(International Symposium on Laboratory Automation and Robotics) 1998

Total Page:16

File Type:pdf, Size:1020Kb

(International Symposium on Laboratory Automation and Robotics) 1998 Journal of Automated Methods & Management in Chemistry, Vol. 21, No. 3 (May-June 1999) pp. 65-105 Abstracts of papers presented at the ISLAR (International Symposium on Laboratory Automation and Robotics) 1998 The 16th International Symposium on Laboratory Automation and Robotics provided the largest number of technical presentations ever offered at this meeting. State-of-the-art development in laboratory automation and robotics were reflected in the symposium programme which included papers and posters on all aspects of the technology--drug discovery research, data handling and data management, chemical analysis, bio-analytical applications, managing laboratory automation, dissolution testing, pharmaceutical analysis, automation and combinatorial chemistry, validat- ing automated methods and advanced topics. Several new workshops and discussion sessions were included and activated, and provided even more interactive communication. Although the programme was very comprehensive, the Symposium was designed to provide time for both formal and informal exchange of information. The technical presentations were organized into concurrent sessions with grouped papers on related topics. Abstracts for each paper (except two that were not available when going to press) and each poster are included here and the proceedings of the Symposium will be published as a CD-Rom early in 1999. Full presentations of several of these papers will appear in later editions of this journal. Integrating drug discovery technologies The analytical development laboratory provides multiple opportunities for increasing productivity through auto- ames A. Bristol, Parke-Davis Pharmaceutical Research, Ann mation and robotics. Today's generation of analytical Arbor, MI, USA scientists has arrived on the job accustomed to using and The pharmaceutical industry today is entering a new era developing automated approaches to their work. They wherein a number of new and enabling technologies are expect automation, and where it does not exist, will seek maturing simultaneously. These enabling technologies to add it. There are many approaches to automation of include combinatorial chemistry, ultra-high-throughput an analytical technique. The approach can vary depend- screening, genomics, pharamacogenomics, proteomics, ing on the scope and impact of the application, but also data management, high-throughput methodology for whether it is being developed by an analytical scientist or toxicology, and ADME parameters. In addition, new an engineer. A challenge exists in maintaining the and improved automation techniques will have a dra- automation creativity of individual scientists, while pro- matic impact on optimization of these new technologies. viding a mechanism for an integrated and coordinated At the same time, the unprecedented productivity and approach to development within a multi-site, multi- financial success of new pharmaceutical agents and the functional organization. From a diverse mix of analytical effect of mergers leading to vastly larger single companies chemists, biochemists, process control scientists, software have created unprecedented demands for continued developers and mechanical engineers, have come a wide improvements in productivity that will be translated range of automated systems. An overview of these systems directly to increased sales and profits. A further factor will be provided with emphasis on the successes and is the increasing trend to outsource key discovery and challenges of the various development approaches which development activities to biopharmaceutical companies were utilized. The ongoing evolution into the current and contract research organizations. team approach to automation development will be presented. These enabling technologies have the potential to trans- form pharmaceutical discovery into a highly efficient technological advanced process which will demand ap- Quality control: organization, cycle times, compli- propriate resourcing and integration for optimal effi- ance and efficiency ciency. These developments are the challenges for drug discovery scientists in the future who, in addition to j. M. Hawkins, Janssen Pharmaceutica, Titusville, NJ, USA having established expertise within their own scientific Understanding the contributions that the laboratory can disciplines, will necessarily have to work effectively at the make in product/process development, process improve- interface of these intersecting technologies and scientific ment, market surveillance and general business is key to disciplines. the pharmaceutical business today. Poor laboratory practice yields compliance issues, increased cost, in- Coordinated development of multi-site/multi- creased cycle time and delayed product introductions. functional analytical robotics applications: chal- In my presentation, I hope to prompt discussion and gain lenges and visions agreement and recognition of the laboratory's contribu- tion in meeting the expectations of our pharmaceutical E. F. McNiff, Bristol-Myers Squibb, Princeton, NJ, USA customers. I will cover key areas of customer satisfaction, Journal of Automated Methods & Management in Chemistry ISSN 1463-9246 print/ISSN 1464-5068 online (C) 1999 ISLAR 65 http://www.tandf.co.uk/JNLS/auc.htm http://www, taylorandfrancis.com/JNLS/auc.htm Abstracts of papers presented at the 1998 ISLAR the role of the quality control and quality assurance trends towards assay miniaturization, industrial-strength laboratories, measures of accountability and progress, automation and new detection technologies further ex- and an example of how our robotics program is helping tend the view that more is better. However, finding more Janssen meet our goals. leads for more novel targets does not necessarily shorten the time to develop a chemical lead into a drug or increase the likelihood of success for an individual Automation in the lab: does the tail wag the dog? project. Simon Jones, Genetics Institute, Cambridge, MA, USA In the fiture, therefore, an emphasis needs to be placed Intensive automation of repetitive processes in the lab is on using HTS resources and expertise to improve the viewed as an attractive panacea for several reasons. First quality of chemical leads, not simply find more of them. is the assumption that removal of the human element in Concepts in automation, data management and stream- process leads to consistently accurate data sets in a lined assay design which have been developed within the shorter period of time. Second, and deriving from the HTS environment will be applied to other aspects of drug first, is that scientists are 'freed' to focus their talents on discovery, e.g. target validation and secondary screening. more creative pursuits. Third, head count can be stabil- Broader adoption of the tools of HTS may be able to ized and even reduced. Based on this rationale, a virtuous achieve improvements in drug discovery time lines and circle is established that pleases all parties in a biophar- cost savings which cannot occur through more and faster maceutical endeavour. HTS. However, in reality several issues were overlooked and unanticipated problems have arisen. First, and the most Libraries of molecules, screening and optimiza- serious, is the displacement of the bottleneck in sample tion of hits: a cost-effective approach handling to processes up- and downstream of the auto- mated procedure, e.g. data analysis, compound inventory Nigel R. A. Beeley, Amylin Pharmaceuticals, San Diego, CA, and secondary assays in high-throughput screening. USA Second, the daily function of automated units requires As a we need repetitive and accurate operation. This frequently leads product-oriented biotechnology company solutions for libraries of molecules, to the 'burn out' phenomenon and turnover of personnel. inexpensive acquiring data and auto- Third, a substantial financial investment is required not introducing screening robotics, handling only in equipment and bulk materials, but in training mating chemistry when compared to the larger pharma- ceutical and personnel. Fourth, a whole new breed of scientist has companies technology-oriented start-up We now have access to over 250000 com- developed to adapt existing bench processes or create companies. for from the new ones for automated systems. pounds screening purposes following: (i) pharmacophore-based selective purchasing from several These issues and their resolution in small molecule drug purveyors of compounds; (ii) risk-sharing arrangements discovery will be presented. giving access to relatively large numbers of compounds; and (iii) participation in a combinatorial chemistry consortium. We have put in place the necessary infor- The future of in high-throughput screening drug matics and screening robotics to identify hits and analyse discovery data from the above. In addition, we have re-tooled our John Babiak, Robotics and Automation, Wyeth-Ayerst Research, chemistry effort to tbcus on optimization of hits, making Princeton, NJ and Pearl River, NY, USA extensive use of parallel synthesis. Some recent examples from our anti-obesity and anti-diabetic programs will be High-throughput screening (HTS), in conjunction with presented. genomics, combinatorial chemistry and molecular mod- elling, provides pharmaceutical companies with thera- peutic opportunities never before possible. HTS involves The HTS infrastructure---the right tools for the using automated equipment to test a large number of task samples against a novel molecular or cellular target to identify
Recommended publications
  • Robots in Pharma Industry
    International Journal of Future Generation Communication and Networking Vol. 13, No. 4, (2020), pp. 70 –74 Robots in Pharma Industry Navin Dhinnesh ADC1,*, Neethidevan V2, Akilan S S3 *1,2,3Assistant Professor, Department of Computer Applications *[email protected], 2neethidevan,[email protected] Abstract Robots play a vital role in the field of Pharmaceuticals. Initially they were mainly used in the research and development for improving the speed in production department and for quick packing. With the deployment of robots in this area, safety of workers is very much better now. The quality of the product has also been improved. Accuracy and the speed of delivering the drugs is an important task in Pharmacy field. Few devices are manufactured with the assistance of Robotics. This paper explains how robots are used in few applications in pharma industry. Also few advantages and disadvantages are explained. In future the robots will be incorporated with Internet of Things and will do many works in the pharma industry Keywords: Pharma, Robots, Robotics, Pharmaceutical, hazards 1. Introduction Robots are the best alternate for humans in any field. Robots are used in places where the situations are unsafe for humans. Pharma filed has started deploying more number of robots in their manufacturing sector. Precision and effectiveness is very important when producing medicinal parts [1]. Customer expectations and competition among global market players are increasing at a faster rate. To survive in the market, manufactures must produce medical products which are of high quality. Not only they must concentrate on production, but they also need to deliver the products to the customer at a short interval of time.
    [Show full text]
  • Laboratory Automation and Robotics
    Journal of Automatic Chemistry, Vol. 13, No. 6 (November-December 1991), pp. 243-266 The 1991 International Symposium on Laboratory Automation and Robotics Nearly 380participants gathered in Bostonfor the ninth meeting heldfrom 20 to 23 October 1991. They camefrom many parts of the United States andfourteen other countries. Theformatfor the conference includedplenary lectures, other oral presentations, posterpapers and a visit to thefacilities of the meeting hosts, Zymark Corporation in Hopkinton, Massachusetts. Following the keynote speakers on Monday morning, there were sessions on Pharmaceutical analysis and advanced technology. Theformer continued into the afternoon in parallel with session on Intelligent automation and microplates. Posterpresentations completed the afternoon schedule. The programme on Tuesdayfollowed a similar pattern. Morning sessions on Managing laboratory automation and Environmental ran in parallel. The latter continued on in the afternoon along with a session on Biology/biotechnology. Poster sessions again completed the afternoon programme. General papers were presented on Wednesday in parallel with a session on chromatography sample preparation. The plenary programmefeatured two speakersfrom the pharmaceutical industry; David B. Weinstein of the Sandoz Research Institute and Bernd C. Schade of Miles Incorporated. Their topics were, respectively, Jumping into the 20th century before it's too late; is laboratory robotics still in its infancy.), and 'Quality control in theyear 2000'. It is interesting that while pharmaceutical firms early on recognised the contribution robotics could make to laboratory automation, the#focus is on the future. Five of the six speakers in the session on Managing laboratory automation were also from the pharmaceutical industry. A theme that ran through the presentationsfrom the pharmaceutical industry is the needfor support ofsenior management in the development ofroboticfacilities and thefact that this commitment must befor the long haul.
    [Show full text]
  • Pesticide Residues in Food: Technologies for Detection (Part 7
    Chapter 5 Automation in Today’s Pesticide Laboratory CONTENTS Pago Individual Component Automation . , ... , 49 The Role of Automation . 49 Multiple Component Automation—Robotics . 51 Robotics in the Pesticide Residue Laboratory . 51 Two Principles for Successful Use of Robotics . 54 Benefits and Limitations of Robotics in the Analytical Laboratory . 54 Chapter 5 References . ..,.0.. .,,*.,,, ● ....*.. ● .*..**, ..,**,, 55 Boxes Box ~ Page 5-A. The Ideal, Fully Automated Analytical Laboratory . 49 5-B. Zymate’s PyTechnology Robotics System . 52 -.. -“ . Figure Figure Page 5-1. Schematic Drawing of Zymate Robotic System. .,,..,. ● ....*. 53 Tables Page 5-1, Laboratory Unit Operations (LUOs) of Robotic Systems ..*,.*. 51 5-2, Comparison of Robot and ..,*., ,.,.... 53 Chapter Automation in Today% Pesticide Laboratory INDIVIDUAL COMPONENT AUTOMATION Automation has greatly increased analytical productivity of pesticide residue laboratories, Box 5-A.—The Ideal, Fully Automated and most such laboratories today use some type Analytical Laboratory of automated equipment. Computers, for in- A fully automated laboratory, now existing stance, have made the identification and quan- only on paper, is one that would automatically tification of pesticides easier. Automated geI process a sample from its entrance into the permeation chromatography and autoinjection laboratory through the production of a writ- of samples onto chromatography have allowed ten final report. An automated process of this type would move the sample through a series unattended
    [Show full text]
  • The Upstate New York Laboratory Robotics Interest Group
    TheThe UpstateUpstate NewNew YorkYork LaboratoryLaboratory RoboticsRobotics InterestInterest GroupGroup GlennGlenn SaundersSaunders President,President, UpstateUpstate NewNew YorkYork LRIG,LRIG, Inc.Inc. What is LRIG? What does LRIG Do? A Non-profit, volunteer organization: Professionally run, The Upstate New York LRIG provides networking opportunities, membership-driven unbiased technical support and educational programs • Regional Chapters worldwide; including Upstate New York Networking: We also proudly support four regional US FIRST We organize and present semi-annual • Over 9,000 members: scientists, lab managers, researchers and Robotics teams symposia and vendor exhibitions on engineers laboratory automation topics • Membership drawn from pharmaceutical, biotechnology, genomics, Technical Support: chemical, agricultural, cosmetics and other industries. We provide a moderated, un-biased Team 1493: The Falcons forum where end-users and suppliers Team 20: The Rocketeers Albany High School Mission: • Involvement from Industrial, Government and Academic sectors. can communicate on laboratory Shenendehowa High School automation issues To provide an open and unbiased forum for users and The name “Laboratory Robotics” doesn’t capture all activities and interests: Robotics, Education: Team 1665: The Weapons providers of laboratory automation to communicate and automation, instrumentation, high-throughput screening, drug discovery, compound of Mass Construction exchange ideas* management, compound purification, compound distribution, bioinformatics,
    [Show full text]
  • Laboratory Robotics: New Opportunities Internal
    December 2018 Volume 13 • Number 11 LabManager.com FOSTERING PRODUCTIVITY AT THE BENCH OR IN THE FIELD Internal Communication Laboratory Robotics: New Opportunities Lab Automation Product Resource Guide Follow us on www.genohm.com squad when they do. they happen, and alert your current with industry trends. defenses prevent errors before and is exible so you can stay conguration, and automatic and maintain. It saves you money An arsenal of rules, ags, The right LIMS is easy to set up Reduce Errors Investment workow, everytime. efciently and protect data. tracking samples in every permissions to work more creating digital locations and access with user, role, and group Foil the gambits of chaos by You control the gateways of Protection Visibility Management Capabilities all in a Single Solution, look no further than SLIMS! laboratory needs Sample Management, an Electronic Laboratory Notebook or Workow SLIMS is a digital platform used for managing all information in a laboratory. Whether your They deserve SLIMS Super Power Your Lab is full of heroes Your Lab is full of heroes They deserve SLIMS Super Power SLIMS is a digital platform used for managing all information in a laboratory. Whether your laboratory needs Sample Management, an Electronic Laboratory Notebook or Workow Management Capabilities all in a Single Solution, look no further than SLIMS! Visibility Protection Foil the gambits of chaos by You control the gateways of creating digital locations and access with user, role, and group tracking samples in every permissions to work more workow, everytime. efciently and protect data. Reduce Errors Investment An arsenal of rules, ags, The right LIMS is easy to set up conguration, and automatic and maintain.
    [Show full text]
  • Laboratory Automation and Robotics
    Journal of Automatic Chemistry, Vol. 12, No. 6 (November-December 1990), pp. 227-250 The 1990 International Symposium on Laboratory Automation and Robotics The eighth meeting on this subject was held in Bostonfrom 16 September to 19 September 1990, and brought together around 300 delegates mainly from the USA but with a few from other countries. Hosted by Zymark, the conference covered various facets of automation whilst focusing on laboratory robotics. The symposium included a series ofplenary lectures, invited lectures andposter sessions. The highlights were, for this delegate, thejqrst plenary by Glenn Taylor of Shell (on 'Roboticsfuljqll a strategic need') and a visit to the Zymarkfacility where several distinct robotic systems were in evidence. Whilst promoted as robotic systems these exhibits included quite a considerable degree of laboratory automation, especially solution handling. Glen Taylor's plenary session set the meeting off on a high note. He outlined his company's commitment to automation and robotics and described the changes that encouraged this move, and the problems associated with the acceptance by staff etc., prior to introducing it into all applications. We are in a new culture where the focus is on the customer's needs for analysis rather than just for numbers. New demands by regulatory requirements, environmental requirements, pressures from competition and, in the oil business, by a change in crude starting materials, are specc factors which have changed customers' needs. Accurate, cost-effective analyses are now ofparamount importance and these require good quality control, automation and robotics. A vital role for automation is to improve the credibility of analytical results and Dr Taylor suggested that up to 30% of all analytical demands werefor blind duplicates- sent to test the analyst rather than because they were needed.
    [Show full text]
  • Functional Genomic Hypothesis Generation and Experimentation By
    letters to nature smallest mean squared error. This estimate is a weighted sum of the mean of the prior and 12. Sahani, M. & Dayan, P. Doubly distributional population codes: Simultaneous representation of the sensed feedback position: uncertainty and multiplicity. Neural Comput. 15, 2255–2279 (2003). 13. Yu, A. J. & Dayan, P. Acetylcholine in cortical inference. Neural Netw. 15, 719–730 (2002). j2 j2 x ¼ sensed ½1cmþ prior x 14. Weiss, Y., Simoncelli, E. P. & Adelson, E. H. Motion illusions as optimal percepts. Nature Neurosci. 5, estimated 2 þ 2 2 þ 2 sensed jsensed jprior jsensed jprior 598–604 (2002). 15. Soechting, J. F. & Flanders, M. Errors in pointing are due to approximations in sensorimotor Given that we know j2 ; we can estimate the uncertainty in the feedback j by prior sensed transformations. J. Neurophysiol. 62, 595–608 (1989). linear regression from Fig. 2a. 16. Krakauer, J. W., Pine, Z. M., Ghilardi, M. F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J. Neurosci. 20, 8916–8924 (2000). Resulting mean squared error 17. Lacquaniti, F. & Caminiti, R. Visuo-motor transformations for arm reaching. Eur. J. Neurosci. 10, The mean squared error (MSE) is determined by integrating the squared error over all 195–203 (1998). possible sensed feedbacks and actual lateral shifts 18. Van Beers, R. J., Baraduc, P.& Wolpert, D. M. Role of uncertainty in sensorimotor control. Phil. Trans. ð ð 1 1 R. Soc. Lond. B 357, 1137–1145 (2002). 2 MSE ¼ ðxestimated 2 xtrueÞ pðxsensedjxtrueÞpðxtrueÞdxsenseddxtrue 19. van Beers, R. J., Wolpert, D. M. & Haggard, P.
    [Show full text]
  • Opportunities for Automated Workflow and Planning with Robot Scientists
    Opportunities for Automated Workflow and Planning with Robot Scientists Ross D. King School of Computer Science, University of Manchester Manchester, M13 9PL, UK email: [email protected] A natural extension of the trend of increased involvement in science is the concept of a Robot Scientist [King et al. (2004),King et al. (2009)]. A Robot Scientist automat- ically: originates hypotheses to explain observations, devises experiments to test these hypotheses, physically runs the experiments using laboratory robotics, interprets the results to change the probability of hypotheses, and then repeats the cycle (Figure 1). Robot Scientists can autonomously execute high-throughput hypothesis led research. In addition to automating experimentation Robot Scientists are well suited to record- ing scientific knowledge: as the experiments are conceived and executed automatically by computer, it is possible to completely capture and digitally curate all aspects of the scientific process [King et al. (2009)]). The first Robot Scientists are Adam and Eve (Figure 2). The advances that distin- guish Adam and Eve from other complex laboratory systems (such as high-throughput drug-screening pipelines, and X-ray crystallography crystal-screening systems) are their AI software, their many complex internal cycles, and their ability to execute individu- ally planned cycles of experiments in high- throughput. Adam was designed to plan and execute microbiological experiments. Adam was fully automated and there is no essen- tial requirement for a technician, except to periodically add laboratory consumables and remove waste. Adam was the first machine demonstrated to have autonomously discov- ered novel scientific knowledge [King et al. (2009)]. Eve is designed to automate drug discovery.
    [Show full text]
  • (International Symposium on Laboratory Automation and Robotics) 1996
    Journal of Automatic Chemistry, Vol. 19, No. 3 (May-June 1997) pp. 61-89 Abstracts of papers presented at the ISLAR (International Symposium on Laboratory Automation and Robotics) 1996 The fourteenth International Symposium on Laboratory Automation and Robotics was held from 20-23 October 1996 in Boston, MA, USA, and proved the largest number of technical presentations ever offered at this meeting. State-of-the art developments in laboratory automation and robotics were reflected in the symposium programme, including papers and posters on all aspects of the technology--drug discovery research, data handling and data management, chemical analysis, custom automation, laboratory workstations, bioanalytical assays, managing laboratory automation, dissolu- tion testing, pharmaceutical analysis, automation and combinatorial chemistry, validating automated methods, and advanced topics. Several new workshops and discussion sessions were also provided. Zymark should be congratulated on their continuing commitment to this programme of seminars and technical sessions. The programme provided a valuable insight to the use of robotics as well as the problems experienced. We hope to include some of these articles as technical papers in the journal in the near future. The 1997 ISLAR will once again be held in Boston, MA, from 19-22 October 1997. Speakers' abstracts should be submitted by 14 March and Poster abstracts by 14 July. Session topics will be similar to previous years but will also include High Throughput Screening, Re-Engineering the Laboratory and Increasing Productivity. For more information, contact Christine O'Neil at 508497 2224; fax on 508435 3439; send an E-mail to [email protected] or visit the ISLAR pages at http://www.islar.com.
    [Show full text]
  • Dr. Tony J. Beugelsdijk
    In Memoriam A Gentleman and a Scholar: Remembering the Remarkable Tony Beugelsdijk On August 23, 2009, the laboratory automation Tony worked as a senior analytical chemist with community lost one of its best friends when ALA Shell Development Company in Houston, Texas from Co-Founder Tony Beugelsdijk passed away from 1975 to 1984 where he was responsible for method ‘‘If the measure of complications related to a stroke. His early depar- development and automation activities. During this a person is in the ture from this life left those who knew him stunned period, he applied robotic sample preparation technol- positive impact and heartbroken. ogy, thermoanalytical techniques, mass spectrometry, they made in Tony was a prolific inventor, author, and speaker gas chromatography, microcombustion techniques, others’ lives, then who received many awards in honor of his scientific neutron activation, X-ray fluorescence, atomic ab- Tony stood ten achievements. Most recently, Tony received interna- sorption, and inductively coupled plasma techniques e feet tall.’’ Andy tional attention for co-developing the High- to a host of elemental and molecular analytes in hydro- Zaayenga Throughput Laboratory Network (HTLN) to carbon matrices, catalysts, and polymers. provide a worldwide rapid response capability and In 1984, he joined Los Alamos National Labora- surveillance system for infectious disease. About the tory (LANL) where he built the laboratory’s robot- HTLN, former U.S. President Bill Clinton paused ics and automation program leading a team of more during a recent speech at Lincoln Center, raised his than 30 scientists and engineers. He managed the de- hand and remarked ‘‘this is really important’’ in re- velopment of more than 20 robotics systems includ- gard to his foundation’s world health initiatives.Tony ing the only four systems in the nation qualified to also was an exceptional human being.
    [Show full text]
  • Issue3-Robots-In-The-Lab.Pdf
    Make your tablets more A CENTURY OF PRESERVING than just textbooks. OUR NATIONAL TREASURES ....... 25 Broadcast to classroom sets of tablets, smartphones and computers with EduCam: The Software That Shares. Make learning fun and easy by putting the “iCan” in the classroom with Ken-A-Vision’s line of digital microscopes. Knowledge through Vision Digital CoreScope2 S90298MP1 Digital Comprehensive Scope2 S04606 Inside This Issue Astronomy 17 Life Science 11, 9 Biotechnology 6, 7 Physical Science 15 Chemistry 20, 21 STEM 19, 27 Description Cat. # Price Digital CoreScope2 S90298MP1S90298MP $538.00489.00 Elementary 5 Technology 16 (KAV T-17541C) Digital Comprehensive Scope2 S04606 $959.00959.00 (KAV TU-19542C) Environmental 3, 25 NEXT GENERATION SCIENCE SKILL BUILDER KITS Supplier Index Complete Blended Learning Programs! Hands-On and Digital Resources for Standards-Based Topics! A3B 8 Ken-A-Vision 2 Aldon 24 Kimble 13 NEW! AMEP 16 K’Nex 16 Celestron 24 Lab Aids 22 FREE One Year Class License to Online Learning Corning 20 Labconco 20 Program Diversified Woodcrafts 18 LaMotte 22 Dynalon Products 26 New Path 2 Each Kit includes the following for EACH topic covered: Student Learning Guide, Flip Chart Set, Curriculum Mastery Game, Vocabulary Activity Set and Edvotek 21 Ohaus 7, 23 Teacher Resource Guide!!! Plus, Online Learning Description Cat. No. Price Eisco 4 SP Scienceware 24 Subscription with Molecules to Organisms $231.00 Multimedia Lessons, S04854 Fisher Scientific 14, 18 Swift 6 Interactive Activities, Diversity of Organisms S04855 $181.00
    [Show full text]
  • Survey: Scientists Want to Boost Use of Lab Automation by Samantha Black, Phd, Scienceboard.Net Editor in Chief
    Survey: Scientists want to boost use of lab automation By Samantha Black, PhD, ScienceBoard.net Editor in Chief See Original Article May 25, 2021 -- In the era of big data and new analytical technologies, research laboratories are rapidly adopting new lab automation equipment and processes. While most labs are already using some type of automation in their workflows, many researchers would like to increase their use of these new technologies, according to results from a new ScienceBoard.net survey. In total, 74% of scientists reported that less than half of their lab operations are automated. Of those surveyed, 19% of respondents said that their labs are between 51% and 75% automated and only 6% reported an automation percentage over 76%. Respondents to the survey were members of ScienceBoard.net, with data collection completed on April 20. Of the 960 participants in the study, 66% were scientists, researchers, or investigators; 26% were pharmaceutical or biotech scientists; 15% were laboratory staff; and 9% were postdoctoral researchers. Most participants were associated with a university (41%) or a pharmaceutical (20%) or life science (15%) company. On a regional basis, 33% of participants were based in North America, 24% in Europe, and 36% in Asia, while the remaining 7% were from various other locations around the world. Laboratory automation can be divided into two main categories: (1) hardware and equipment used to manually gather data and (2) software and informatics tools to manage data. The different types of lab automation tools include the following: Automation hardware and equipment • Liquid handling systems: These systems dispense and sample liquids in tubes or wells and are often integrated as automated injection modules.
    [Show full text]