Sheaf Cohomology

Total Page:16

File Type:pdf, Size:1020Kb

Sheaf Cohomology Sheaf Cohomology In this note we give the background needed to de…ne sheaf cohomology. In particular, we prove the following two facts. First, the category Ab(X) of sheaves on a topological space X has enough injectives. Second, if is the global function functor from Ab(X) to the category of Abelian groups, we show that is a left exact functor. Therefore, the right derived functors Rn() exist, and we can then de…ne the cohomology groups Hn(X; ) = Rn()( ) for any F F sheaf on X. Sheaf cohomology is one of the major tools of modern algebraic geometry, and F it is a good example to help justify learning homological algebra over an arbitrary Abelian category instead of restricting to categories of modules. As we will see, several facts come from producing an adjoint pair of functors, including the proof that is left exact. While one can prove that is left exact in a straightforward manner, we choose to prove it with the help of adjoint functors to illustrate the power of adjoint pairs. There are subtleties in working with sheaves and presheaves. Since every sheaf is a presheaf, we can view the category of sheaves as a subcategory of the category of presheaves. It is not hard to show that the global section functor is exact in the category of presheaves, but it is not exact in the category of sheaves. This is due to the fact that cokernels are di¤erent in the two categories even though morphisms are not. We will give an example to demonstrate this. In fact, sheaf cohomology is nontrivial exactly because the global section functor is not exact. Therefore, one can say that sheaf cohomology exists since cokernels are di¤erent in these two categories. We now recall the de…nitions of presheaf and sheaf. Let Top(X) be the category of open sets of a topological space X, where the morphisms are inclusions. That is, hom(U; V ) consists of the inclusion map U V if U V , and hom(U; V ) is empty otherwise. A presheaf ! (of Abelian groups) on X is a contravariant functor from Top(X) to the category of Abelian F groups with (?) = 0. Therefore, if is a presheaf on X, then for every open set U there F F is a group (U), and for every inclusion U V , there is a map resU;V : (V ) (U), such F F !F that for open sets U V W , the composition resU;V resV;W : (W ) (V ) (U) is F !F !F equal to resU;W . The maps resU;V is generally called restriction maps, and resU;V (f) is often written f V . This terminology is due to the following examples. j Example 1. Let X be a topological space. De…ne by (U) = C(U; C), the group of F F continuous functions from U to C, for any open set U of X. If U V , then restriction of functions gives a group homomorphism (V ) (U). Thus, is a presheaf. F !F F 1 Example 2. Let X = C. De…ne on X by (U) is the set of all analytic complex valued A A functions de…ned on U. Again, for V U, the map (U) (V ) is the restriction of A !A functions map. Then is a presheaf. A Example 3. Let X be an algebraic variety over an algebraically closed …eld k. De…ne (U) to be the ring of regular functions on U. That is, an element of (U) is a function O O f : U k such that for every x U there is an open neighborhood V of x such that f is ! 2 the quotient of polynomial functions on V . If U V , then restriction of functions gives the map (V ) (U). The presheaf is called the sheaf of regular functions on X. O !O O Example 4. Let X = x be a one point topological space. If is a presheaf on X, then f g F we have an Abelian group A = (X), and no other groups associated to since the only F F nonempty open subset of X is X itself. Furthermore, the only nonidentity restriction map is the trivial map A = (X) 0 = (?). Thus, a presheaf on is really nothing more F ! F F than an Abelian group. We now give the de…nition of a sheaf. De…nition 5. Let be a presheaf on X. Then is a sheaf provided that the following two F F conditions hold: (i) if U is an open set on X, if Ui is an open cover of U, and if f (U) f g 2 F such that f U = 0 for all i, then f = 0; and (ii) if Ui is an open cover of U and if there are j i f g fi (Ui) satisfying fi Ui Uj = fj Ui Uj for all i; j, then there is an f (U) with f Ui = fi 2 F j \ j \ 2 F j for all i. It is not hard to see that the presheaves of the examples above are in fact sheaves. In fact, the properties of the de…nition of a sheaf are motivated by examples involving functions, since functions clearly have the properties of the de…nition. Not all presheaves are sheaves, as we can see in the following example. Example 6. Let A be an Abelian group. If X is a topological space, then we may de…ne a presheaf A by A(U) = A for all U, and the restriction maps are all just the identity map on A. This presheaf is sometimes called the constant presheaf on X associated to A. It is clear that A ise a presheaf.e However, it need not be a sheaf. For example, suppose that X is the disjoint union of two open sets U1 and U2; that is, X is not connected. If a; b are distinct elementse of A, then a A(U1) and b A(U2) do not glue to give an element of A(X) even 2 2 though the compatibility axiom a U1 U2 = b U1 U2 is trivially true since U1 U2 = ? and j \ j \ \ A(?) = 0. It is true, however,e that if X eis connected, then A is a sheaf. e Example 7. Let A be an Abelian group, made into a topological space by giving it the e discrete topology. If X is a topological space, then we de…ne the constant sheaf associated to A by (U) = C(U; A), the group of continuous functions from U to A. The restriction A maps are given by ordinary function restriction. It is straightforward from the de…nition to see that is a sheaf. Note that if a A, then the constant function fa : X A given by A 2 ! fa(x) = a is an element of (X), and so fa U (U) for any U. In fact, if U is connected, A j 2 A then (U) = fa : a A = A. It is this fact that gives the name constant sheaf to . A f 2 g A 2 We will have categories of presheaves and of sheaves once we de…ne morphisms of presheaves. De…nition 8. A morphism ' : of presheaves is a natural transformation of functors. F!G That is, for every open set U, there is a group homomorphism ' : (U) (U), and for U F !G every inclusion V U, the following diagram commutes. ' (U) U - (U) F G res res ? ? (V ) - (V ) F 'V G Example 9. Let U be an open set of a topological space X. If is a sheaf on X, we get F another sheaf on X as follows. For V an open set in X, set (V ) = (U V ). If we G G F \ de…ne ' : by ' : (V ) (V ) = (U V ) is the restriction map, then the F!G V F !G F \ compatibility of the restriction maps shows that ' is a morphism of sheaves, as is indicated by the following commutative diagram. (V ) - (U V ) F F \ ? ? (W ) - (U W ) F F \ Example 10. Let A be an Abelian group and X a topological space. Looking at the constant sheaves and presheaves of Examples 6 and 7, we have a natural morphism of presheaves ' : A , given by ' (a) = fa U for any a A and any open U. !A U j 2 If and are sheaves, then a morphism ' : of sheaves is just a presheaf e F G F!G morphism. We will write homX ( ; ) for the group of all sheaf homomorphisms from F G F to . We thus have two categories associated to a topological space X, the category of G presheaves on X and that of sheaves on X. There is the obvious inclusion functor i from sheaves on X to presheaves on X. It is clear that i is an additive functor. Let ' : be a morphism of presheaves. Then we de…ne the following presheaves F!G ker('): U ker(' ); 7! U coker('): U coker(' ); 7! U im('): U im(' ): 7! U From these de…nitions it is easy to see that a sequence 0 0 of presheaves is !F!G!G! exact if and only if each sequence 0 (U) (U) (U) 0 is exact. In particular, if !F !G !H ! is the global section functor on presheaves; i.e., ( ) = (X), then is an exact functor. F F As we will see, the global section functor on sheaves is only left exact. The di¤erence between these categories with respect to comes from the following facts: if and are sheaves, F G 3 then ker(') is a sheaf; however, coker(') and im(') need not be sheaves.
Recommended publications
  • The Smooth Locus in Infinite-Level Rapoport-Zink Spaces
    The smooth locus in infinite-level Rapoport-Zink spaces Alexander Ivanov and Jared Weinstein February 25, 2020 Abstract Rapoport-Zink spaces are deformation spaces for p-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let M8 be an infinite-level Rapoport-Zink space of ˝ ˝ EL type, and let M8 be one connected component of its geometric fiber. We show that M8 contains a dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of p-divisible groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically smooth locus in the infinite-level modular curve Xpp8q˝ is exactly the locus of elliptic curves E with supersingular reduction, such that the formal group of E has no extra endomorphisms. 1 Main theorem Let p be a prime number. Rapoport-Zink spaces [RZ96] are deformation spaces of p-divisible groups equipped with some extra structure. This article concerns the geometry of Rapoport-Zink spaces of EL type (endomor- phisms + level structure). In particular we consider the infinite-level spaces MD;8, which are preperfectoid spaces [SW13]. An example is the space MH;8, where H{Fp is a p-divisible group of height n. The points of MH;8 over a nonarchimedean field K containing W pFpq are in correspondence with isogeny classes of p-divisible groups G{O equipped with a quasi-isogeny G b O {p Ñ H b O {p and an isomorphism K OK K Fp K n Qp – VG (where VG is the rational Tate module).
    [Show full text]
  • Bertini's Theorem on Generic Smoothness
    U.F.R. Mathematiques´ et Informatique Universite´ Bordeaux 1 351, Cours de la Liberation´ Master Thesis in Mathematics BERTINI1S THEOREM ON GENERIC SMOOTHNESS Academic year 2011/2012 Supervisor: Candidate: Prof.Qing Liu Andrea Ricolfi ii Introduction Bertini was an Italian mathematician, who lived and worked in the second half of the nineteenth century. The present disser- tation concerns his most celebrated theorem, which appeared for the first time in 1882 in the paper [5], and whose proof can also be found in Introduzione alla Geometria Proiettiva degli Iperspazi (E. Bertini, 1907, or 1923 for the latest edition). The present introduction aims to informally introduce Bertini’s Theorem on generic smoothness, with special attention to its re- cent improvements and its relationships with other kind of re- sults. Just to set the following discussion in an historical perspec- tive, recall that at Bertini’s time the situation was more or less the following: ¥ there were no schemes, ¥ almost all varieties were defined over the complex numbers, ¥ all varieties were embedded in some projective space, that is, they were not intrinsic. On the contrary, this dissertation will cope with Bertini’s the- orem by exploiting the powerful tools of modern algebraic ge- ometry, by working with schemes defined over any field (mostly, but not necessarily, algebraically closed). In addition, our vari- eties will be thought of as abstract varieties (at least when over a field of characteristic zero). This fact does not mean that we are neglecting Bertini’s original work, containing already all the rele- vant ideas: the proof we shall present in this exposition, over the complex numbers, is quite close to the one he gave.
    [Show full text]
  • Sheaves with Values in a Category7
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology Vol. 3, pp. l-18, Pergamon Press. 196s. F’rinted in Great Britain SHEAVES WITH VALUES IN A CATEGORY7 JOHN W. GRAY (Received 3 September 1963) $4. IN’IXODUCTION LET T be a topology (i.e., a collection of open sets) on a set X. Consider T as a category in which the objects are the open sets and such that there is a unique ‘restriction’ morphism U -+ V if and only if V c U. For any category A, the functor category F(T, A) (i.e., objects are covariant functors from T to A and morphisms are natural transformations) is called the category ofpresheaces on X (really, on T) with values in A. A presheaf F is called a sheaf if for every open set UE T and for every strong open covering {U,) of U(strong means {U,} is closed under finite, non-empty intersections) we have F(U) = Llim F( U,) (Urn means ‘generalized’ inverse limit. See $4.) The category S(T, A) of sheares on X with values in A is the full subcategory (i.e., morphisms the same as in F(T, A)) determined by the sheaves. In this paper we shall demonstrate several properties of S(T, A): (i) S(T, A) is left closed in F(T, A). (Theorem l(i), $8). This says that if a left limit (generalized inverse limit) of sheaves exists as a presheaf then that presheaf is a sheaf.
    [Show full text]
  • Arxiv:1307.5568V2 [Math.AG]
    PARTIAL POSITIVITY: GEOMETRY AND COHOMOLOGY OF q-AMPLE LINE BUNDLES DANIEL GREB AND ALEX KURONYA¨ To Rob Lazarsfeld on the occasion of his 60th birthday Abstract. We give an overview of partial positivity conditions for line bundles, mostly from a cohomological point of view. Although the current work is to a large extent of expository nature, we present some minor improvements over the existing literature and a new result: a Kodaira-type vanishing theorem for effective q-ample Du Bois divisors and log canonical pairs. Contents 1. Introduction 1 2. Overview of the theory of q-ample line bundles 4 2.1. Vanishing of cohomology groups and partial ampleness 4 2.2. Basic properties of q-ampleness 7 2.3. Sommese’s geometric q-ampleness 15 2.4. Ample subschemes, and a Lefschetz hyperplane theorem for q-ample divisors 17 3. q-Kodaira vanishing for Du Bois divisors and log canonical pairs 19 References 23 1. Introduction Ampleness is one of the central notions of algebraic geometry, possessing the extremely useful feature that it has geometric, numerical, and cohomological characterizations. Here we will concentrate on its cohomological side. The fundamental result in this direction is the theorem of Cartan–Serre–Grothendieck (see [Laz04, Theorem 1.2.6]): for a complete arXiv:1307.5568v2 [math.AG] 23 Jan 2014 projective scheme X, and a line bundle L on X, the following are equivalent to L being ample: ⊗m (1) There exists a positive integer m0 = m0(X, L) such that L is very ample for all m ≥ m0. (2) For every coherent sheaf F on X, there exists a positive integer m1 = m1(X, F, L) ⊗m for which F ⊗ L is globally generated for all m ≥ m1.
    [Show full text]
  • Smoothness, Semi-Stability and Alterations
    PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. A. J. DE JONG Smoothness, semi-stability and alterations Publications mathématiques de l’I.H.É.S., tome 83 (1996), p. 51-93 <http://www.numdam.org/item?id=PMIHES_1996__83__51_0> © Publications mathématiques de l’I.H.É.S., 1996, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ SMOOTHNESS, SEMI-STABILITY AND ALTERATIONS by A. J. DE JONG* CONTENTS 1. Introduction .............................................................................. 51 2. Notations, conventions and terminology ...................................................... 54 3. Semi-stable curves and normal crossing divisors................................................ 62 4. Varieties.................................................................................. QQ 5. Alterations and curves ..................................................................... 76 6. Semi-stable alterations ..................................................................... 82 7. Group actions and alterations .............................................................
    [Show full text]
  • SHEAVES, TOPOSES, LANGUAGES Acceleration Based on A
    Chapter 7 Logic of behavior: Sheaves, toposes, and internal languages 7.1 How can we prove our machine is safe? Imagine you are trying to design a system of interacting components. You wouldn’t be doing this if you didn’t have a goal in mind: you want the system to do something, to behave in a certain way. In other words, you want to restrict its possibilities to a smaller set: you want the car to remain on the road, you want the temperature to remain in a particular range, you want the bridge to be safe for trucks to pass. Out of all the possibilities, your system should only permit some. Since your system is made of components that interact in specified ways, the possible behavior of the whole—in any environment—is determined by the possible behaviors of each of its components in their local environments, together with the precise way in which they interact.1 In this chapter, we will discuss a logic wherein one can describe general types of behavior that occur over time, and prove properties of a larger-scale system from the properties and interaction patterns of its components. For example, suppose we want an autonomous vehicle to maintain a distance of some safe R from other objects. To do so, several components must interact: a 2 sensor that approximates the real distance by an internal variable S0, a controller that uses S0 to decide what action A to take, and a motor that moves the vehicle with an 1 The well-known concept of emergence is not about possibilities, it is about prediction.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • On Sheaf Theory
    Lectures on Sheaf Theory by C.H. Dowker Tata Institute of Fundamental Research Bombay 1957 Lectures on Sheaf Theory by C.H. Dowker Notes by S.V. Adavi and N. Ramabhadran Tata Institute of Fundamental Research Bombay 1956 Contents 1 Lecture 1 1 2 Lecture 2 5 3 Lecture 3 9 4 Lecture 4 15 5 Lecture 5 21 6 Lecture 6 27 7 Lecture 7 31 8 Lecture 8 35 9 Lecture 9 41 10 Lecture 10 47 11 Lecture 11 55 12 Lecture 12 59 13 Lecture 13 65 14 Lecture 14 73 iii iv Contents 15 Lecture 15 81 16 Lecture 16 87 17 Lecture 17 93 18 Lecture 18 101 19 Lecture 19 107 20 Lecture 20 113 21 Lecture 21 123 22 Lecture 22 129 23 Lecture 23 135 24 Lecture 24 139 25 Lecture 25 143 26 Lecture 26 147 27 Lecture 27 155 28 Lecture 28 161 29 Lecture 29 167 30 Lecture 30 171 31 Lecture 31 177 32 Lecture 32 183 33 Lecture 33 189 Lecture 1 Sheaves. 1 onto Definition. A sheaf S = (S, τ, X) of abelian groups is a map π : S −−−→ X, where S and X are topological spaces, such that 1. π is a local homeomorphism, 2. for each x ∈ X, π−1(x) is an abelian group, 3. addition is continuous. That π is a local homeomorphism means that for each point p ∈ S , there is an open set G with p ∈ G such that π|G maps G homeomorphi- cally onto some open set π(G).
    [Show full text]
  • Relative Duality for Quasi-Coherent Sheaves Compositio Mathematica, Tome 41, No 1 (1980), P
    COMPOSITIO MATHEMATICA STEVEN L. KLEIMAN Relative duality for quasi-coherent sheaves Compositio Mathematica, tome 41, no 1 (1980), p. 39-60 <http://www.numdam.org/item?id=CM_1980__41_1_39_0> © Foundation Compositio Mathematica, 1980, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 41, Fasc. 1, 1980, pag. 39-60 @ 1980 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn Printed in the Netherlands RELATIVE DUALITY FOR QUASI-COHERENT SHEAVES Steven L. Kleiman Introduction In practice it is useful to know when the relative duality map is an isomorphism, where f : Xi Y is a flat, locally projective, finitely presentable map whose fibers X(y) are pure r-dimensional, F is a quasi-coherent sheaf on X, and N is one on Y, and where Extf denotes the m th derived function of f * Homx. (The notion Ext f was used by Grothendieck in his Bourbaki talk on the Hilbert scheme, no. 221, p. 4, May 1961, and it may have originated there.) Theorem (21) below deals with the following criterion: For f flat and lf p (locally finitely presentable), Dm is an isomorphism for all N if and only if Rr-mf *F commutes with base-change.
    [Show full text]
  • 3. Ample and Semiample We Recall Some Very Classical Algebraic Geometry
    3. Ample and Semiample We recall some very classical algebraic geometry. Let D be an in- 0 tegral Weil divisor. Provided h (X; OX (D)) > 0, D defines a rational map: φ = φD : X 99K Y: The simplest way to define this map is as follows. Pick a basis σ1; σ2; : : : ; σm 0 of the vector space H (X; OX (D)). Define a map m−1 φ: X −! P by the rule x −! [σ1(x): σ2(x): ··· : σm(x)]: Note that to make sense of this notation one has to be a little careful. Really the sections don't take values in C, they take values in the fibre Lx of the line bundle L associated to OX (D), which is a 1-dimensional vector space (let us assume for simplicity that D is Carier so that OX (D) is locally free). One can however make local sense of this mor- phism by taking a local trivialisation of the line bundle LjU ' U × C. Now on a different trivialisation one would get different values. But the two trivialisations differ by a scalar multiple and hence give the same point in Pm−1. However a much better way to proceed is as follows. m−1 0 ∗ P ' P(H (X; OX (D)) ): Given a point x 2 X, let 0 Hx = f σ 2 H (X; OX (D)) j σ(x) = 0 g: 0 Then Hx is a hyperplane in H (X; OX (D)), whence a point of 0 ∗ φ(x) = [Hx] 2 P(H (X; OX (D)) ): Note that φ is not defined everywhere.
    [Show full text]
  • Residues, Duality, and the Fundamental Class of a Scheme-Map
    RESIDUES, DUALITY, AND THE FUNDAMENTAL CLASS OF A SCHEME-MAP JOSEPH LIPMAN Abstract. The duality theory of coherent sheaves on algebraic vari- eties goes back to Roch's half of the Riemann-Roch theorem for Riemann surfaces (1870s). In the 1950s, it grew into Serre duality on normal projective varieties; and shortly thereafter, into Grothendieck duality for arbitrary varieties and more generally, maps of noetherian schemes. This theory has found many applications in geometry and commutative algebra. We will sketch the theory in the reasonably accessible context of a variety V over a perfect field k, emphasizing the role of differential forms, as expressed locally via residues and globally via the fundamental class of V=k. (These notions will be explained.) As time permits, we will indicate some connections with Hochschild homology, and generalizations to maps of noetherian (formal) schemes. Even 50 years after the inception of Grothendieck's theory, some of these generalizations remain to be worked out. Contents Introduction1 1. Riemann-Roch and duality on curves2 2. Regular differentials on algebraic varieties4 3. Higher-dimensional residues6 4. Residues, integrals and duality7 5. Closing remarks8 References9 Introduction This talk, aimed at graduate students, will be about the duality theory of coherent sheaves on algebraic varieties, and a bit about its massive|and still continuing|development into Grothendieck duality theory, with a few indications of applications. The prerequisite is some understanding of what is meant by cohomology, both global and local, of such sheaves. Date: May 15, 2011. 2000 Mathematics Subject Classification. Primary 14F99. Key words and phrases. Hochschild homology, Grothendieck duality, fundamental class.
    [Show full text]
  • A Sheaf Theoretic Approach to Measure Theory
    A SHEAF THEORETIC APPROACH TO MEASURE THEORY by Matthew Jackson B.Sc. (Hons), University of Canterbury, 1996 Mus.B., University of Canterbury, 1997 M.A. (Dist), University of Canterbury, 1998 M.S., Carnegie Mellon University, 2000 Submitted to the Graduate Faculty of the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2006 UNIVERSITY OF PITTSBURGH DEPARTMENT OF MATHEMATICS This dissertation was presented by Matthew Jackson It was defended on 13 April, 2006 and approved by Bob Heath, Department of Mathematics, University of Pittsburgh Steve Awodey, Departmant of Philosophy, Carnegie Mellon University Dana Scott, School of Computer Science, Carnegie Mellon University Paul Gartside, Department of Mathematics, University of Pittsburgh Chris Lennard, Department of Mathematics, University of Pittsburgh Dissertation Director: Bob Heath, Department of Mathematics, University of Pittsburgh ii ABSTRACT A SHEAF THEORETIC APPROACH TO MEASURE THEORY Matthew Jackson, PhD University of Pittsburgh, 2006 The topos Sh( ) of sheaves on a σ-algebra is a natural home for measure theory. F F The collection of measures is a sheaf, the collection of measurable real valued functions is a sheaf, the operation of integration is a natural transformation, and the concept of almost-everywhere equivalence is a Lawvere-Tierney topology. The sheaf of measurable real valued functions is the Dedekind real numbers object in Sh( ) (Scott [24]), and the topology of “almost everywhere equivalence“ is the closed F topology induced by the sieve of negligible sets (Wendt[28]) The other elements of measure theory have not previously been described using the internal language of Sh( ).
    [Show full text]