Meteorological and Hydrometeorological Services.
    [Show full text]
  • Prediction of Landfalling Tropical Cyclones Over East Coast of India in the Global Warming Era
    Prediction of Landfalling Tropical Cyclones over East Coast of India in the Global Warming Era U. C. Mohanty School of Earth, Ocean and Climate Sciences Indian Institute of Technology Bhubaneswar Outline of Presentation • Introduction • Mesoscale modeling of TCs with MM5, ARW, NMM and HWRF systems • Conclusions and Future Directions Natural disasters Hydrometeorologi- Geophysical cal Disasters: Disasters: Earthquakes Cyclones Avalanches Flood Land slides Drought Volcanic eruption Tornadoes Dust storms Heat waves Cold waves Warmest 12 years: 1998,2005,2003,2002,2004,2006, 2001,1997,1995,1999,1990,2000 Global warming Period Rate 25 0.1770.052 50 0.1280.026 100 0.0740.018 150 0.0450.012 Years /decade IPCC Introduction • Climate models are becoming most important tools for its increasing efficiency and reliability to capture past climate more realistically with time and capability to provide future climate projections. • Observations of land based weather stations in global network confirm that Earth surface air temperature has risen more than 0.7 ºC since the late 1800s to till date. This warming of average temperature around the globe has been especially sharp since 1970s. • The IPCC predicted that probable range of increasing temperature between 1.4 - 5.8 ºC over 1990 levels by the year 2100. Contd…… • The warming in the past century is mainly due to the increase of green house gases and most of the climate scientists have agreed with IPCC report that the Earth will warm along with increasing green house gases. • In warming environment, weather extremes such as heavy rainfall (flood), deficit rainfall (drought), heat/cold wave, storm etc will occur more frequent with higher intensity.
    [Show full text]