Recognizing the Albian-Cenomanian (Oae1d) Sequence Boundary Using Plant Carbon Isotopes: Dakota Formation, Western Interior Basin, USA

Total Page:16

File Type:pdf, Size:1020Kb

Recognizing the Albian-Cenomanian (Oae1d) Sequence Boundary Using Plant Carbon Isotopes: Dakota Formation, Western Interior Basin, USA Recognizing the Albian-Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Basin, USA Darren R. GroÈcke School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada Gregory A. Ludvigson Kansas Geological Survey, University of Kansas, Lawrence, Kansas 66047-3726, USA Brian L. Witzke Iowa Department of Natural Resources, Geological Survey, Iowa City, Iowa 52242-1319, USA Stuart A. Robinson Department of Earth Sciences, University College London, London WC1E 6BT, UK R.M. Joeckel Conservation and Survey Division, School of Natural Resources, University of Nebraska±Lincoln, Lincoln, Nebraska 68588-0517, USA David F. Ufnar Department of Geography and Geology, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA Robert L. Ravn Aeon Biostratigraphic Services, 6501 Shale Circle, Anchorage, Alaska 99516, USA ABSTRACT To ascertain the effect of OAE1d (latest Albian) on the terrestrial Analysis of bulk sedimentary organic matter and charcoal carbon-isotope record, we collected bulk sediment and plant macro- from an Albian-Cenomanian ¯uvial-estuarine succession (Dakota fossils for organic carbon-isotope analysis from the Rose Creek Pit Formation) at Rose Creek Pit (RCP), Nebraska, reveals a negative (RCP) in the Dakota Formation, near Fairbury, Nebraska (Fig. 1). Pa- excursion of ;3½ in late Albian strata. Overlying Cenomanian lynostratigraphy places the section at RCP as late Albian to Cenoman- strata have d13C values of 224½ to 223½ that are similar to pre- ian in age (Brenner et al., 2000). A direct comparison between our d13 d13 excursion values. The absence of an intervening positive excursion terrestrial C records from RCP and the oceanic Cforam record at (as exists in marine records of the Albian-Cenomanian boundary) ODP Site 1052 (Wilson and Norris, 2001) provides better time reso- likely results from a depositional hiatus. The corresponding posi- tive d13C event and proposed depositional hiatus are concordant with a regionally identi®ed sequence boundary in the Dakota For- mation (D2), as well as a major regressive phase throughout the globe at the Albian-Cenomanian boundary. Data from RCP con- ®rm suggestions that some positive carbon-isotope excursions in the geologic record are coincident with regressive sea-level phases. We estimate using isotopic correlation that the D2 sequence bound- ary at RCP was on the order of 0.5 m.y. in duration. Therefore, interpretations of isotopic events and associated environmental phenomena, such as oceanic anoxic events, in the shallow- marine and terrestrial record may be in¯uenced by stratigraphic incompleteness. Further investigation of terrestrial d13C records may be useful in recognizing and constraining sea-level changes in the geologic record. Keywords: oceanic anoxic event, carbon isotopes, plants, sequence boundary, Albian-Cenomanian, middle Cretaceous. INTRODUCTION Carbon-isotope ratios (d13C) of bulk terrestrial organic matter and isolated individual plant fragments have recently been used to recon- struct terrestrial plant ecologies (Nguyen Tu et al., 1999), interpret iso- topic changes in atmospheric CO2 (GroÈcke et al., 1999), estimate at- mospheric pCO2 changes (Hasegawa et al., 2003), and assign terrestrial sequences with marine biostratigraphies (Hesselbo et al. 2000). Isotopic investigations of Cretaceous oceanic anoxic events (OAEs) indicate signi®cant shifts in the global carbon cycle, most notably during the early Aptian (OAE1a) and at the Cenomanian-Turonian boundary (OAE2). OAEs are characterized by relatively long-duration positive d13C excursions (Arthur et al., 1985) that are preceded by rapid neg- ative d13C excursions (Leckie et al., 2002), with the exception of OAE2. OAEs with negative d13C excursions have been documented throughout the Cretaceous (Herrle et al., 2003), but it is not yet known whether these events are global in distribution and affect, although Figure 1. Two overlapping stratigraphic sections were combined in this study of Rose Creek Pit (RCP), Nebraska. Stars represent sam- negative d13C excursions associated with OAE1a and OAE1b (Aptian- ple positions for palynological analysis. Arrow points to the D2 se- Albian boundary) are recorded in the terrestrial carbon reservoir quence boundary identi®ed by this study in carbon isotopes; cÐ (GroÈcke et al., 1999; Heimhofer et al., 2003). clay, sÐsilt, fmcЮne, medium, and coarse sand. q 2006 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. Geology; March 2006; v. 34; no. 3; p. 193±196; doi: 10.1130/G21998.1; 4 ®gures. 193 d13 Figure 2. A: Cforam curve from ODP Site 1052, Blake Nose (Wilson and Norris, 2001), showing a rapid negative excursion in the late Albian followed by a positive excursion that peaks just before Albian-Cenomanian boundary. Labeled excursion segments are 1dpnÐ negative; 1dprÐrise; 1dppÐpositive; and 1dpdÐdecline. Foraminifera and nannofossil biostratigraphy is according to Wilson and Norris (2001). Solid black bar in R. appenninica zone gives the occurrence of laminated black shales. Note that initiation of the OAE1d negative d13 d13 d13 C excursion occurs at boundary between nannofossil zones CC9a and CC9b. B: Cbulk and Ccharcoal curves from Rose Creek Pit, Nebraska. Palynology is determined from bulk samples at 4.5 and 7.6 m. TOC values were determined during isotopic analysis of decar- bonated bulk sediment and show two phases of organic richness, beginning at onset of the negative d13C excursion and just prior to the isotopically identi®ed hiatus. Stratigraphic samples below 0 m were obtained from a nearby section on highway at RCP: This interval was dominated by sand and thus few charcoal samples were obtainable. lution within the Dakota Formation (Figs. 2A and 2B). Our data in- GEOLOGICAL SETTING AND METHODOLOGY dicate that the regressive phase associated with OAE1d occurred over The RCP locality has previously been described by Basinger and a period of ,0.5 m.y. and was a potential driver for paleoceanographic Dilcher (1984) and Upchurch and Dilcher (1990). On the basis of pa- phenomena (Watkins et al., 2005), such as disruption of a strati®ed lyno¯ora at RCP, Farley and Dilcher (1986) concluded that the deposit ocean and an extinction event. This result allows us to assess the im- is Cenomanian in age. Continuing studies, however, have shown that pact in the ocean-atmosphere system associated with OAE1d. the RCP locality straddles the Albian-Cenomanian stage boundary and contains the D2 sequence boundary of Brenner et al. (2000). The D2 surface unconformably separates deposits of the underlying Upper Al- bian Muddy Cycle (``J'' Sandstone) from the overlying Cenomanian- Turonian Greenhorn Cycle (``D'' Sandstone) (Weimer, 1987). Our pal- ynologic samples from 4.5 m at RCP (Fig. 1) produce de®nitive Upper Albian spores Disaltriangulisporites perplexus and Podocarpidites multesimus, along with numerous probable, but not necessarily de®n- itive Albian palynomorphs. Signi®cantly, no Cenomanian taxa are rec- ognized in our palynologic analysis of the leaf beds. Samples from 7.6 m at RCP (Fig. 1), however, produce de®nitive Lower Cenomanian forms Foveogleicheniidites confossus and Artiopollis indivisus, thereby bracketing the position of the D2 sequence boundary. Bulk sediment and macro-charcoal samples were collected throughout the 10 m section at RCP. Both bulk-sediment and charcoal samples were prepared according to the methods outlined in GroÈcke et al. (1999). Carbon-isotope values are reported in the standard delta (d) notation relative to VPDB with analytical precision better than 0.1½. Micromorphologic investigations of pedogenically modi®ed mudstones at the Albian-Cenomanian sequence boundary were carried out on thin sections cut from resin-impregnated billets, using methods and termi- nology from Bullock et al. (1985). TERRESTRIAL-MARINE CORRELATION An Albian-Cenomanian foraminiferal oceanic carbon-isotope curve from ODP Site 1052 shows a pronounced negative excursion at Figure 3. d13C of charcoal fragments versus bulk sediment for the boundary between nannofossil subzones CC9a and CC9b, ;100 Aptian-Albian from Algarve Basin, Portugal (Heimhofer et al., 2003), k.y. after the depositional onset of laminated black shales (Fig. 2A) and Rose Creek Pit, Nebraska (this study). For comparison, wood and bulk sediment samples from the Early Toarcian oceanic anoxic (Wilson and Norris, 2001). In order to use isotope stratigraphy as a d13 event (Jurassic) have been included (Hesselbo et al., 2000). Each correlative tool, we de®ne and label segments of the Cforam curve d13 point is representative of samples from same stratigraphic horizon. that describe its structure. The OAE1d Cforam curve shows a rapid, 194 GEOLOGY, March 2006 5 Figure 4. A: Photomicrographs of paleosol at D2 sequence boundary. Scale bars 0.2 mm, except for where indicated. (i) Cross-polarized light image of claystone paleosol with striated birefringent fabric. Bright birefringent streaks consist of oriented illuvial clay accumulations reworked from void coatings into matrix. Arrow indicates argillan (pedogenic clay coating). (ii) Cross-polarized light image of striated birefringent fabric (arrow) with overprinting sphaerosiderite nodules. Scale bar 5 1 mm. (iii) Plane-polarized light image of 0.01±0.02 mm pyrite framboids (arrow) within ®ne, faint yellow mottled domains of claystone. (iv) Cross-polarized light image of degraded clay in®lling (arrow)
Recommended publications
  • 2018-2004 Accomplishments
    Kansas Geological Survey Publications, Accomplishments, and Service 2018 Refereed Publications Core, E. E., and Franseen, E. K., 2018, Depositional and reservoir character of mixed heterozoan-large benthic foraminifera-siliciclastic sequences, Middle Miocene, Dominican Republic: American Association of Petroleum Geologists Search and Discovery Article #51506, 10 p. Flotron, A., Franseen, E. K., and Goldstein, R. H., 2018, Sedimentologic and stratigraphic controls on reservoir sweet spots in Wolfcamp ‘A,’ Howard County, Midland Basin: American Association of Petroleum Geologists Search and Discovery Article #11142, 6 p. Franseen, E. K., Sawin, R. S., Watney, W. L., West, R. L., Layzell, A. L., and Ludvigson, G. A., 2018, Mississippian stratigraphic nomenclature revisions in Kansas: Current Research in Earth Sciences, Kansas Geological Survey Bulletin 264, http://www.kgs.ku.edu/Current/2018/Franseen/index.html. Golab, J. A., Smith, J. J., and Hasiotis, S. T., 2018, Paleoenvironmental and paleogeographic implications of paleosols and ichnofossils in the Upper Pennsylvanian-Permian Halgaito Formation, Southeastern Utah: PALAIOS, v. 33, p. 296–311, doi: http:// dx.doi.org/10.2110/palo.2017.074. Peterie, S. L., Miller, R. D., Buchanan, R., and DeArmond, B., 2018, Fluid injection wells can have a wide seismic reach: EOS, v. 98, n. 7, p. 25–30, https://doi.org/10.1029/2018EO096199. Peterie, S. L., Miller, R. D., Intfen, J. W., and Gonzales, J. B., 2018, Earthquakes in Kansas induced by extremely far-field pressure diffusion: Geophysical Research Letters, v. 45, p. 1,395–1,401, https://doi.org/10.1002/2017GL076334. Richey, J. D., Upchurch, G. R., Montañez, I. P., Lomax, B. H., Suarez, M.
    [Show full text]
  • Cenomanian Angiosperm Wood from the Bohemian Cretaceous Basin, Czech Republic
    IAWA Journal, Vol. 30 (3), 2009: 319–329 CENOMANIAN ANGIOSPERM WOOD FROM THE BOHEMIAN CRETACEOUS BASIN, CZECH REPUBLIC Vladimír Gryc1, Hanuš Vavrčík1 and Jakub Sakala2 SUMMARY The first permineralized angiosperm wood from the Cenomanian of the Bohemian Cretaceous Basin (Czech Republic) is described. The wood is diffuse porous, with vessels solitary and in radial multiples of 2–5, perforation plates are exclusively simple, and tyloses abundant. Rays are usually 4–7-seriate and heterocellular, narrower rays are rare. The fossil is designated as Paraphyllanthoxylon aff. utahense Thayn, Tidwell et Stokes. Other occurrences of Paraphyllanthoxylon are reviewed and the equivocal botanical affinity of the taxon is discussed. Key words: Paraphyllanthoxylon, permineralized angiosperm wood, Cenomanian, Bohemian Cretaceous Basin, Czech Republic. InTROduCTIOn Angiosperms dominate modern vegetation with more than 90% of plant diversity. Their fossil evidence goes back to the start of the Cretaceous, but the first record of angiosperm wood is not older than Aptian/Albian (Baas et al. 2004). As the major diversification of angiosperms occurred across the Cenomanian-Turonian boundary, any study focusing on this time slice is of particular interest. We describe a fossil angiosperm wood from the Bohemian Cretaceous Basin which encompasses this interval. during most of its existence, the Bohemian Cretaceous Basin, a system of sub-basins filled with deposits of the Cenomanian through the Santonian age (Kvaček et al. 2006), was a shallow seaway connecting the Boreal and Tethys realms (Fig. 1A). The lowermost part of the Cenoma- nian strata, called the Peruc-Korycany Formation, is represented by diverse deposits of fluvial, estuarine, shoreface or off-shore facies and contains fossil fauna (e.g., Fejfar et al.
    [Show full text]
  • Albian-Cenomanian Zonation (Foraminifers and Calcareous Aglae) in the Northern Fars, Iran
    American Journal of Applied Sciences 6 (4): 709-714, 2009 ISSN 1546-9239 © 2009 Science Publications Albian-Cenomanian Zonation (Foraminifers and Calcareous Aglae) in the Northern Fars, Iran Mahnaz Parvaneh Nejad Shirazi Shiraz Payame Noor University, Saheli St., Shiraz, Iran Abstract: Problem statement: In the middle Cretaceous of Iran, fossil calcareous algae and zonation them with foraminifers are one of the less studied compared to others invertebrate groups such as foraminiferis, mollusks and others. Several stratigraphic units were analyzed in detail and a biostratigraphic zonation of the Albian-Cenomanian rocks of the Fars basin (Sw. Iran) is proposed. Approach: All stratigraphic units were studied for the determination calcareous algae accompanying with foraminifers. Identification of planktonic, benthic foraminifers and calcareous algae was made from thin slides. After the identification of the microfossils assemblages, benthic, planktonic microfossil and calcareous algae biostratigraphy was recognized and a possible correlation with the other zonations was established. Results: The stratigraphic distribution of 21 genus of calcareous algae and benthic and planktonic foraminifers is used to characterize 4 ass. zone that in ascending order are: Or. aperta-Cuneolina ass. zone, Or. conica-Hemicyclammina ass. zone, Dicyclina-Orbitolina ass. zone and Alveolinids ass. zone. The top of Or. aperta-Cuneolina ass. zone is marked at the last appearance of the marker fossil. The Or. conica-Hemicyclammina ass. zone was defined with the last appearance of Or. conica and represented by an assemblage characterized by Cuneolina pavonia-Hemicyclammina sigali-Pseudochrysalidina sp. together with calcareous algae such as: Trinocladus tripolitanus- Permocalcus irenae. Overmost of the area, the transition from shallow-marine limestones up into pelagic facies occurs within the R.
    [Show full text]
  • Cenomanian Turonian Coniacian Santonian Campanian
    walteri aff. aff. spp. spp. imperfectus spp. (prisms) Chronostratigraphy Offshore Norway sp. 1 Geologic Time Scale 2012 Zonation (Gradstein et al., 1999, and this study) Allomorphina halli / pyriformis Sigmoilina antiqua Textularia Gavelinella intermeda gracillima Valvulineria Bulbobaculites problematicus Caudammina ovuloides Nuttallinella florealis Stensioeina granulata polonica Inoceramus Rzehakina minima Rzehakina epigona Fenestrella bellii Gaudryina filiformis Trochamminoides Haplophragmoides Gavelinella usakensis Caudammina ovula Coarse agglutinated spp. LCO dubia Tritaxia Plectorecurvoides alternans Reussella szajnochae Recurvoides Hippocrepina depressa Psammosphaera sphaerical radiolarians Ma Age/Stage Lingulogavelinella jarzevae elegans Lt NCF19 Maastrichtian volutus LCO 70 NCF18 E szajnochae dubia Lt 75 LCO of NCF17 Campanian Deep Water M Agglutinated 80 Foraminifera E bellii NCF16 Lt Inoceramus LCO NCF15 85 Santonian M E polonica NCF14 Lt Coniacian M E Marginotruncana NCF13 90 Lt Turonian M E Dicarinella NCF12 95 Lt brittonensis M NCF11 Cenomanian delrioensis LCO NCF10 E antiqua NCF9 100 Figure 2.8c. Stratigraphic ranges of Upper Cretaceous benthic foraminifera, and miscellaneous index taxa, oshore mid-Norway, with the foraminiferal zonation established in this study. s.l. Chronostratigraphy Offshore Norway Geologic Time Scale 2012 Zonation (Gradstein et al., 1999, and this study) Abathomphalus mayaroensis Pseudotextularia elegans Hedbergella planispira Hedbergella hoelzi Praeglobotruncana delrioensis Praeglobotruncana stephani
    [Show full text]
  • Upper Cenomanian •fi Lower Turonian (Cretaceous) Calcareous
    Studia Universitatis Babeş-Bolyai, Geologia, 2010, 55 (1), 29 – 36 Upper Cenomanian – Lower Turonian (Cretaceous) calcareous algae from the Eastern Desert of Egypt: taxonomy and significance Ioan I. BUCUR1, Emad NAGM2 & Markus WILMSEN3 1Department of Geology, “Babeş-Bolyai” University, Kogălniceanu 1, 400084 Cluj Napoca, Romania 2Geology Department, Faculty of Science, Al-Azhar University, Egypt 3Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstr. 159, D-01109 Dresden, Germany Received March 2010; accepted April 2010 Available online 27 April 2010 DOI: 10.5038/1937-8602.55.1.4 Abstract. An assemblage of calcareous algae (dasycladaleans and halimedaceans) is described from the Upper Cenomanian to Lower Turonian of the Galala and Maghra el Hadida formations (Wadi Araba, northern Eastern Desert, Egypt). The following taxa have been identified: Dissocladella sp., Neomeris mokragorensis RADOIČIĆ & SCHLAGINTWEIT, 2007, Salpingoporella milovanovici RADOIČIĆ, 1978, Trinocladus divnae RADOIČIĆ, 2006, Trinocladus cf. radoicicae ELLIOTT, 1968, and Halimeda cf. elliotti CONARD & RIOULT, 1977. Most of the species are recorded for the first time from Egypt. Three of the identified algae (T. divnae, S. milovanovici and H. elliotti) also occur in Cenomanian limestones of the Mirdita zone, Serbia, suggesting a trans-Tethyan distribution of these taxa during the early Late Cretaceous. The abundance and preservation of the algae suggest an autochthonous occurrence which can be used to characterize the depositional environment. The recorded calcareous algae as well as the sedimentologic and palaeontologic context of the Galala Formation support an open-lagoonal (non-restricted), warm-water setting. The Maghra el Hadida Formation was mainly deposited in a somewhat deeper, open shelf setting.
    [Show full text]
  • Biostratigraphy and Carbon-Isotope Stratigraphy of the Uppermost Aptian to Upper Cenomanian Strata of the South Palmyrides, Syria
    GeoArabia, 2012, v. 17, no. 2, p. 155-184 Gulf PetroLink, Bahrain Biostratigraphy and carbon-isotope stratigraphy of the uppermost Aptian to Upper Cenomanian strata of the South Palmyrides, Syria Hussam Ghanem, Mikhail Mouty and Jochen Kuss ABSTRACT Biostratigraphic and carbon-isotope data were used to introduce a high- resolution stratigraphic reference section of the Upper Aptian to Upper Cenomanian platform carbonates of the South Palmyrides in Syria. We studied the biostratigraphic evolution of the Zbeideh to Abou-Zounnar formations in two sections, based on 42 species of benthonic foraminifera and 38 species of planktonic foraminifera. Comparisons with other Tethyan assemblages allowed determining 11 biozones; six are based on planktonic foraminifera, and five on benthonic foraminifera. Four hiatuses (earliest Albian, Middle–Late Albian, Late Albian–Early Cenomanian, and Mid Cenomanian) are marked by hardgrounds or dolomitic intervals. The planktonic biozones Ticinella bejaouaensis, T. primula, T. praeticinensis, Rotalipora subticinensis, R. globotruncanoides and R. cushmani co-occur with the following benthonic biozones: Mesorbitolina texana partial range zone, M. subconcava range zone, Neoiraqia convexa taxon-range zone, Praealveolina iberica interval zone and Pseudedomia drorimensis range zone. Within this biostratigraphic framework, a new carbon-isotope curve from the South Palmyrides was compared with δ13C records of the Tethyan Realm and England that allows identifying several biotic events and Oceanic Anoxic Events (OAE), recorded in the Upper Albian to Upper Cenomanian succession. The combination of sequence-stratigraphic interpretations and comparisons, with our results have led to an improved understanding of the Cretaceous platform architecture of the South Palmyrides that links the Arabian Platform to the east with the Levant Platform to the southwest.
    [Show full text]
  • Industrial Minerals-Mines, Quarries, and General Resources in Kansas 2008
    Industrial Minerals-Mines, Quarries, and General Resources in Kansas 2008 Lawrence L. Brady Kansas Geological Survey 1930 Constant Avenue Lawrence, Kansas 66047 Telephone (785) 864-2159 Fax (785) 864-5317 E-mail lbrady@ kgs.k u.edu Kansas Geological Survey Open-File Report 2016-24 ABSTRACT Industrial mineral production in Kansas based on tonnage mainly involves those commodities that are important to the construction industry. Among those commodities with large tonnage are sand and gravel and stone—both crushed and dimension, mainly limestone but also with a limited amount of sandstone. Sand and gravel are obtained primarily from pits in western Kansas and from pits and dredging in rivers and floodplains in the central and eastern part of the state. Crushed stone for aggregates and for use in cement production is mainly from limestone units of Pennsylvanian age in eastern Kansas, and the dimension stone is now cut from Lower Permian limestone units. Outstanding buildings in the past were also constructed from limestone rocks from Middle and Upper Pennsylvanian and Upper Cretaceous limestone units. Clay and shale from Pennsylvanian and Cretaceous units are used for manufacture of structural clay products, brick, and lightweight aggregate and in Portland and masonry cement manufacture. Salt is a major industrial mineral important to the state. It is produced from the thick Hutchinson Salt Member in the Lower Permian Wellington Formation that is present in the subsurface in a large part of central Kansas. The salt is mined by room-and-pillar methods at three locations, and salt is also produced by solution mining from four different brine fields.
    [Show full text]
  • Report 2015–1087
    Chronostratigraphic Cross Section of Cretaceous Formations in Western Montana, Western Wyoming, Eastern Utah, Northeastern Arizona, and Northwestern New Mexico, U.S.A. Pamphlet to accompany Open-File Report 2015–1087 U.S. Department of the Interior U.S. Geological Survey Chronostratigraphic Cross Section of Cretaceous Formations in Western Montana, Western Wyoming, Eastern Utah, Northeastern Arizona, and Northwestern New Mexico, U.S.A. By E.A. Merewether and K.C. McKinney Pamphlet to accompany Open-File Report 2015–1087 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Merewether, E.A., and McKinney, K.C., 2015, Chronostratigraphic cross section of Cretaceous formations in western Montana, western Wyoming, eastern Utah, northeastern Arizona, and northwestern New Mexico, U.S.A.: U.S. Geological Survey Open-File Report 2015–1087, 10 p.
    [Show full text]
  • Upper Cretaceous Subsurface Stratigraphy and Structure of Coastal Georgia and South Carolina
    i, 5 Upper Cretaceous Subsurface Stratigraphy and Structure of Coastal Georgia and South Carolina GEOtQGIC AL SURVE:Y PROFESSIONAL PAPER 1222 Upper Cretaceous Subsurface Stratigraphy and Structure of Coastal Georgia and South Carolina By PAGE C. VALENTINE GEOLOGICAL SURVEY PROFESSIONAL PAPER 1222 A study based on 24 wells along transects from the Southeast Georgia Embayment northeastward to the Cape Fear Arch and offshore to the Outer Continental Shelf UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1982 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Valentine, Page C. Upper Cretaceous subsurface stratigraphy and structure of coastal Georgia and South Carolina. (Geological Survey professional paper ; 1222) "A study based on 24 wells along transects from the Southeast Georgia Embayment northeastward to the Cape Fear Arch and offshore to the Outer Continental Shelf." Bibliography: p. Supt. of Docs, no.: 119.16:1222 1. Geology, Stratigraphic-Cretaceous. 2. Geology-Georgia. 3. Geology-South Carolina. 4. Coasts-Georgia. 5. Coasts-South Carolina. I. Title. II. Series: United States. Geological Survey. Professional paper ; 1222. QE688.V35 551.7T09757 80-607868 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Abstract ___________. Upper Cretaceous stratigraphy-Continued Introduction _________. Clubhouse Crossroads corehole 1, South Carolina _____ 15 Acknowledgments
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • Diversification of Insects Since the Devonian
    www.nature.com/scientificreports OPEN Diversifcation of insects since the Devonian: a new approach based on morphological disparity of Received: 18 September 2017 Accepted: 12 February 2018 mouthparts Published: xx xx xxxx Patricia Nel1,2, Sylvain Bertrand2 & André Nel1 The majority of the analyses of the evolutionary history of the megadiverse class Insecta are based on the documented taxonomic palaeobiodiversity. A diferent approach, poorly investigated, is to focus on morphological disparity, linked to changes in the organisms’ functioning. Here we establish a hierarchy of the great geological epochs based on a new method using Wagner parsimony and a ‘presence/ absence of a morphological type of mouthpart of Hexapoda’ dataset. We showed the absence of major rupture in the evolution of the mouthparts, but six epochs during which numerous innovations and few extinctions happened, i.e., Late Carboniferous, Middle and Late Triassic, ‘Callovian-Oxfordian’, ‘Early’ Cretaceous, and ‘Albian-Cenomanian’. The three crises Permian-Triassic, Triassic-Jurassic, and Cretaceous-Cenozoic had no strong, visible impact on mouthparts types. We particularly emphasize the origination of mouthparts linked to nectarivory during the Cretaceous Terrestrial Revolution. We also underline the origination of mouthparts linked to phytophagy during the Middle and the Late Triassic, correlated to the diversifcation of the gymnosperms, especially in relation to the complex ‘fowers’ producing nectar of the Bennettitales and Gnetales. During their ca. 410 Ma history, hexapods have evolved morphologically to adapt in a continuously changing world, thereby resulting in a unique mega-biodiversity1. Age-old questions2–4 about insects’ macroevolution now- adays receive renewed interest thanks to the remarkable recent improvements in data and methods that allow incorporating full data, phylogenomic trees besides fossil record5–9.
    [Show full text]
  • INTERNATIONAL CHRONOSTRATIGRAPHIC CHART International Commission on Stratigraphy V 2020/03
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2020/03 numerical numerical numerical numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) Eonothem / EonErathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ±0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 0.0117 152.1 ±0.9 ~ 635 U/L Upper Famennian Neo- 0.129 Upper Kimmeridgian Cryogenian M Chibanian 157.3 ±1.0 Upper proterozoic ~ 720 0.774 372.2 ±1.6 Pleistocene Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 L/E Callovian Quaternary 166.1 ±1.2 Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 387.7 ±0.8 Meso- Zanclean Aalenian Middle proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 Calymmian 7.246 Toarcian Devonian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Burdigalian Hettangian proterozoic 2050 20.44 201.3 ±0.2 419.2 ±3.2 Rhyacian Aquitanian Rhaetian Pridoli 23.03 ~ 208.5 423.0 ±2.3 2300 Ludfordian 425.6 ±0.9 Siderian Mesozoic Cenozoic Chattian Ludlow
    [Show full text]