Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-566 Manuscript under review for journal Biogeosciences Discussion started: 29 January 2018 c Author(s) 2018. CC BY 4.0 License. Impacts of temperature and soil characteristics on methane production and oxidation in Arctic polygonal tundra Jianqiu Zheng1, Taniya RoyChowdhury1,2, Ziming Yang3,4, Baohua Gu3, Stan D. Wullschleger3,5, David E. Graham1,5 5 1 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA 2 Now at Department of Environmental Science & Technology, University of Maryland, College Park, Maryland, 20742, USA 3 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA 4 Now at Department of Chemistry, Oakland University, Rochester, Michigan, 48309, USA 10 5 Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA Correspondence to: David E. Graham (
[email protected]) This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. 15 Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). 20 Abstract Methane (CH4) oxidation mitigates CH4 emission from soils. However, it is still highly uncertain whether soils in high- latitude ecosystems will function as a net source or sink for this important greenhouse gas.