Py4cytoscape Documentation Release 0.0.1

Total Page:16

File Type:pdf, Size:1020Kb

Py4cytoscape Documentation Release 0.0.1 py4cytoscape Documentation Release 0.0.1 The Cytoscape Consortium Jun 21, 2020 CONTENTS 1 Audience 3 2 Python 5 3 Free Software 7 4 History 9 5 Documentation 11 6 Indices and tables 271 Python Module Index 273 Index 275 i ii py4cytoscape Documentation, Release 0.0.1 py4cytoscape is a Python package that communicates with Cytoscape via its REST API, providing access to a set over 250 functions that enable control of Cytoscape from within standalone and Notebook Python programming environ- ments. It provides nearly identical functionality to RCy3, an R package in Bioconductor available to R programmers. py4cytoscape provides: • functions that can be leveraged from Python code to implement network biology-oriented workflows; • access to user-written Cytoscape Apps that implement Cytoscape Automation protocols; • logging and debugging facilities that enable rapid development, maintenance, and auditing of Python-based workflow; • two-way conversion between the igraph and NetworkX graph packages, which enables interoperability with popular packages available in public repositories (e.g., PyPI); and • the ability to painlessly work with large data sets generated within Python or available on public repositories (e.g., STRING and NDEx). With py4cytoscape, you can leverage Cytoscape to: • load and store networks in standard and nonstandard data formats; • visualize molecular interaction networks and biological pathways; • integrate these networks with annotations, gene expression profiles and other state data; • analyze, profile, and cluster these networks based on integrated data, using new and existing algorithms. py4cytoscape enables an agile collaboration between powerful Cytoscape, Python libraries, and novel Python code so as to realize auditable, reproducible and sharable workflows. CONTENTS 1 py4cytoscape Documentation, Release 0.0.1 2 CONTENTS CHAPTER ONE AUDIENCE The audience for py4cytoscape includes biologists, mathematicians, physicists, biologists, computer scientists, and social scientists. A running sample of research based on Cytoscape can be found on Tumblr. Cytoscape provides tutorials, videos, and automation vignettes. Google Scholar reports that Cytoscape was cited in over 10,000 in academic papers in 2019, most of which executed Cytoscape via the traditional mouse and keyboard. py4cytoscape can automate these results as a means of achieving reproducible science. 3 py4cytoscape Documentation, Release 0.0.1 4 Chapter 1. Audience CHAPTER TWO PYTHON Python is a powerful programming language that allows simple and flexible representations of networks as well as clear and concise expressions of network algorithms. Python has a vibrant and growing ecosystem of packages that can be used in combination with py4cytoscape integrate with traditional workflow engines (e.g., Galaxy and Gene Pattern) to produce robust end-to-end workflows. In order to make the most out of py4cytoscape you should know how to write basic programs in Python. Among the many guides to Python, we recommend the Python documentation and Python in a Nutshell. 5 py4cytoscape Documentation, Release 0.0.1 6 Chapter 2. Python CHAPTER THREE FREE SOFTWARE py4cytoscape is free software; you can redistribute it and/or modify it under the terms of the License. We welcome contributions. Join us on GitHub. 7 py4cytoscape Documentation, Release 0.0.1 8 Chapter 3. Free Software CHAPTER FOUR HISTORY The original Python libraries for Cytoscape were written by Keiichiro Ono in 2015 as an interface to the then-new CyREST automation interface. Its original name was py2cytoscape. It was further evolved through 2019 by Kozo Nishida and Jorge Bouças. In late 2019, py4cytoscape was undertaken by Barry Demchak as a replacement for py2cytoscape. It implemented the API defined by RCy3, an R package in Bioconductor developed by a Cytoscape Automation working group consisting of Alex Pico (primary author), Mark Grimes, Julia Gustavsen, Shraddha Pai, Ruth Isserlin, Barry Demchak. RCy3 was based on prior work contributed by Paul Shannon, Tanja Muetze, Georgi Kolishkovski and Keiichiro Ono. We intend to keep the function definitions available through py4cytoscape and RCy3 consistent and synchronized going forward, and to re-integrate unique features found only in py2cytoscape. 9 py4cytoscape Documentation, Release 0.0.1 10 Chapter 4. History CHAPTER FIVE DOCUMENTATION 5.1 Install py4cytoscape requires Python 3.6, 3.7, or 3.8. If you do not already have a Python environment configured on your computer, please see the instructions for installing the full scientific Python stack. Note: If you are on Windows and want to install optional packages (e.g., scipy), then you will need to install a Python distributions such as Anaconda, Enthought Canopy, Python(x,y), WinPython, or Pyzo. If you use one of these Python distribution, please refer to their online documentation. PyCharm and other integrated development environments often install their own Python distributions. Below we assume you have the default Python environment already configured on your computer and you intend to install py4cytoscape inside of it. If you want to create and work with Python virtual environments, please follow instructions on venv and virtual environments. First, make sure you have the latest version of pip (the Python package manager) installed. If you do not, refer to the Pip documentation and install pip first. 5.1.1 Cytoscape Prerequisite To exercise py4cytoscape, you must first have downloaded, installed, and executed Cytoscape. If you have not already done this, please refer to the Launching Cytoscape instructions. Note: Cytoscape and py4cytoscape must be running on the same workstation or virtual machine. py4cytoscape communicates with Cytoscape via a localhost connection, which precludes py4cytoscape from accessing Cytoscape remotely. While this limitation can be overcome by configuring py4cytoscape or supplying the Cytoscape URL in py4cytoscape calls, this can become a complex networking problem if firewalls and routers are present on the network. 11 py4cytoscape Documentation, Release 0.0.1 5.1.2 Install the development version (Python Console) Install the current release of py4cytoscape with pip: pip install python-igraph requests pandas networkx git clone git://github.com/bdemchak/py4cytoscape cd py4cytoscape python setup.py install # or python setup.py install --user 5.1.3 Install the development version (Jupyter Notebook) Install the current release of py4cytoscape with pip: !pip install python-igraph requests pandas networkx !pip install git+https://github.com/bdemchak/py4cytoscape !curl localhost:1234 5.1.4 Verify Cytoscape connection To verify that py4cytoscape is properly installed and able to communicate with Cytoscape, execute the following in a Python Console or Jupyter Notebook (after starting Cytoscape): import py4cytoscape as py4 dir(py4) py4.cytoscape_ping() py4.cytoscape_version_info() py4.import_network_from_file("tests\data\galfiltered.sif") This will import py4cytoscape into the Python namespace, print a (long) list of py4cytoscape entrypoints, and then demonstrate a connection to Cytoscape by collecting Cytoscape information and loading a demonstration network. 5.1.5 Testing py4cytoscape uses the Python unittest testing package. You can learn more about unittest on its home- page. To execute tests from an OS command line, set the current directory to the py4cytoscape package directory. Then, establish the execution environment: cd tests set PYTHONPATH=.. The py4cytoscape test suite consists of a number of sub-suites. Executing one or two of them is relatively quick. To execute a single sub-suite (e.g., test_apps.py): python-m unittest test_apps.py To execute more than one sub-suite (e.g., test_apps.py and test_filters.py): python-m unittest test_apps.py test_filters.py To execute the entire test suite: 12 Chapter 5. Documentation py4cytoscape Documentation, Release 0.0.1 python-m unittest To execute a single test (e.g., test_get_app_information) in a single test suite: python-m unittest test_apps.AppsTests.test_get_app_information Note: To send test output to a file, redirect stderr and console: python-m unittest2>stderr.log1>cons.log Some tests require console input, and without console prompts, the tests will appear to stall. To avoid executing such tests, set the PY4CYTOSCAPE_SKIP_UI_TESTS environment variable described below. Note: To execute tests with less console debug output, set this environment variable before executing tests: set PY4CYTOSCAPE_SUMMARY_LOGGER=FALSE To further configure logging, see the Logging file. Note: To execute tests without showing test names as tests execute, set this environment variable before executing the tests: set PY4CYTOSCAPE_SHOW_TEST_PROGRESS=FALSE Note: To skip execution of tests that require user input, set this environment variable before executing tests: set PY4CYTOSCAPE_SKIP_UI_TESTS=TRUE Note: When executing a large number of tests, we recommend that all three environment variables be set as described above. Note: When executing tests in PyCharm, you can set environment variables using the Run | Edit Configurations... menu item. 5.2 Tutorial This guide can help you start working with py4cytoscape. save this space for a simple workflow that Kozo is working on . 5.2. Tutorial 13 py4cytoscape Documentation, Release 0.0.1 5.3 Reference Release 0.0.1 Date Jun 21, 2020 5.3.1 Apps Functions for inspecting and managing apps for Cytoscape. Local Apps disable_app(app[, base_url]) Disable App. enable_app(app[, base_url]) Enable App. get_app_status(app[, base_url])
Recommended publications
  • 2 Graphs and Graph Theory
    2 Graphs and Graph Theory chapter:graphs Graphs are the mathematical objects used to represent networks, and graph theory is the branch of mathematics that involves the study of graphs. Graph theory has a long history. The notion of graph was introduced for the first time in 1763 by Euler, to settle a famous unsolved problem of his days, the so-called “K¨onigsberg bridges” problem. It is no coin- cidence that the first paper on graph theory arose from the need to solve a problem from the real world. Also subsequent works in graph theory by Kirchhoff and Cayley had their root in the physical world. For instance, Kirchhoff’s investigations on electric circuits led to his development of a set of basic concepts and theorems concerning trees in graphs. Nowadays, graph theory is a well established discipline which is commonly used in areas as diverse as computer science, sociology, and biology. To make some examples, graph theory helps us to schedule airplane routings, and has solved problems such as finding the maximum flow per unit time from a source to a sink in a network of pipes, or coloring the regions of a map using the minimum number of different colors so that no neighbouring regions are colored the same way. In this chapter we introduce the basic definitions, set- ting up the language we will need in the following of the book. The two last sections are respectively devoted to the proof of the Euler theorem, and to the description of a graph as an array of numbers.
    [Show full text]
  • Data Structures and Network Algorithms [Tarjan 1987-01-01].Pdf
    CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation and published by SIAM. GAKRHT BiRKiion , The Numerical Solution of Elliptic Equations D. V. LINDIY, Bayesian Statistics, A Review R S. VAR<;A. Functional Analysis and Approximation Theory in Numerical Analysis R R H:\II\DI:R, Some Limit Theorems in Statistics PXIKK K Bin I.VISLI -y. Weak Convergence of Measures: Applications in Probability .1. I.. LIONS. Some Aspects of the Optimal Control of Distributed Parameter Systems R(H;I:R PI-NROSI-:. Tecltniques of Differentia/ Topology in Relativity Hi.KM \N C'ui KNOI r. Sequential Analysis and Optimal Design .1. DI'KHIN. Distribution Theory for Tests Based on the Sample Distribution Function Soi I. Ri BINO\\, Mathematical Problems in the Biological Sciences P. D. L\x. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves I. .1. Soioi.NUiiRci. Cardinal Spline Interpolation \\.\\ SiMii.R. The Theory of Best Approximation and Functional Analysis WI-.KNI R C. RHHINBOLDT, Methods of Solving Systems of Nonlinear Equations HANS I-'. WHINBKRQKR, Variational Methods for Eigenvalue Approximation R. TYRRM.I. ROCKAI-KLI.AK, Conjugate Dtialitv and Optimization SIR JAMKS LIGHTHILL, Mathematical Biofhtiddynamics GI-.RAKD SAI.ION, Theory of Indexing C \ rnLi-:i;.N S. MORAWKTX, Notes on Time Decay and Scattering for Some Hyperbolic Problems F. Hoi'i'hNSTKAm, Mathematical Theories of Populations: Demographics, Genetics and Epidemics RK HARD ASKF;Y.
    [Show full text]
  • Graphs Introduction and Depth-First Algorithm Carol Zander
    Graphs Introduction and Depth‐first algorithm Carol Zander Introduction to graphs Graphs are extremely common in computer science applications because graphs are common in the physical world. Everywhere you look, you see a graph. Intuitively, a graph is a set of locations and edges connecting them. A simple example would be cities on a map that are connected by roads. Or cities connected by airplane routes. Another example would be computers in a local network that are connected to each other directly. Constellations of stars (among many other applications) can be also represented this way. Relationships can be represented as graphs. Section 9.1 has many good graph examples. Graphs can be viewed in three ways (trees, too, since they are special kind of graph): 1. A mathematical construction – this is how we will define them 2. An abstract data type – this is how we will think about interfacing with them 3. A data structure – this is how we will implement them The mathematical construction gives the definition of a graph: graph G = (V, E) consists of a set of vertices V (often called nodes) and a set of edges E (sometimes called arcs) that connect the edges. Each edge is a pair (u, v), such that u,v ∈V . Every tree is a graph, but not vice versa. There are two types of graphs, directed and undirected. In a directed graph, the edges are ordered pairs, for example (u,v), indicating that a path exists from u to v (but not vice versa, unless there is another edge.) For the edge, (u,v), v is said to be adjacent to u, but not the other way, i.e., u is not adjacent to v.
    [Show full text]
  • Package 'Igraph'
    Package ‘igraph’ February 28, 2013 Version 0.6.5-1 Date 2013-02-27 Title Network analysis and visualization Author See AUTHORS file. Maintainer Gabor Csardi <[email protected]> Description Routines for simple graphs and network analysis. igraph can handle large graphs very well and provides functions for generating random and regular graphs, graph visualization,centrality indices and much more. Depends stats Imports Matrix Suggests igraphdata, stats4, rgl, tcltk, graph, Matrix, ape, XML,jpeg, png License GPL (>= 2) URL http://igraph.sourceforge.net SystemRequirements gmp, libxml2 NeedsCompilation yes Repository CRAN Date/Publication 2013-02-28 07:57:40 R topics documented: igraph-package . .5 aging.prefatt.game . .8 alpha.centrality . 10 arpack . 11 articulation.points . 15 as.directed . 16 1 2 R topics documented: as.igraph . 18 assortativity . 19 attributes . 21 autocurve.edges . 23 barabasi.game . 24 betweenness . 26 biconnected.components . 28 bipartite.mapping . 29 bipartite.projection . 31 bonpow . 32 canonical.permutation . 34 centralization . 36 cliques . 39 closeness . 40 clusters . 42 cocitation . 43 cohesive.blocks . 44 Combining attributes . 48 communities . 51 community.to.membership . 55 compare.communities . 56 components . 57 constraint . 58 contract.vertices . 59 conversion . 60 conversion between igraph and graphNEL graphs . 62 convex.hull . 63 decompose.graph . 64 degree . 65 degree.sequence.game . 66 dendPlot . 67 dendPlot.communities . 68 dendPlot.igraphHRG . 70 diameter . 72 dominator.tree . 73 Drawing graphs . 74 dyad.census . 80 eccentricity . 81 edge.betweenness.community . 82 edge.connectivity . 84 erdos.renyi.game . 86 evcent . 87 fastgreedy.community . 89 forest.fire.game . 90 get.adjlist . 92 get.edge.ids . 93 get.incidence . 94 get.stochastic .
    [Show full text]
  • Chapter 12 Graphs and Their Representation
    Chapter 12 Graphs and their Representation 12.1 Graphs and Relations Graphs (sometimes referred to as networks) offer a way of expressing relationships between pairs of items, and are one of the most important abstractions in computer science. Question 12.1. What makes graphs so special? What makes graphs special is that they represent relationships. As you will (or might have) discover (discovered already) relationships between things from the most abstract to the most concrete, e.g., mathematical objects, things, events, people are what makes everything inter- esting. Considered in isolation, hardly anything is interesting. For example, considered in isolation, there would be nothing interesting about a person. It is only when you start consid- ering his or her relationships to the world around, the person becomes interesting. Challenge yourself to try to find something interesting about a person in isolation. You will have difficulty. Even at a biological level, what is interesting are the relationships between cells, molecules, and the biological mechanisms. Question 12.2. Trees captures relationships too, so why are graphs more interesting? Graphs are more interesting than other abstractions such as tree, which can also represent certain relationships, because graphs are more expressive. For example, in a tree, there cannot be cycles, and multiple paths between two nodes. Question 12.3. What do we mean by a “relationship”? Can you think of a mathematical way to represent relationships. 231 232 CHAPTER 12. GRAPHS AND THEIR REPRESENTATION Alice Bob Josefa Michel Figure 12.1: Friendship relation f(Alice, Bob), (Bob, Alice), (Bob, Michel), (Michel, Bob), (Josefa, Michel), (Michel, Josefa)g as a graph.
    [Show full text]
  • A Brief Study of Graph Data Structure
    ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319 5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 6, June 2016 A Brief Study of Graph Data Structure Jayesh Kudase1, Priyanka Bane2 B.E. Student, Dept of Computer Engineering, Fr. Conceicao Rodrigues College of Engineering, Maharashtra, India1, 2 Abstract: Graphs are a fundamental data structure in the world of programming. Graphs are used as a mean to store and analyse metadata. A graph implementation needs understanding of some of the common basic fundamentals of graph. This paper provides a brief study of graph data structure. Various representations of graph and its traversal techniques are discussed in the paper. An overview to the advantages, disadvantages and applications of the graphs is also provided. Keywords: Graph, Vertices, Edges, Directed, Undirected, Adjacency, Complexity. I. INTRODUCTION Graph is a data structure that consists of finite set of From the graph shown in Fig. 1, we can write that vertices, together with a set of unordered pairs of these V = {a, b, c, d, e} vertices for an undirected graph or a set of ordered pairs E = {ab, ac, bd, cd, de} for a directed graph. These pairs are known as Adjacency relation: Node B is adjacent to A if there is an edges/lines/arcs for undirected graphs and directed edge / edge from A to B. directed arc / directed line for directed graphs. An edge Paths and reachability: A path from A to B is a sequence can be associated with some edge value such as a numeric of vertices A1… A such that there is an edge from A to attribute.
    [Show full text]
  • A Tool for Large Scale Network Analysis, Modeling and Visualization
    A Tool For Large Scale Network Analysis, Modeling and Visualization Weixia (Bonnie) Huang Cyberinfrastructure for Network Science Center School of Library and Information Science Indiana University, Bloomington, IN Network Workbench ( http://nwb.slis.indiana.edu ). 1 Project Details Investigators: Katy Börner, Albert-Laszlo Barabasi, Santiago Schnell, Alessandro Vespignani & Stanley Wasserman, Eric Wernert Software Team: Lead: Weixia (Bonnie) Huang Developers: Santo Fortunato, Russell Duhon, Bruce Herr, Tim Kelley, Micah Walter Linnemeier, Megha Ramawat, Ben Markines, M Felix Terkhorn, Ramya Sabbineni, Vivek S. Thakre, & Cesar Hidalgo Goal: Develop a large-scale network analysis, modeling and visualization toolkit for physics, biomedical, and social science research. Amount: $1,120,926, NSF IIS-0513650 award Duration: Sept. 2005 - Aug. 2008 Website: http://nwb.slis.indiana.edu Network Workbench ( http://nwb.slis.indiana.edu ). 2 Project Details (cont.) NWB Advisory Board: James Hendler (Semantic Web) http://www.cs.umd.edu/~hendler/ Jason Leigh (CI) http://www.evl.uic.edu/spiff/ Neo Martinez (Biology) http://online.sfsu.edu/~webhead/ Michael Macy, Cornell University (Sociology) http://www.soc.cornell.edu/faculty/macy.shtml Ulrik Brandes (Graph Theory) http://www.inf.uni-konstanz.de/~brandes/ Mark Gerstein, Yale University (Bioinformatics) http://bioinfo.mbb.yale.edu/ Stephen North (AT&T) http://public.research.att.com/viewPage.cfm?PageID=81 Tom Snijders, University of Groningen http://stat.gamma.rug.nl/snijders/ Noshir Contractor, Northwestern University http://www.spcomm.uiuc.edu/nosh/ Network Workbench ( http://nwb.slis.indiana.edu ). 3 Outline What is “Network Science” and its challenges Major contributions of Network Workbench (NWB) Present the underlying technologies – NWB tool architecture Hand on NWB tool Review some large scale network analysis and visualization works Network Workbench ( http://nwb.slis.indiana.edu ).
    [Show full text]
  • Graphs R Pruim 2019-02-21
    Graphs R Pruim 2019-02-21 Contents Preface 2 1 Introduction to Graphs 1 1.1 Graphs . .1 1.2 Bonus Problem . .2 2 More Graphs 3 2.1 Some Example Graphs . .3 2.2 Some Terminology . .4 2.3 Some Questions . .4 2.4 NFL..................................................5 2.5 Some special graphs . .5 3 Graph Representations 6 3.1 4 Representations of Graphs . .6 3.2 Representation to Graphs . .6 3.3 Graph to representation . .8 4 Graph Isomorphism 9 4.1 Showing graphs are isomorphic . .9 4.2 Showing graphs are not isomorphic . .9 4.3 Isomorphic or not? . 10 5 Paths in Graphs 11 5.1 Definition of a path . 11 5.2 Paths and Isomorphism . 11 5.3 Connectedness . 12 5.4 Euler and Hamilton Paths . 12 5.5 Relationships in Graphs . 12 5.6 Königsberg Bridge Problem . 14 6 Bipartite Graphs 16 6.1 Definition . 16 6.2 Examples . 16 6.3 Complete Bipartite Graphs . 16 7 Planar Graphs 17 7.1 Euler and Planarity . 17 7.2 Kuratowski’s Theorem . 17 8 Euler Paths 18 8.1 An Euler Path Algorithm . 18 1 Preface These exercises were assembled to accompany a Discrete Mathematics course at Calvin College. 2 1 Introduction to Graphs 1.1 Graphs A Graph G consists of two sets • V , a set of vertices (also called nodes) • E, a set of edges (each edge is associated with two1 vertices) In modeling situations, the edges are used to express some sort of relationship between vertices. 1.1.1 Graph flavors There are several flavors of graphs depending on how edges are associated with pairs of vertices and what constraints are placed on the edge set.
    [Show full text]
  • Network Analysis in R
    Network Analysis in R Douglas Ashton ‐ dashton@mango‐solutions.com Workshop Aims Import/Export network data Visualising your network Descriptive stats Inference (statnet suite) Also available as a two‐day training course! http://bit.ly/NetsWork01 About me Doug Ashton Physicist (statistical) for 10 years Monte Carlo Networks At Mango for 1.5 years Windsurfer Twitter: @dougashton Web: www.dougashton.net GitHub: dougmet Networks are everywhere Networks in R R matrices (and sparse matrices in Matrix) igraph package Gabor Csardi statnet package University of Washington suite of packages Representing Networks Terminology Nodes and edges Directed Matrix Representation Code whether each possible edge exists or not. 0, no edge A = { ij 1, edge exists Example ⎛ 0 0 1 1 ⎞ ⎜ 1 0 0 0 ⎟ A = ⎜ ⎟ ⎜ 0 0 0 1 ⎟ ⎝ 0 1 0 0 ⎠ Matrices in R Create the matrix Matrix operations A <‐ rbind(c(0,1,0), c(1,0,1), c(1,0,0)) # Matrix multiply nodeNames <‐ c("A","B","C") A %*% A dimnames(A) <‐ list(nodeNames, nodeNames) A ## A B C ## A 1 0 1 ## A B C ## B 1 1 0 ## A 0 1 0 ## C 0 1 0 ## B 1 0 1 ## C 1 0 0 Gives the number of paths of length 2. Could also use sparse matrices from the Matrix # Matrix multiply package. A %*% A %*% A %*% A ## A B C ## A 1 1 1 ## B 2 1 1 ## C 1 1 0 Gives the number of paths of length 4. Edge List Representation It is much more compact to just list the edges. We can use a two‐column matrix ⎡ A B ⎤ ⎢ B A ⎥ E = ⎢ ⎥ ⎢ B C ⎥ ⎣ C A ⎦ which is represented in R as el <‐ rbind(c("A","B"), c("B","A"), c("B","C"), c("C","A")) el ## [,1] [,2] ## [1,] "A" "B" ## [2,] "B" "A" ## [3,] "B" "C" ## [4,] "C" "A" Representation in igraph igraph has its own efficient data structures for storing networks.
    [Show full text]
  • Discrete Mathematics
    MATH20902: Discrete Mathematics Mark Muldoon March 20, 2020 Contents I Notions and Notation 1 First Steps in Graph Theory 1.1 1.1 The Königsberg Bridge Problem . 1.1 1.2 Definitions: graphs, vertices and edges . 1.3 1.3 Standard examples ............................1.5 1.4 A first theorem about graphs . 1.8 2 Representation, Sameness and Parts 2.1 2.1 Ways to represent a graph . 2.1 2.1.1 Edge lists .............................2.1 2.1.2 Adjacency matrices . 2.2 2.1.3 Adjacency lists . 2.3 2.2 When are two graphs the same? . 2.4 2.3 Terms for parts of graphs . 2.7 3 Graph Colouring 3.1 3.1 Notions and notation . 3.1 3.2 An algorithm to do colouring . 3.3 3.2.1 The greedy colouring algorithm . 3.3 3.2.2 Greedy colouring may use too many colours . 3.4 3.3 An application: avoiding clashes . 3.6 4 Efficiency of algorithms 4.1 4.1 Introduction ................................4.1 4.2 Examples and issues . 4.3 4.2.1 Greedy colouring . 4.3 4.2.2 Matrix multiplication . 4.4 4.2.3 Primality testing and worst-case estimates . 4.4 4.3 Bounds on asymptotic growth . 4.5 4.4 Analysing the examples . 4.6 4.4.1 Greedy colouring . 4.6 4.4.2 Matrix multiplication . 4.6 4.4.3 Primality testing via trial division . 4.7 4.5 Afterword .................................4.8 5 Walks, Trails, Paths and Connectedness 5.1 5.1 Walks, trails and paths .
    [Show full text]
  • GOLD 3 Un Lenguaje De Programación Imperativo Para La Manipulación De Grafos Y Otras Estructuras De Datos
    GOLD 3 Un lenguaje de programación imperativo para la manipulación de grafos y otras estructuras de datos Autor Alejandro Sotelo Arévalo UNIVERSIDAD DE LOS ANDES Asesora Silvia Takahashi Rodríguez, Ph.D. UNIVERSIDAD DE LOS ANDES TESIS DE MAESTRÍA EN INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN FACULTAD DE INGENIERÍA UNIVERSIDAD DE LOS ANDES BOGOTÁ D.C., COLOMBIA ENERO 27 DE 2012 > > > A las personas que más quiero en este mundo: mi madre Gladys y mi novia Alexandra. > > > Abstract Para disminuir el esfuerzo en la programación de algoritmos sobre grafos y otras estructuras de datos avanzadas es necesario contar con un lenguaje de propósito específico que se preocupe por mejorar la legibilidad de los programas y por acelerar el proceso de desarrollo. Este lenguaje debe mezclar las virtudes del pseudocódigo con las de un lenguaje de alto nivel como Java o C++ para que pueda ser fácilmente entendido por un matemático, por un científico o por un ingeniero. Además, el lenguaje debe ser fácilmente interpretado por las máquinas y debe poder competir con la expresividad de los lenguajes de propósito general. GOLD (Graph Oriented Language Domain) satisface este objetivo, siendo un lenguaje de propósito específico imperativo lo bastante cercano al lenguaje utilizado en el texto Introduction to Algorithms de Thomas Cormen et al. [1] como para ser considerado una especie de pseudocódigo y lo bastante cercano al lenguaje Java como para poder utilizar la potencia de su librería estándar y del entorno de programación Eclipse. Índice general I Preliminares 1 1 Introducción 2 1.1 Resumen ............................................... 2 1.2 Contexto...............................................
    [Show full text]
  • Graph Theory Fundamentals Undirected Graphs
    Graph Theory Fundamentals Undirected Graphs Edges have no direction X Y Graphs and Edge Lists Throughout the semester, let n = number of nodes and m = number of edges 1 2 n=4 m=3 3 4 Edge list: (1,4), (2,4), (3,4) Two nodes connected with an edge are called neighbors Edge lists can get really long for big graphs The Adjacency Matrix (A) A weighted graph has weights on the edges. In an unweighted graph all edges have weight of 1. The adjacency matrix for a graph is n X n and each element contains 0 for non-neighbors and the edge weight for neighbors. A = Properties of the Adjacency Matrix 1. It is symmetric (� = �#) 2. For a simple graph, with no self-edges, elements on main diagonal are 0 3. If the graph is not simple, then the matrix element for a node with a self- edge is represented by 2*(edge weight). Weighted Graphs A weight can be thought of as the number of edges connecting two neighbors. A = Directed Graphs Edges have arrows giving direction B C A D E G F Directed Graph with Adjacency Matrix From To 0 0 0 0 0 1 0 1 0 1 A = 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 �&' = 1 if there is an edge to node � from node j (this convention is not universal) A self-edge just gets the weight of the edge The adjacency matrix of a directed graph is usually not symmetric Hypergraphs and Bipartite Graphs A Hypergraph Indicates Group Inclusion The nodes could represent actors and the groups could represent movies.
    [Show full text]