Using Virtual Reality to Improve Sitting Balance

Total Page:16

File Type:pdf, Size:1020Kb

Using Virtual Reality to Improve Sitting Balance BearWorks MSU Graduate Theses Fall 2017 Using Virtual Reality to Improve Sitting Balance Alice Kay Barnes Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Graphics and Human Computer Interfaces Commons, Occupational Therapy Commons, and the Physical Therapy Commons Recommended Citation Barnes, Alice Kay, "Using Virtual Reality to Improve Sitting Balance" (2017). MSU Graduate Theses. 3221. https://bearworks.missouristate.edu/theses/3221 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. USING VIRTUAL REALITY TO IMPROVE SITTING BALANCE A Master’s Thesis Presented to The Graduate College of Missouri State University TEMPLATE In Partial Fulfillment Of the Requirements for the Degree Master of Natural and Applied Science, Computer Science By Alice K. Barnes December 2017 Copyright 2017 by Alice Kay Barnes ii USING VIRTUAL REALITY TO IMPROVE SITTING BALANCE Computer Science Missouri State University, December 2017 Master of Natural and Applied Science Alice K. Barnes ABSTRACT This thesis focuses on using virtual reality (VR) to enhance sitting balance and core strength. It is a study in how to create a VR exercise program which is interesting enough to keep players/patients motivated, but comfortable to play and not overwhelming to the senses. The software used for this study was written with the hope that a later version of it might be used with occupational/physical therapy patients one day. For this master’s thesis, the initial testing has been done with healthy volunteers. The software incorporates what developers know thus far about designing for VR, and it is hoped that later software developers will benefit from knowing the results of this initial round of testing. All of the 39 test participants agreed that the game was fun, with 82% indicating “strongly agree” in the questionnaire. The enthusiastic responses indicate that the game probably has recreational value beyond therapy patients. KEYWORDS: virtual reality, sitting, balance, benefits, drawbacks, core strength, occupational therapy, physical therapy. This abstract is approved as to form and content _______________________________ Lloyd Smith, PhD Chairperson, Advisory Committee Missouri State University iii IMPROVING SITTING BALANCE WITH VIRTUAL REALITY By Alice K. Barnes A Masters Thesis Submitted to the Graduate College Of Missouri State University In Partial Fulfillment of the Requirements For the Degree of Master of Natural and Applied Science, Computer Science December 2017 Approved: _______________________________________ Lloyd Smith, PhD _______________________________________ Jamil Saquer, PhD _______________________________________ Ken Vollmar, PhD _______________________________________ Duane Moses, PhD _______________________________________ Julie Masterson, PhD: Dean, Graduate College In the interest of academic freedom and the principle of free speech, approval of this thesis indicates the format is acceptable and meets the academic criteria for the discipline as determined by the faculty that constitute the thesis committee. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. iv ACKNOWLEDGEMENTS I would like to thank Veronica McGehee, OTA for her help and enthusiasm throughout this project. Thanks, as well, to Dr. Lloyd Smith for slogging through the initial draft. v TABLE OF CONTENTS Introduction ..........................................................................................................................1 Literature Review.................................................................................................................3 Development of 3D VR ...........................................................................................4 Medical Uses of VR .................................................................................................6 Augmented Reality ................................................................................................11 Visually Induced Motion Sickness (VIMS), Cybersickness, Simulator Sickness .13 The VR Cyber-Race of 2016-17 ............................................................................18 The Oculus Rift ..................................................................................................................21 The Basics ..............................................................................................................21 Why Oculus Rift ....................................................................................................21 Methodology ......................................................................................................................23 Objectives ..............................................................................................................23 General Design and Best Practices for VR ............................................................24 Equipment and Software ........................................................................................25 Strategy in the Game Design .................................................................................25 Experiments ...........................................................................................................29 Results ...............................................................................................................................30 Discussion ..........................................................................................................................33 Taking Note of the Suggestions .........................................................................................37 Level One ...............................................................................................................37 Other Levels and More Options .............................................................................39 Conclusions .......................................................................................................................42 The Possible Near Future of the VR/AR Industry .................................................42 The Future Role of AR/VR in Therapy .................................................................44 Concluding Remarks for This Study......................................................................45 References ..........................................................................................................................46 Appendices ........................................................................................................................52 Appendix A. Human Subjects IRB Approval ........................................................52 Appendix B. VR Sitting Balance Questionnaire....................................................53 Appendix C. Comment Responses to Question #4 ................................................54 Appendix D. Women’s Comment Responses to Question #5 ...............................56 Appendix E. Men’s Comment Responses to Question #5 .....................................57 vi LIST OF TABLES Table 1. Q1 Responses on a Likert Scale: Therapy More Fun? (%). ...............................30 Table 2. Q3 Responses on a Likert Scale: Experience Discomfort? (%) .........................31 Table 3. Q4 Responses on a Likert Scale: Good Experience? (%). .................................31 vii LIST OF FIGURES Figure 1. Far-Reaching View .............................................................................................26 Figure 2. Metallic Balls for Scoring ..................................................................................28 Figure 3. Overall Good Experience ...................................................................................32 Figure 4. Discomfort ..........................................................................................................37 viii INTRODUCTION Several challenges present themselves to occupational therapy patients and their therapists. Working through pain and tedium are high on this list. Pain and tedium in turn contribute to the overarching challenge of motivation. Many patients give up doing their exercises before reaching their full potential [1]. This thesis explores using virtual reality (VR) to make occupational/physical therapy and exercise in general more fun and motivating. Some of the programs in the past intended for therapy patients and billing themselves as VR programs have been programs that supply an avatar for the patient and provide interaction with a conventional two-dimensional screen. As an example, if one views an OmniVR demonstration video, it is clear that the patients are working in front of a
Recommended publications
  • Augmented Reality Glasses State of the Art and Perspectives
    Augmented Reality Glasses State of the art and perspectives Quentin BODINIER1, Alois WOLFF2, 1(Affiliation): Supelec SERI student 2(Affiliation): Supelec SERI student Abstract—This paper aims at delivering a comprehensive and detailled outlook on the emerging world of augmented reality glasses. Through the study of diverse technical fields involved in the conception of augmented reality glasses, it will analyze the perspectives offered by this new technology and try to answer to the question : gadget or watershed ? Index Terms—augmented reality, glasses, embedded electron- ics, optics. I. INTRODUCTION Google has recently brought the attention of consumers on a topic that has interested scientists for thirty years : wearable technology, and more precisely ”smart glasses”. Howewer, this commercial term does not fully take account of the diversity and complexity of existing technologies. Therefore, in these lines, we wil try to give a comprehensive view of the state of the art in different technological fields involved in this topic, Fig. 1. Different kinds of Mediated Reality for example optics and elbedded electronics. Moreover, by presenting some commercial products that will begin to be released in 2014, we will try to foresee the future of smart augmented reality devices and the technical challenges they glasses and their possible uses. must face, which include optics, electronics, real time image processing and integration. II. AUGMENTED REALITY : A CLARIFICATION There is a common misunderstanding about what ”Aug- III. OPTICS mented Reality” means. Let us quote a generally accepted defi- Optics are the core challenge of augmented reality glasses, nition of the concept : ”Augmented reality (AR) is a live, copy, as they need displaying information on the widest Field Of view of a physical, real-world environment whose elements are View (FOV) possible, very close to the user’s eyes and in a augmented (or supplemented) by computer-generated sensory very compact device.
    [Show full text]
  • Vuzix Corporation Annual Report 2021
    Vuzix Corporation Annual Report 2021 Form 10-K (NASDAQ:VUZI) Published: March 15th, 2021 PDF generated by stocklight.com UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K ☑ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2020 ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Commission file number: 001-35955 Vuzix Corporation ( Exact name of registrant as specified in its charter ) Delaware 04-3392453 (State of incorporation) (I.R.S. employer identification no.) 25 Hendrix Road West Henrietta, New York 14586 (Address of principal executive office) (Zip code) (585) 359-5900 (Registrant’s telephone number including area code) Securities registered pursuant to Section 12(b) of the Act: Title of each class: Trading Symbol(s) Name of each exchange on which registered Common Stock, par value $0.001 VUZI Nasdaq Capital Market Securities registered pursuant to Section 12(g) of the Act: None. Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes ◻ No þ Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Exchange Act. Yes ◻ No þ Indicate by check mark whether the registrant: (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]
  • Virtual Reality Headsets
    VIRTUAL REALITY HEADSETS LILY CHIANG VR HISTORY • Many companies (Virtuality, Sega, Atari, Sony) jumped on the VR hype in the 1990s; but commercialization flopped because both hardware and software failed to deliver on the promised VR vision. • Any use of the VR devices in the 2000s was limited to the military, aviation, and medical industry for simulation and training. • VR hype resurged after Oculus successful KickStarter campaign; subsequently acquired by Facebook for $2.4 bn. • Investments rushed into the VR industry as major tech firms such as Google, Samsung, and Microsoft and prominent VC firms bet big on the VR revolution. LIST OF VIRTUAL REALITY HEADSET FIRMS Company Name Entered Exited Disposition Company Name Entered Exited Disposition Company Name Entered Exited Disposition LEEP Optics 1979 1998 Bankrupt Meta Altergaze 2014 Ongoing VPL Research 1984 1990 Bankrupt SpaceGlasses 2012 Ongoing Archos VR 2014 Ongoing Division Group Sulon Cortex 2012 Ongoing AirVr 2014 Ongoing LTD 1989 1999 Acquired Epson Moverio Sega VR 1991 1994 Bankrupt BT-200 2012 Ongoing 360Specs 2014 Ongoing Virtuality 1991 1997 Acquired i2i iPal 2012 Ongoing Microsoft VictorMaxx 1992 1998 Bankrupt Star VR 2013 Ongoing Hololens Systems 2015 Ongoing Durovis Dive 2013 Ongoing Razr OSVR 2015 Ongoing Atari Jaguar VR 1993 1996 Discontinued Vrizzmo 2013 Ongoing Virtual I-O 1993 1997 Bankrupt Cmoar 2015 Ongoing CastAR 2013 Ongoing eMagin 1993 Ongoing Dior Eyes VR 2015 Ongoing VRAse 2013 Ongoing Virtual Boy 1994 1995 Discontinued Yay3d VR 2013 Ongoing Impression Pi
    [Show full text]
  • An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and Caregiver Report of Safety and Lack of Negative Effects
    bioRxiv preprint doi: https://doi.org/10.1101/164335; this version posted July 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and caregiver report of safety and lack of negative effects. An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and caregiver report of safety and lack of negative effects. Ned T. Sahin1,2*, Neha U. Keshav1, Joseph P. Salisbury1, Arshya Vahabzadeh1,3 1Brain Power, 1 Broadway 14th Fl, Cambridge MA 02142, United States 2Department of Psychology, Harvard University, United States 3Department of Psychiatry, Massachusetts General Hospital, Boston * Corresponding Author. Ned T. Sahin, PhD, Brain Power, 1 Broadway 14th Fl, Cambridge, MA 02142, USA. Email: [email protected]. Abstract Background: Interest has been growing in the use of augmented reality (AR) based social communication interventions in autism spectrum disorders (ASD), yet little is known about their safety or negative effects, particularly in head-worn digital smartglasses. Research to understand the safety of smartglasses in people with ASD is crucial given that these individuals may have altered sensory sensitivity, impaired verbal and non-verbal communication, and may experience extreme distress in response to changes in routine or environment. Objective: The objective of this report was to assess the safety and negative effects of the Brain Power Autism System (BPAS), a novel AR smartglasses-based social communication aid for children and adults with ASD. BPAS uses emotion-based artificial intelligence and a smartglasses hardware platform that keeps users engaged in the social world by encouraging “heads-up” interaction, unlike tablet- or phone-based apps.
    [Show full text]
  • View the Future® Vuzix Developer Newsletter
    Game Developer Conference - Special Edition - March, 2010 View the Future® Vuzix Developer Newsletter Stereoscopic 3D Eyewear – Goes From Geek to Chic Royalty Free SDK Update Stereoscopic 3D is the latest trend in movies and games – which format(s) do I support? Beta Release SDK Supports Side- by-Side Stereoscopic 3D Video and 6-DoF Tracker. Vuzix has been providing a roy- alty free SDK for its PC compat- ible video eyewear since 2006. A new release of the Vuzix SDK (beta release) will be available for download from the Vuzix website (www.vuzix.com) in late March, 2010. This new release expands the depth of supported stereoscop- ic formats and adds support for the soon to be released Wrap 6-DoF (Degree of Freedom) Tracker. This is a question many game developers are asking themselves, as there is no single clear winner in the format The Side-by-Side stereoscopic wars. Until recently, Frame Sequential appeared to be the leading format for PC games, but recently Side-by-Side 3D format has become popular of has made great strides. Vuzix offers end-users two options, Frame Sequential through the iWear® VR920 video late and is expected to show up in eyewear or Side-by-Side through the Wrap line of video eyewear. other titles moving forward. This format is supported in this new The sunglass style Wrap™ eyewear line is the latest addition to the Vuzix eyewear line. When equipped with an SDK release and Vuzix encour- optional Wrap VGA Adapter, it can be connected to any Windows based PC running XP, Vista or 7 - 32 or 64-bit ages software developers to sup- versions.
    [Show full text]
  • Whitepaper Head Mounted Displays & Data Glasses Applications and Systems
    Whitepaper Head Mounted Displays & Data Glasses Applications and Systems Dr.-Ing. Dipl.-Kfm. Christoph Runde Virtual Dimension Center (VDC) Fellbach Auberlenstr. 13 70736 Fellbach www.vdc-fellbach.de © Competence Centre for Virtual Reality and Cooperative Engineering w. V. – Virtual Dimension Center (VDC) System classes Application fields Directions of development Summary Content . System classes Head Mounted Display (HMD) – Video glasses – Data glasses . Simulator disease / Cyber Sickness . Application fields HMDs: interior inspections, training, virtual hedging engineering / ergonomics . Application fields data glasses: process support, teleservice, consistency checks, collaboration . Directions of development: technical specifications, (eye) tracking, retinal displays, light field technology, imaging depth sensors . Application preconditions information & integration (human, IT, processes) . Final remark 2 SystemSystem classes classes Application fields Directions of development Summary Head Mounted Displays (HMDs) – Overview . 1961: first HMD on market . 1965: 3D-tracked HMD by Ivan Sutherland . Since the 1970s a significant number of HMDs is applied in the military sector (training, additional display) Table: Important HMD- projects since the 1970s [Quelle: Li, Hua et. al.: Review and analysis of avionic helmet-mounted displays. In : Op-tical Engineering 52(11), 110901, Novembre2013] 3 SystemSystem classes classes Application fields Directions of development Summary Classification HMD – Video glasses – Data glasses Head Mounted Display
    [Show full text]
  • (VR): a Case Study of the HTC Vive Pro Eye's Usability
    healthcare Article Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye’s Usability Alexandra Sipatchin 1,*, Siegfried Wahl 1,2 and Katharina Rifai 1,2 1 Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; [email protected] (S.W.); [email protected] (K.R.) 2 Carl Zeiss Vision International GmbH, 73430 Aalen, Germany * Correspondence: [email protected] Abstract: Background: A case study is proposed to empirically test and discuss the eye-tracking status-quo hardware capabilities and limitations of an off-the-shelf virtual reality (VR) headset with embedded eye-tracking for at-home ready-to-go online usability in ophthalmology applications. Methods: The eye-tracking status-quo data quality of the HTC Vive Pro Eye is investigated with novel testing specific to objective online VR perimetry. Testing was done across a wide visual field of the head-mounted-display’s (HMD) screen and in two different moving conditions. A new automatic and low-cost Raspberry Pi system is introduced for VR temporal precision testing for assessing the usability of the HTC Vive Pro Eye as an online assistance tool for visual loss. Results: The target position on the screen and head movement evidenced limitations of the eye-tracker capabilities as a perimetry assessment tool. Temporal precision testing showed the system’s latency of 58.1 milliseconds (ms), evidencing its good potential usage as a ready-to-go online assistance tool for visual loss. Conclusions: The test of the eye-tracking data quality provides novel analysis useful for testing upcoming VR headsets with embedded eye-tracking and opens discussion regarding expanding future introduction of these HMDs into patients’ homes for low-vision clinical usability.
    [Show full text]
  • Light Engines for XR Smartglasses by Jonathan Waldern, Ph.D
    August 28, 2020 Light Engines for XR Smartglasses By Jonathan Waldern, Ph.D. The near-term obstacle to meeting an elegant form factor for Extended Reality1 (XR) glasses is the size of the light engine2 that projects an image into the waveguide, providing a daylight-bright, wide field-of-view mobile display For original equipment manufacturers (OEMs) developing XR smartglasses that employ diffractive wave- guide lenses, there are several light engine architectures contending for the throne. Highly transmissive daylight-bright glasses demanded by early adopting customers translate to a level of display efficiency, 2k-by-2k and up resolution plus high contrast, simply do not exist today in the required less than ~2cc (cubic centimeter) package size. This thought piece examines both Laser and LED contenders. It becomes clear that even if MicroLED (µLED) solutions do actually emerge as forecast in the next five years, fundamentally, diffractive wave- guides are not ideally paired to broadband LED illumination and so only laser based light engines, are the realistic option over the next 5+ years. Bottom Line Up Front • µLED, a new emissive panel technology causing considerable excitement in the XR community, does dispense with some bulky refractive illumination optics and beam splitters, but still re- quires a bulky projection lens. Yet an even greater fundamental problem of µLEDs is that while bright compared with OLED, the technology falls short of the maximum & focused brightness needed for diffractive and holographic waveguides due to the fundamental inefficiencies of LED divergence. • A laser diode (LD) based light engine has a pencil like beam of light which permits higher effi- ciency at a higher F#.
    [Show full text]
  • A Survey of Augmented Reality Technologies, Applications and Limitations
    The International Journal of Virtual Reality, 2010, 9(2):1-20 1 A Survey of Augmented Reality Technologies, Applications and Limitations D.W.F. van Krevelen and R. Poelman Systems Engineering Section, Delft University of Technology, Delft, The Netherlands1 Abstract— We are on the verge of ubiquitously adopting shino [107] (Fig. 1), AR is one part of the general area of Augmented Reality (AR) technologies to enhance our percep- mixed reality. Both virtual environments (or virtual reality) tion and help us see, hear, and feel our environments in new and and augmented virtuality, in which real objects are added to enriched ways. AR will support us in fields such as education, virtual ones, replace the surrounding environment by a vir- maintenance, design and reconnaissance, to name but a few. tual one. In contrast, AR provides local virtuality. When This paper describes the field of AR, including a brief definition considering not just artificiality but also user transportation, and development history, the enabling technologies and their characteristics. It surveys the state of the art by reviewing some Benford et al. [28] classify AR as separate from both VR and recent applications of AR technology as well as some known telepresence (see Fig. 2). Following [17, 19], an AR system: limitations regarding human factors in the use of AR systems combines real and virtual objects in a real environment; that developers will need to overcome. registers (aligns) real and virtual objects with each other; Index Terms— Augmented Reality, Technologies, Applica- and tions, Limitations. runs interactively, in three dimensions, and in real time.
    [Show full text]
  • An Alternative Natural Action Interface for Virtual Reality
    EPiC Series in Computing Volume 58, 2019, Pages 271{281 Proceedings of 34th International Confer- ence on Computers and Their Applications An Alternative Natural Action Interface for Virtual Reality Jay Woo1, Andrew Frost1, Tyler Goffinet1, Vinh Le1, Connor Scully-Allison1, Chase Carthen1, and Sergiu Dascalu Department of Computer Science and Engineering University of Nevada, Reno Reno NV, 89557 jjwoo95,vdacle,[email protected] [email protected] [email protected] Abstract The development of affordable virtual reality (VR) hardware represents a keystone of progress in modern software development and human-computer interaction. Despite the ready availability of robust hardware tools, there is presently a lack of video games or software in VR that demonstrates the gamut of unique and novel interfaces a virtual environment can provide. In this paper, we present a virtual reality video game which introduces unique user interface elements that can only be achieved in a 3D virtual en- vironment. The video game, titled Wolf Hunt, provides users with a menu system that innovates on traditional interfaces with a virtual representation of a common item people interact with daily: a mobile phone. Wolf Hunt throws users into a procedurally generated world where they take the role of an individual escaping a wolf assailant. Deviating from traditional locomotion options in VR interfaces, such as teleportation, Wolf Hunt measures the displacement of hand-held VR controllers with the VR headset to simulate the natural action of running. Wolf Hunt provides an alternate interfacing solution for VR systems without having to conform to common 2D interface design schemes.
    [Show full text]
  • STAR 1200 & 1200XL User Guide
    STAR 1200 & 1200XL Augmented Reality Systems User Guide VUZIX CORPORATION VUZIX CORPORATION STAR 1200 & 1200XL – User Guide © 2012 Vuzix Corporation 2166 Brighton Henrietta Town Line Road Rochester, New York 14623 Phone: 585.359.5900 ! Fax: 585.359.4172 www.vuzix.com 2 1. STAR 1200 & 1200XL OVERVIEW ................................... 7! System Requirements & Compatibility .................................. 7! 2. INSTALLATION & SETUP .................................................. 14! Step 1: Accessory Installation .................................... 14! Step 2: Hardware Connections .................................. 15! Step 3: Adjustment ..................................................... 19! Step 4: Software Installation ...................................... 21! Step 5: Tracker Calibration ........................................ 24! 3. CONTROL BUTTON & ON SCREEN DISPLAY ..................... 27! VGA Controller .................................................................... 27! PowerPak+ Controller ......................................................... 29! OSD Display Options ........................................................... 30! 4. STAR HARDWARE ......................................................... 34! STAR Display ...................................................................... 34! Nose Bridge ......................................................................... 36! Focus Adjustment ................................................................ 37! Eye Separation ...................................................................
    [Show full text]
  • Facebook, Ray-Ban Launch Smart Glasses—Who Will Wear Them? 9 September 2021, by Barbara Ortutay
    Facebook, Ray-Ban launch smart glasses—who will wear them? 9 September 2021, by Barbara Ortutay In a blog post, Facebook said the glasses let people "capture life's spontaneous moments as they happen from a unique first-person perspective," as well as listen to music, talk to people and, using the Facebook View app, share photos and videos on social media. Facebook signed a multi-year partnership with EssilorLuxottica. The glasses are the first version of what's likely to be more wearable gadgets as the social media giant looks for platforms beyond smartphones. Ray-Ban Stories come out of This photo provided by Facebook shows Ray-Ban Facebook Reality Labs which also oversees the internet-connected smart glasses. In a partnership with Oculus virtual reality headset and the Portal video Ray-Ban, parent EssilorLuxottica, Facebook on calling gadget. Thursday, Sept. 9, 2021, unveiled Ray-Ban Stories—connected eyewear with built-in speakers and Anticipating privacy concerns, Facebook said that microphone for making calls, a companion app that isn't by default the glasses "collect data that's needed to Facebook and a charging case. Credit: Facebook via AP make your glasses work and function, like your battery status to alert you when your battery is low, your email address and password for your Facebook login to verify it's really you when you log Seven years after the ill-fated Google Glass, and into the Facebook View app." Users can take five years after Snap rolled out Spectacles, photos and videos using the glasses, but they can't another tech giant is trying its hand at internet- post directly to Facebook or any other social media connected smart glasses, hoping that this time platform.
    [Show full text]