Electromagnetic Induction

Total Page:16

File Type:pdf, Size:1020Kb

Electromagnetic Induction Chapter 25: Electromagnetic Induction Electromagnetic Induction The discovery that an electric current in a wire produced magnetic fields was a turning point in physics and the technology that followed. The question now was: If an electric current could produce a magnetic field, then… Could a magnetic field produce electric current? In 1831, Michael Faraday in England and Joseph Henry in the U.S. independently discovered that the answer was… Yes… actually a changing magnetic field produces a current. Faraday and Henry both discovered that electric current could be produced simply by moving a magnet in or out of a wire coil. No voltage (emf) or other battery source was needed—only the motion of a magnet in a coil (or a single wire loop). They discovered that voltage was induced by the relative motion between a wire and a magnetic field! emf = “Electromotive Force” Voltage is sometimes also referred to as the electromotive force, or emf. Inside the battery, there is a chemical reaction which is transferring electrons from one terminal to the other (the positive terminal is losing electrons and those electrons are moving through the battery to the negative terminal, gaining electrons). Because of the positive and negative charges on the battery terminals, an electric potential difference exists between them. This electric potential does work on each charge moving through the battery and ultimately, through the circuit. The Electromotive Force is doing the work. The maximum potential difference is specifically called the “Electromotive Force” (emf) of the battery. Specifically, if a battery is rated at 12 Volts, we say that it has a voltage of 12 volts, but does it always delivers 12 volts or 12 Joules/Coulomb? Basically, you can think of emf as voltage. Circuits with Batteries In a circuit with a battery, the battery creates an electric field w/in and parallel to the wire, directed from the positive toward the negative terminal. The electric field exerts a force (doing work) on the free electrons in the wire, and they respond by moving. Thus, current is produced! But, Faraday* discovered that a battery is not needed to induce current or voltage!! …voltage was induced by the relative motion between a wire and a magnetic field! i.e., Voltage (emf) is induced (brought about) whether the magnetic field of a magnet moves past a stationary conductor (wire), or the conductor moves through a stationary magnetic field. Phenomenal! This phenomenon of inducing voltage by changing the magnetic field around a conductor is called electromagnetic induction. *Faraday is given credit b/c he investigated “E-I” in more detail and published his findings first. His name goes with electromagnetic induction. A changing magnetic field induces a current in a coil of wire. Since current cannot exist without emf (voltage), a changing magnetic field induces emf. Fig 22.1 Another way emf and current can be induced is by changing the area of a coil in a fixed magnetic field. This is effectively changing magnetic field in the coil. http://phet.colorado.edu/new/simula tions/sims.php?sim=Faradays_Electr omagnetic_Lab As long as there is a complete (closed) circuit, both emf and current will be induced. If there is a break in the circuit, no current is induced but there still is an induced emf. Changing a magnetic field and changing the area of a coil are methods that can be used to create an induced emf. This phenomenon is called electromagnetic induction. EMF is induced in a moving conductor (the rod that the Motional EMF person is moving has an induced emf… if stop movingno more emf) RHR#1: as conductor is moved with velocity, v, to the right (thumb), magnetic field, B, is into page (straight fingers), and the magnetic force (not shown) experienced by + charge is up to top of rod, and – charge is down to bottom of rod. Charges separate due to magnetic force, inducing an emf, called motional emf because this emf is caused by the motion of charges through a magnetic field. Fig 22.4 The positive and negative charges accumulate (keep separating to the ends of the rod) until the magnetic force (causing them to separate) is balanced by the electric force between the charges (since + and – attract, this is an attractive force). Equilibrium is achieved when no further charge separation occurs because: Magnetic Force separating (repelling) charges = Electric Force attracting charges, then… Maximum emf is achieved! Magnetic Force separating (repelling) charges = Electric Force attracting charges, then… Maximum emf () is achieved! Electric Field causes attraction between + and – charges, or F=Eq Magnetic Field causes separation between + and – charges, or F=Bqv Electric Force = Magnetic Force when emf is maximum: Eq = Bqv (What divides out?) Recall: Electric Field also is defined as V/d, E = V/d = /L (/L)q = Bqv = B L v Motional emf when v, B, L are all ┴ to each other. Suppose the rod is moving at a speed of 5.0 m/s in a direction ┴ to a 0.80 T magnetic field. The rod has a length of 1.6 m and a negligible electrical resistance. The rails also have a negligible electrical resistance. The light bulb, however, has a resistance of 96 Ω. Find… (a) the emf produced by the rod, (b) the induced current in the circuit, (c) the electrical power delivered to the bulb, and (d) the energy used by the bulb in 60.0 seconds. Did you solve and find…? (a) = B L v = (0.80T) (1.6m) (5.0 m/s) = = 6.4V (b) I = V/R = /R = 6.4V/96Ω = I = 0.067A (c) P = IV = I = (0.067A) (6.4V) = P=0.43 W (d) E = Pt = (0.43W) (60.0 s) = E = 26J Who or what provides this 26J of nrg to the bulb? When emf causes a current, a second magnetic force enters the picture… RHR#1: Current I is up (thumb), magnetic field is into page (straight fingers) and magnetic force F is to the left (palm of hand), or opposite velocity. To keep the rod moving to the right with a constant velocity v, a counterbalancing force must be applied by an external agent (delivered by the person in this case) so that it acts opposite the magnetic force. Who or what provides the 26 J of electrical energy to the light bulb? The magnetic force caused by the induced current which must be counterbalanced by the hand for constant velocity is… F=ILBsin=(0.067A)(1.6m)(0.80T)=0.086N Since the person is doing this work, W=Fd (where F and d must be parallel) And since the rod moves at constant velocity, v=d/t or d=v t W=F(d) = F (v t) = (0.086N) (5.0m/s) (60.0s) = W=26J Energy is conserved!! The work done by the person is the same as the energy used by the bulb!! Just like a battery converts chemical energy into electrical energy to light a bulb in a circuit with a battery… The moving rod and magnetic force convert mechanical energy into electrical energy to light the bulb! Can the current flow in this direction and still cause the bulb to light? The current cannot be directed clockwise in this circuit, because the magnetic force exerted on the rod would then be in the same direction as the velocity. The rod would accelerate to the right and create energy on its own… Impossible! This violates the law of conservation of energy. Magnetic Flux…Relating magnetic field and the surface through which it passes. Recall… = B L v and starting at zero time… In a time to, the moving rod goes from position zero to xo at a constant velocity, v, and v =x/t = B L v = BL(x/t) = B(L x/t) And, for a rectangle, Area=(length)(width), or A=Lx, = B(A/t) = BA/t And, BA is given the name magnetic flux and is represented by the symbol Φ (phi) 2 Φ = B ┴ A (Units: Tm = Wb = weber) The magnitude of the emf is equal to the change in magnetic flux divided by the time interval during which the change occurs, or the rate at which the magnetic flux changes: = BA/t = Φ/t By convention, sometimes a minus sign is written to show that the direction of the current induced in the circuit is producing a magnetic force that opposes the motion of the rod (slowing the rod)… = - Φ/t What if the magnetic field B is at an angle (other than 90o) to the surface swept out by the rod? = Φ/t when the magnetic field B is to the surface, such as if B were directed along the (red)┴ Normal line above which we call the magnetic moment. When B is not to the surface (as in the black line above), need to find the┴ component of B that is to the surface using cosine… ┴ Φ = BA = [B(cos)]A = BA (cos) In general: Φ = BA (cos) If B or A are not consistent, then use the average. Magnetic flux is proportional to the number of field lines which pass through the area or loop. (a) (b) (c) This picture shows three orientations of a rectangular coil (drawn as an edge view), relative to the magnetic field lines. The magnetic field lines that pass through the coil are those in the regions shaded in blue. Notice, when oriented such as in (c), there is no magnetic flux. Φ = BA (cos) b/c angle is 90o… B is ┴ to the Normal to the surface (dashed line ┴ to B) A rectangular coil of wire is situated in a constant magnetic field whose magnitude is 0.50T.
Recommended publications
  • Quantum Mechanics Electromotive Force
    Quantum Mechanics_Electromotive force . Electromotive force, also called emf[1] (denoted and measured in volts), is the voltage developed by any source of electrical energy such as a batteryor dynamo.[2] The word "force" in this case is not used to mean mechanical force, measured in newtons, but a potential, or energy per unit of charge, measured involts. In electromagnetic induction, emf can be defined around a closed loop as the electromagnetic workthat would be transferred to a unit of charge if it travels once around that loop.[3] (While the charge travels around the loop, it can simultaneously lose the energy via resistance into thermal energy.) For a time-varying magnetic flux impinging a loop, theElectric potential scalar field is not defined due to circulating electric vector field, but nevertheless an emf does work that can be measured as a virtual electric potential around that loop.[4] In a two-terminal device (such as an electrochemical cell or electromagnetic generator), the emf can be measured as the open-circuit potential difference across the two terminals. The potential difference thus created drives current flow if an external circuit is attached to the source of emf. When current flows, however, the potential difference across the terminals is no longer equal to the emf, but will be smaller because of the voltage drop within the device due to its internal resistance. Devices that can provide emf includeelectrochemical cells, thermoelectric devices, solar cells and photodiodes, electrical generators,transformers, and even Van de Graaff generators.[4][5] In nature, emf is generated whenever magnetic field fluctuations occur through a surface.
    [Show full text]
  • On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
    Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics.
    [Show full text]
  • Electromotive Force
    Voltage - Electromotive Force Electrical current flow is the movement of electrons through conductors. But why would the electrons want to move? Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Chemical: Battery Magnetic: Generator Light (Photons): Solar Cell Mechanical: Phonograph pickup, crystal microphone, antiknock sensor Heat: Thermocouple Voltage is the amount of push or pressure that is being applied to the electrons. It is analogous to water pressure. With higher water pressure, more water is forced through a pipe in a given time. With higher voltage, more electrons are pushed through a wire in a given time. If a hose is connected between two faucets with the same pressure, no water flows. For water to flow through the hose, it is necessary to have a difference in water pressure (measured in psi) between the two ends. In the same way, For electrical current to flow in a wire, it is necessary to have a difference in electrical potential (measured in volts) between the two ends of the wire. A battery is an energy source that provides an electrical difference of potential that is capable of forcing electrons through an electrical circuit. We can measure the potential between its two terminals with a voltmeter. Water Tank High Pressure _ e r u e s g s a e t r l Pump p o + v = = t h g i e h No Pressure Figure 1: A Voltage Source Water Analogy. In any case, electrostatic force actually moves the electrons.
    [Show full text]
  • Alessandro Volta
    Alessandro Volta Alessandro Volta was born in Como, Lombardy, Italy, on February 18, 1745 and died in 1827. He was known for his most famous invention the battery. He was a physicist, chemist and a pioneer of electrical science. He came from a noble family. Until the age of four, Alessandro showed no signs of talking, and his family feared he was not very intelligent. Fortunately, they were wrong as he grew to be very intelligent. Although as a child he was slow to start speaking, he left school being fluent in Latin, French, English, and German. His language talents helped him in later life when he travelled and discussed science with others around the world. In 1775 he devised the electrophorus - a device that produced a static electric charge. He studied gas chemistry and discovered methane. He created experiments such as the ignition of gases by an electric spark. In 1800 he developed the votaic pile, which was the forerunner of the electric battery which produced a steady electric current. He didn’t intend to invent the battery, but to instead perform science experiments to prove another Italian scientist, Luigi Galvani, was incorrect in his scientific ideas. Alessandro set out to prove Galvani’s idea that animal electricity was the same as static electricity was an incorrect theory. In 1792 Volta performed experiments on dead and disembodied frogs legs. He found out that the key to getting them to move is by contacting two different types of metals; if you use the same type of metal the electricity did not pass through the frog.
    [Show full text]
  • Weberˇs Planetary Model of the Atom
    Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S.
    [Show full text]
  • Electrochemistry of Fuel Cell - Kouichi Takizawa
    ENERGY CARRIERS AND CONVERSION SYSTEMS – Vol. II - Electrochemistry of Fuel Cell - Kouichi Takizawa ELECTROCHEMISTRY OF FUEL CELL Kouichi Takizawa Tokyo Electric Power Company, Tokyo, Japan Keywords : electrochemistry, fuel cell, electrochemical reaction, chemical energy, anode, cathode, electrolyte, Nernst equation, hydrogen-oxygen fuel cell, electromotive force Contents 1. Introduction 2. Principle of Electricity Generation by Fuel Cells 3. Electricity Generation Characteristics of Fuel Cells 4. Fuel Cell Efficiency Glossary Bibliography Biographical Sketch Summary Fuel cells are devices that utilize electrochemical reactions to generate electric power. They are believed to give a significant impact on the future energy system. In particular, when hydrogen can be generated from renewable energy resources, it is certain that the fuel cell should play a significant role. Even today, some types of fuel cells have been already used in practical applications such as combined heat and power generation applications and space vehicle applications. Though research and development activities are still required, the fuel cell technology is one of the most important technologies that allow us to draw the environment friendly society in the twenty-first century. This section describes the general introduction of fuel cell technology with a brief overview of the principle of fuel cells and their historical background. 1. Introduction A fuel cellUNESCO is a system of electric power – generation,EOLSS which utilizes electrochemical reactions. It can produce electric power by inducing both a reaction to oxidize hydrogen obtained by reforming natural gas or other fuels, and a reaction to reduce oxygen in the air, each occurringSAMPLE at separate electrodes conne CHAPTERScted to an external circuit.
    [Show full text]
  • Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
    Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b.
    [Show full text]
  • A HISTORICAL OVERVIEW of BASIC ELECTRICAL CONCEPTS for FIELD MEASUREMENT TECHNICIANS Part 1 – Basic Electrical Concepts
    A HISTORICAL OVERVIEW OF BASIC ELECTRICAL CONCEPTS FOR FIELD MEASUREMENT TECHNICIANS Part 1 – Basic Electrical Concepts Gerry Pickens Atmos Energy 810 Crescent Centre Drive Franklin, TN 37067 The efficient operation and maintenance of electrical and metal. Later, he was able to cause muscular contraction electronic systems utilized in the natural gas industry is by touching the nerve with different metal probes without substantially determined by the technician’s skill in electrical charge. He concluded that the animal tissue applying the basic concepts of electrical circuitry. This contained an innate vital force, which he termed “animal paper will discuss the basic electrical laws, electrical electricity”. In fact, it was Volta’s disagreement with terms and control signals as they apply to natural gas Galvani’s theory of animal electricity that led Volta, in measurement systems. 1800, to build the voltaic pile to prove that electricity did not come from animal tissue but was generated by contact There are four basic electrical laws that will be discussed. of different metals in a moist environment. This process They are: is now known as a galvanic reaction. Ohm’s Law Recently there is a growing dispute over the invention of Kirchhoff’s Voltage Law the battery. It has been suggested that the Bagdad Kirchhoff’s Current Law Battery discovered in 1938 near Bagdad was the first Watts Law battery. The Bagdad battery may have been used by Persians over 2000 years ago for electroplating. To better understand these laws a clear knowledge of the electrical terms referred to by the laws is necessary. Voltage can be referred to as the amount of electrical These terms are: pressure in a circuit.
    [Show full text]
  • Current, Resistance, and Electromotive Force
    Current, Resistance, and Electromotive Force Physics 231 Lecture 5-1 Fall 2008 Current Current is the motion of any charge, positive or negative, from one point to another Current is defined to be the amount of charge that passes a given point in a given amount of time dQ I = dt 1Coulomb Current has units of Ampere = 1sec Physics 231 Lecture 5-2 Fall 2008 Drift Velocity Assume that an external electric field E has been established within a conductor Then any free charged particle in the r r conductor will experience a force given by F = qE The charged particle will experience frequent collisions, into random directions, with the particles compromising the bulk of the material There will however be a net overall motion Physics 231 Lecture 5-3 Fall 2008 Drift Velocity There is net displacement given by vd∆t where vd is known as the drift velocity Physics 231 Lecture 5-4 Fall 2008 Drift Velocity Consider a conducting wire of cross sectional area A having n free charge-carrying particles per unit volume with each particle having a charge q with particle moving at vd The total charge moving past a given point is then given by dQ = nqvd Adt the current is then given by dQ I = = nqv A dt d Physics 231 Lecture 5-5 Fall 2008 Current Density dQ This equation I = = nqv A dt d is still arbitrary because of the area still being in the equation We define the current density J to be I J = = nqv A d Physics 231 Lecture 5-6 Fall 2008 Current Density Current density can also be defined to be a vector r r J = nqvd Note that this vector definition gives
    [Show full text]
  • Physics, Chapter 32: Electromagnetic Induction
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 32: Electromagnetic Induction Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 32: Electromagnetic Induction" (1958). Robert Katz Publications. 186. https://digitalcommons.unl.edu/physicskatz/186 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 32 Electromagnetic Induction 32-1 Motion of a Wire in a Magnetic Field When a wire moves through a uniform magnetic field of induction B, in a direction at right angles to the field and to the wire itself, the electric charges within the conductor experience forces due to their motion through this magnetic field. The positive charges are held in place in the conductor by the action of interatomic forces, but the free electrons, usually one or two per atom, are caused to drift to one side of the conductor, thus setting up an electric field E within the conductor which opposes the further drift of electrons. The magnitude of this electric field E may be calculated by equating the force it exerts on a charge q, to the force on this charge due to its motion through the magnetic field of induction B; thus Eq = Bqv, from which E = Bv.
    [Show full text]
  • CURRENT, RESISTANCE and ELECTROMOTIVE FORCE Electric Current
    EMF 2005 Handout 6: Current, Resistance and Electromotive Force 1 CURRENT, RESISTANCE AND ELECTROMOTIVE FORCE Electric current Up to now, we have considered charges at rest (ELECTROSTATICS) But E exerts a force ⇒ charges move if they are free to do so. dQ Definition: ELECTRIC CURRENT is the rate of flow of charge: I = dt Units of current: 1 Ampere (A) ≡ 1 C s-1 (Coulombs/second) Convention: Current flows in the direction of E (i.e., it is taken to be carried by positive charges – this is usually not so) Conductivity and Resistivity The effect of E is to give the electrons in the conductor a small DRIFT VELOCITY, vd , superimposed on their random thermal motion. Typically, -1 vd is very small around 0.1 mm s . Clearly, the current is proportional to drift velocity I ∝ vd For many materials, including metals, vd ∝ E So I ∝ E E Consider a section of a conductor with cross sectional area A and I length L. Area A L Let a potential difference ∆V be applied between the two ends, so ∆V E = L Current: I ∝ E and I ∝ A (the larger the area, the easier it is for current to flow) EMF 2005 Handout 6: Current, Resistance and Electromotive Force 2 ∆V So I = (Cons tan t)(A) L The constant of proportionality is called the CONDUCTIVITY, σ A I = σ ∆V L 1 RESISTIVITY, ρ, is defined by ρ = σ Resistance and Ohm’s Law The resistivity is a property of the substance. For a particular piece of the substance, the RESISTANCE, R, is defined by ∆V R = where ∆V is the potential difference across the I material and I is the current flowing through it.
    [Show full text]
  • Voltage Source Electromotive Force Voltage Source
    VOLTAGE SOURCE ELECTROMOTIVE FORCE VOLTAGE SOURCE ′ ′ 푉1 < 푉2 푉1 = 푉2 ′ ′ picture 1 푉1 푉2 푉1 푉2 (a) (b) ♦ If there is a potentials difference between the ends of conductor (picture 1-a), then the charged particles move from one end of conductor to another - current flows. ♦ If there is no difference in potentials (picture 1-b), then there is no current in conductor. We conclude that: when the current flows through the conductor sufficiently long time, then it is necessary to continuously maintain the potential difference between any two points of the conductor. conductor In most electric circuits, the moving charged particles are negatively ′ 푒 charged particles that are always present in the wires and other components of the electric circuit. The negatively charged particles can move only when there is a continuous electric circuit from one end of the 푒′ ′ 푒 device to the other (picture 2). 푉1 푉2 The motion of the charged particles is possible only if there is a device in the electric circuit where the process of separation of the charge particles voltage source is carried out continuously and potential difference is maintained at the end of this device. Such device is called voltage source (battery). picture 2 An voltage source is a two-pole device that maintains a fixed voltage across its poles. ▪ working principle If only electric field acts on the charge carriers, the charge flows through the wire from the higher potential to the lower potential (positive 퐹푠 퐹푒 carriers) and this would lead to the equalization of potentials and + - +푞 stopping of the current.
    [Show full text]