Axonal and Perikaryal Involvement in Chronic Inflammatory Demyelinating

Total Page:16

File Type:pdf, Size:1020Kb

Axonal and Perikaryal Involvement in Chronic Inflammatory Demyelinating J Neurol Neurosurg Psychiatry 1999;66:727–734 727 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.66.6.727 on 1 June 1999. Downloaded from Axonal and perikaryal involvement in chronic inflammatory demyelinating polyneuropathy M Nagamatsu, S Terao, K Misu, M Li, N Hattori, M Ichimura, M Sakai, H Yamamoto, H Watanabe, S Riku, E Ikeda, J Hata, M Oda, M Satake, N Nakamura, S Matsuya, Y Hashizume, G Sobue Abstract ery. In this study, we assessed the degree of Department of Objectives—To assess the extent of loss of involvement of spinal motor neurons and Neurology, Nagoya peripheral nerve axons in CIDP. University School of myelinated nerve fibres and spinal motor Medicine, Nagoya, neuron loss in chronic inflammatory de- Japan myelinating polyneuropathy (CIDP), a M Nagamatsu clinicopathological study was conducted Methods MLi on biopsied sural nerves and necropsied SPECIMENS K Misu spinal cords from patients with CIDP. After informed consent was given, sural nerve N Hattori biopsy specimens from 71 patients with CIDP Methods—The myelinated fibre pathology M Ichimura (50 males and 21 females) were obtained at the G Sobue of 71 biopsied sural nerves and motor neuron pathology of nine necropsied spi- Nagoya University School of Medicine and its a liated hospitals over 11 years. Age at biopsy Fourth Department of nal cords at L4 levels in patients with Y ranged from 2 to 81 years; mean (SD) age 48.5 Internal Medicine, CIDP were quantitatively and immuno- Aichi Medical (21.9) years. The duration of illness before histochemically assessed. University, Aichi, biopsy ranged from 2 months to 28 years; mean —Myelinated nerve fibre density Japan Results (SD) 2.9 (5.8) years. The spinal cords were was significantly diminished to 65.4% of S Terao obtained at necropsy from nine patients with the control values (p <0.0001), correlating CIDP. Three of these patients were necropsied Department of inversely with the extent of segmental at the Nagoya University Hospital and aYliated Neurology, Fujita demyelination and remyelination ( = Health University r hospitals, and others were necropsied in hospi- −0.43, p < 0.0005) and duration of illness School of Medicine, tals located throughout Japan during the past 11 ( = −0.31, p < 0.01). Numbers of large Toyoake, Japan r years. These patients consisted of six men and H Yamamoto spinal motor neurons in CIDP were M Sakai three women, aged 49 to 73 years; mean (SD) variably but significantly diminished 62.4 (8.9) years. Their duration of illness ranged (range from 46.0 to 97.6% of the age Department of from 4 months to 8 years. Clinical profiles of matched control value (p < 0.005)), and 10 Neurology, Nogoya necropsy cases are summarised in table 1. Daini Red Cross reactive astrogliosis was evident in the The diagnosis of CIDP in our study was ventral horn in CIDP. The frequency of 11 Hospital, Nagoya, assessed using the criteria of Barohn et al or Japan ventral horn neurons exhibiting central H Watanabe the ad hoc subcommittee of the American chromatolysis and the accumulation of Academy of Neurology.12 http://jnnp.bmj.com/ phosphorylated high molecular weight Department of neurofilament protein was significantly Neurology, Chukyo ASSESSMENT OF SURAL NERVE BIOPSY Hospital, Nagoya, higher in CIDP than in controls (p<0.01 and p<0.05). Sural nerve biopsy specimens were fixed in Japan glutaraldehyde in 0.025 M cacodylate bu er S Riku —The loss of nerve axons and V Conclusions (pH 7.4) and embedded in epoxy resin. Semi- spinal motor neurons is common in CIDP, thin sections were stained with toluidine blue, Department of and extensive in some cases. These neuro- Pathology, Keio and the density of myelinated fibres was nal and axonal losses may influence the on September 29, 2021 by guest. Protected copyright. University School of analysed quantitatively using a computer as- functional prognosis in CIDP. Medicine, Tokyo, Japan sisted imaging system (Luzex FS, Nireco, E Ikeda (J Neurol Neurosurg Psychiatry 1999;66:727–734) JHata Tokyo, Japan). The extent of subperineurial Keywords: chronic inflammatory demyelinating oedema was assessed as an increase in the sub- Department of polyneuropathy; axon loss; spinal motor neuron perineurial space by comparing the subper- Pathology, Tokyo ineurial area to the total endoneurial area using Metropolitan the same imaging system. A part of the nerve Neurological Hospital, The pathological hallmark of chronic inflam- specimen was processed for teased fibre analy- Tokyo, Japan matory demyelinating polyneuropathy (CIDP) M Oda sis, and the condition of each fibre was assessed is segmental demyelination and mononuclear according to our previously indicated criteria.13 Correspondence to: inflammatory cell infiltration in the peripheral A portion of the nerve specimen was fixed in Dr G Sobue, Department of nerves, accompanied by varying degrees of 10% buVered formalin and embedded in Neurology, Nagoya axonal degeneration, myelinated fibre loss, and paraYn, and then processed for immunohisto- University School of 1 Medicine, 65 Tsurumai-cho, endoneurial oedema. Regarding the pathology chemical study. Mouse monoclonal antibodies Showa-ku, Nagoya of the CNS in CIDP, central chromatolysis in (mAb) to human leucocyte common antigen 466–8550, Japan. Telephone spinal motor neurons has often been (LCA, DAKO, Denmark; dilution, 1:50), 0081 52 741 2111; fax 0081 2–6 52 744 2384. reported, and sporadic cases with a slight loss helper/inducer T cells (CD4, Novocastra, UK; of spinal motor neurons have occasionally been dilution, 1:10), cytotoxic/suppressor T cells Received 9 September 1998 documented.3 6–9 Spinal motor neuron loss as (CD8, DAKO; dilution, 1:25), and macro- and in revised form 16 December 1998 well as nerve myelinated fibre loss could be phages (CD68, DAKO; dilution, 1:10) were Accepted 22 December 1998 important factors influencing functional recov- used. The avidin-biotin-peroxidase complex 728 Nagamatsu, Terao, Misu, et al J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.66.6.727 on 1 June 1999. Downloaded from Table 1 Clinical features of necropsied patients with CIDP Therapeutic response Muscle Motor/ Modified Modified CSF Age at Onset to Sensory Rankin score Cortico- Plasma- Rankin score protein Patient death Sex death (y) symptoms (pretreatment) steroid phoresis IVIg Atrophy Weakness (before death) (mg/dl) Cause of death 1 72 M 3.5 M>S 4 + + 2 3 5 105 Heart failure 2 55 F 0.8 M>S 3 + 2 3 5 800 Cardiovascular disease 3 49 M 8 M>S 3 − 3 3 4 99 Pneumonia 4 68 M 3 M=S 3 + 2 2 3 218 Pneumonia 5 54 F 0.3 M=S 5 + 1 3 5 171 Pneumonia 6 57 M 2.5 M>S 3 + + 2 3 5 110 Endocarditis 7 70 F 1 M>S 3 + 1 1 2 73 Cardiovascular disease 8 73 M 0.5 M=S 5 + 1 3 4 128 Pneumonia 9 64 M 15 M<S 2 + 1 1 2 NA Bronchitis/ Meningitis Modified Rankin score: 0=asymptomatic; 1=non-disabling symptoms that do not interfere with lifestyle; 2=minor disability symptoms that lead to some restriction of lifestyle but do not interfere with the patients’ capacity to look after themselves; 3=moderate disability symptoms that significantly interfere with lifestyle or prevent totally independent existence; 4 = moderately severe disability symptoms that clearly prevent independent existence, although patient does not need constant atten- tion day and night; and 5=severely disabled, totally dependent requiring constant attention day and night.10 Modified Rankin scores of some patients were assessed on the clinical records. Therapeutic response was evaluated as positive if the modified Rankin score improved one grade or more. Muscle atrophy and weakness were respectively assessed as 1, 2, and 3 denoting mild, moderate, and severe degrees. NA=not available. The grading was made within 3 months before death. (ABC) method was performed using a 10 µm thick sections were prepared, and every Vectastain Kit (Vector Laboratories, Burlin- 10th section was stained with the Klüver- game, CA, USA) as described previously.14 The Barrera technique. Photomicrographs were extent of endoneurial and epineurial inflamma- taken at a magnification of ×205, including the tory infiltrates was assessed in a blind fashion left ventral horn in each stained section. The for each mAbs. spinal ventral horn was defined as the area of Eleven sural nerve specimens from subjects grey matter ventral to a line through the central with non-neurological diseases (eight men and canal perpendicular to the ventral sulcus. three women, aged 28 to 71 years; mean (SD) Diameters of all neurons with obvious nucleoli 44.6 (13.5) years) obtained at biopsy for trans- were measured on photomicrographs using a plantation or at necropsy performed within 3 particle size analyser (TGZ-3, Carl-Zeiss, Ger- hours of death were processed in the same way many). The neurons were classified arbitrarily as the biopsy specimens from patients with into three groups according to their diameters CIDP, and served as controls. as large (>32.8 µm), medium sized (>24.8 µm to <32.8 µm), and small (<24.8 µm) 15 16 ASSESSMENT OF SPINAL CORD PATHOLOGY neurons. Neuronal numbers were ex- The spinal cord was removed at necropsy, fixed pressed as the total number of cells/50 sections in 10% buVered formalin solution, and proc- as described previously.15 16 Immunohisto- essed for paraYn sections. Routine histological chemical assessment was performed in the studies with haematoxylin and eosin, Klüver- same manner as for the sural nerves. We used a Barrera, and Bodian stain were performed on mAb Ta-51 specific to a phosphorylated http://jnnp.bmj.com/ lumbar spinal cord specimens. The population epitope of high molecular weight subunits of of spinal motor neurons was assessed as neurofilaments (pNFH; dilution, 1:10), a mAb described previously.15 16 From the rostral end against human glial fibrillary acidic protein of the fourth lumbar segment, up to 300 serial (GFAP, DAKO; dilution, 1:200), human B 15 000 100 25 A B C Department of on September 29, 2021 by guest.
Recommended publications
  • Primary Lateral Sclerosis, Upper Motor Neuron Dominant Amyotrophic Lateral Sclerosis, and Hereditary Spastic Paraplegia
    brain sciences Review Upper Motor Neuron Disorders: Primary Lateral Sclerosis, Upper Motor Neuron Dominant Amyotrophic Lateral Sclerosis, and Hereditary Spastic Paraplegia Timothy Fullam and Jeffrey Statland * Department of Neurology, University of Kansas Medical Center, Kansas, KS 66160, USA; [email protected] * Correspondence: [email protected] Abstract: Following the exclusion of potentially reversible causes, the differential for those patients presenting with a predominant upper motor neuron syndrome includes primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), or upper motor neuron dominant ALS (UMNdALS). Differentiation of these disorders in the early phases of disease remains challenging. While no single clinical or diagnostic tests is specific, there are several developing biomarkers and neuroimaging technologies which may help distinguish PLS from HSP and UMNdALS. Recent consensus diagnostic criteria and use of evolving technologies will allow more precise delineation of PLS from other upper motor neuron disorders and aid in the targeting of potentially disease-modifying therapeutics. Keywords: primary lateral sclerosis; amyotrophic lateral sclerosis; hereditary spastic paraplegia Citation: Fullam, T.; Statland, J. Upper Motor Neuron Disorders: Primary Lateral Sclerosis, Upper 1. Introduction Motor Neuron Dominant Jean-Martin Charcot (1825–1893) and Wilhelm Erb (1840–1921) are credited with first Amyotrophic Lateral Sclerosis, and describing a distinct clinical syndrome of upper motor neuron (UMN) tract degeneration in Hereditary Spastic Paraplegia. Brain isolation with symptoms including spasticity, hyperreflexia, and mild weakness [1,2]. Many Sci. 2021, 11, 611. https:// of the earliest described cases included cases of hereditary spastic paraplegia, amyotrophic doi.org/10.3390/brainsci11050611 lateral sclerosis, and underrecognized structural, infectious, or inflammatory etiologies for upper motor neuron dysfunction which have since become routinely diagnosed with the Academic Editors: P.
    [Show full text]
  • Retrograde Transport of Plasticity Signals in Ap/Ysia Sensory Neurons Following Axonal Injury
    The Journal of Neuroscience, January 1995, 15(i): 439-448 Retrograde Transport of Plasticity Signals in Ap/ysia Sensory Neurons Following Axonal Injury John D. Gunstream, Gilbert A. Castro, and Edgar T. Walters Department of Physiology and Cell Biology, University of Texas-Houston Medical School, Houston, Texas 77225 Following injury to their peripheral branches, mechanosen- 1990). Becausemany of these alterations involve changesin sory neurons in Aplysia display long-term plasticity that is geneexpression and protein synthesis(e.g., Watson, 1968; Her- expressed as soma hyperexcitability, synaptic facilitation, degen et al., 1992; Haas et al., 1993) pathways must exist that and neurite outgrowth. To investigate the nature of signals inform the nucleus of cellular damage occurring far from the that convey information about distant axonal injury, we have soma. Many potential injury signalsexist, which may act singly investigated the development of injury-induced soma hy- or in concert (e.g., Cragg, 1970; Lieberman, 1971; Aldskogius perexcitability in two in vitro preparations. In isolated gan- et al., 1992). However, it is useful to distinguish two classesof glia, proximal nerve crush caused hyperexcitability to ap- axonal signals (e.g., Wu et al., 1993). Negative injury signals pear sooner than did distal crush, and the difference in result from an interruption of retrograde transport of chemical development of hyperexcitability indicated that the injury signals,such as trophic substances,that normally are continu- signal moved at a rate (36 mm/d) similar to previously re- ously conveyed from distal parts of an uninjured axon to the ported rates of retrograde axonal transport in this animal.
    [Show full text]
  • Chapter 4 : Neuronopathies and Axonopathies
    CHAPTER 4 : NEURONOPATHIES AND AXONOPATHIES Chapter 4.1 CLASSIFICATION This group of conditions is characterised by selective non-inflammatory, neuronal degeneration involving either neurons in their entirety (neuronopathies) or axons in a more restricted manner (axonopathies). Division between these two categories may be difficult purely on morphological grounds as the axon is a dependant part of the neuron [1]. Jubb & Huxtable subclassify these conditions into three categories according to the distribution of the lesions in the central and peripheral nervous system: • central neuronopathies and axonopathies (e.g. organomercurial poisoning, congenital axonopathy in Holstein-Friesian calves and the axonal dystrophies), • central and peripheral neuronopathies and axonopathies (e.g. organophosphate poisoning, neonatal copper deficiency and neurodegeneration of Horned Hereford calves), and • peripheral axonopathies (uncommon and mostly reported in the horse e.g. equine laryngeal hemiplegia and equine stringhalt) Reference 1. Jubb KVF, Huxtable CR (1993) The Nervous System. In: Jubb KVF, Kennedy PC, Palmer N (eds) Pathology of Domestic Animals 4th edn Academic Press, Inc, San Diego, pp 267- 439 129 Chapter 4.2 ACUTE ASPERGILLUS CLAVATUS POISONING IN CATTLE: LIGHT MICROSCOPICAL AND ULTRASTRUCTURAL LESIONS IN THE SPINAL CORD JJ van der Lugt1, L Prozesky2, E van Wilpe3 1Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X05, 0110 Onderstepoort, South Africa. Present address: Department of
    [Show full text]
  • Reaction to Injury & Regeneration
    Reaction to Injury & Regeneration Steven McLoon Department of Neuroscience University of Minnesota 1 The adult mammalian central nervous system has the lowest regenerative capacity of all organ systems. 2 3 Reaction to Axotomy Function distal to the axon cut is lost. (immediate) 4 Reaction to Axotomy • Spinal cord injury results in an immediate loss of sensation and muscle paralysis below the level of the injury. Spinal cord injury can be partial or complete, and the sensory/motor loss depends on which axons are injured. • Peripheral nerve injury results in an immediate loss of sensation and muscle paralysis in the areas served by the injured nerve distal to the site of injury. 5 Reaction to Axotomy K+ leaks out of the cell and Na+/Ca++ leak into the cell. (seconds) Proximal and distal segments of the axon reseal slightly away from the cut ends. (~2 hrs) Subsequent anterograde & retrograde effects … 6 Anterograde Effects (Wallerian Degeneration) Axon swells. (within 12 hrs) Axolema and mitochondria begin to fragment. (within 3 days) Myelin not associated with a viable axon begins to fragment. (within 1 wk) Astrocytes or Schwann cells proliferate (within 1 wk), which can continue for over a month. Results in >10x the original number of cells. Microglia (or macrophages in the PNS) invade the area. Glia and microglia phagocytize debris. (1 month in PNS; >3 months in CNS) 7 Anterograde Effects (Wallerian Degeneration) Degradation of the axon involves self proteolysis: In the ‘Wallerian degeneration slow’ (Wlds) mouse mutation, the distal portion of severed axons are slow to degenerate; the dominant mutation involves a ubiquitin regulatory enzyme.
    [Show full text]
  • Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia
    Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Motor Systems I 1 Emad Eskandar, MD Motor Systems I - Muscles & Spinal Cord Introduction Normal motor function requires the coordination of multiple inter-elated areas of the CNS. Understanding the contributions of these areas to generating movements and the disturbances that arise from their pathology are important challenges for the clinician and the scientist. Despite the importance of diseases that cause disorders of movement, the precise function of many of these areas is not completely clear. The main constituents of the motor system are the cortex, basal ganglia, cerebellum, brainstem, and spinal cord. Cortex Basal Ganglia Cerebellum Thalamus Brainstem Spinal Cord In very broad terms, cortical motor areas initiate voluntary movements. The cortex projects to the spinal cord directly, through the corticospinal tract - also known as the pyramidal tract, or indirectly through relay areas in the brain stem. The cortical output is modified by two parallel but separate re­ entrant side loops. One loop involves the basal ganglia while the other loop involves the cerebellum. The final outputs for the entire system are the alpha motor neurons of the spinal cord, also called the Lower Motor Neurons. Cortex: Planning and initiation of voluntary movements and integration of inputs from other brain areas. Basal Ganglia: Enforcement of desired movements and suppression of undesired movements. Cerebellum: Timing and precision of fine movements, adjusting ongoing movements, motor learning of skilled tasks Brain Stem: Control of balance and posture, coordination of head, neck and eye movements, motor outflow of cranial nerves Spinal Cord: Spontaneous reflexes, rhythmic movements, motor outflow to body.
    [Show full text]
  • Testing Upper Motor Neuron Function in Amyotrophic Lateral Sclerosis: the Most Difficult Task of Neurophysiology
    Scientific Commentaries Brain 2012: 135; 2579–2584 | 2581 Testing upper motor neuron function in amyotrophic lateral sclerosis: the most difficult task of neurophysiology Clinical signs of upper motor neuron involvement are an essential contrast is potentially very effective for exploring neuronal inter- observation to support the diagnosis of amyotrophic lateral scler- connection dysfunction in amyotrophic lateral sclerosis, but still osis. However, clinical signs of upper motor neuron can be difficult needs more investigation; and novel neuroinflammatory and in- to elicit in patients with motor neuron disease. One postulated hibitory positron emission tomography ligands might have utility reason for this problem is the presence of marked limb weakness in the future (Turner, 2012). However, expense and practical Downloaded from https://academic.oup.com/brain/article/135/9/2581/331426 by guest on 23 September 2021 and amyotrophy in motor neuron disease. This has been observed issues limit the use of these sophisticated imaging techniques to in patients with genetic mutations and clear-cut pathological evi- a few highly specialized centres. Thus far, therefore, no method to dence of upper and lower motor neuron degeneration. Less com- investigate upper motor neuron function has proved useful and monly, it has been recognized that the pattern of upper motor applicable as a measure of efficacy in clinical trials, despite some neuron lesion in amyotrophic lateral sclerosis is rather different enthusiasm for the threshold tracking transcranial magnetic stimu- from other conditions, in which there is damage to other descend- lation as a marker of early diagnosis. ing motor fibres from extra-Rolandic motor cortical areas (Swash, EMG is also not the preferred method for assessing upper motor 2012).
    [Show full text]
  • Amyotrophic Lateral Sclerosis (ALS)
    Amyotrophic Lateral Sclerosis (ALS) There are multiple motor neuron diseases. Each has its own defining features and many characteristics that are shared by all of them: Degenerative disease of the nervous system Progressive despite treatments and therapies Begins quietly after a period of normal nervous system function ALS is the most common motor neuron disease. One of its defining features is that it is a motor neuron disease that affects both upper and lower motor neurons. Anatomical Involvement ALS is a disease that causes muscle atrophy in the muscles of the extremities, trunk, mouth and face. In some instances mood and memory function are also affected. The disease operates by attacking the motor neurons located in the central nervous system which direct voluntary muscle function. The impulses that control the muscle function originate with the upper motor neurons in the brain and continue along efferent (descending) CNS pathways through the brainstem into the spinal cord. The disease does not affect the sensory or autonomic system because ALS affects only the motor systems. ALS is a disease of both upper and lower motor neurons and is diagnosed in part through the use of NCS/EMG which evaluates lower motor neuron function. All motor neurons are upper motor neurons so long as they are encased in the brain or spinal cord. Once the neuron exits the spinal cord, it operates as a lower motor neuron. 1 Upper Motor Neurons The upper motor neurons are derived from corticospinal and corticobulbar fibers that originate in the brain’s primary motor cortex. They are responsible for carrying impulses for voluntary motor activity from the cerebral cortex to the lower motor neurons.
    [Show full text]
  • Upper and Lower Motor Neuron Lesions in the Upper Extremity Muscles of Tetraplegics1
    Paraplegia (1976), 14, II 5-121 UPPER AND LOWER MOTOR NEURON LESIONS IN THE UPPER EXTREMITY MUSCLES OF TETRAPLEGICS1 By P. H. PECKHAM, J. T. MORTIMER and E. B. MARSOLAIS* Engineering Design Center and Department of Biomedical Engineering, *Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, Ohio 44[06 VIABILITY of the lower motor neuron is imperative if paralysed muscles are to be electrically activated for functional use. Recently, functional use of the hand has been obtained through excitation of paralysed forearm muscles (Peckham et al., 1973; Mortimer & Peckham, 1973). These advantages were achieved with subjects whose stimulated muscles had little or no involvement of the peripheral nerve, i.e. an upper motor neuron lesion. In general, however, one could expect some involvement of the lower motor neuron to be present because trauma resulting from the spinal cord injury often extends one or more segments rostral and caudal to the site of damage (Guttmann, 1973) and may involve the cell bodies of peripheral nerves which exit the spinal cord near the level of injury or the spinal nerves themselves (Haymaker, 1953). The present study was designed to investigate the muscles of a small popula­ tion of high level spinal cord injury patients in order to determine those that potentially could be used for functional electrical stimulation. Specifically, the objective of this study was to evaluate the nature of the muscle innervation of the forearm and hand muscles of quadriplegic patients. Methods Subjects. These studies were carried out on 24 tetraplegic patients. The post-injury period ranged from 3 months to 18 years, most being tested less than I year post-injury.
    [Show full text]
  • Therapeutic Suppression of Mutant SOD1 by AAV9-Mediated Gene
    Therapeutic suppression of mutant SOD1 by AAV9-mediated gene therapy approach in Amyotrophic Lateral Sclerosis Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shibi B Likhite, M.S. Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2014 Dissertation Committee: Dr. Brian K Kaspar, Advisor Dr. Arthur Burghes Dr. Stephen Kolb Dr. Christine Beattie Copyright by Shibi B Likhite 2014 Abstract Amyotrophic Lateral Sclerosis is one of the most common, adult-onset neurodegenerative disorder, characterized by progressive and fatal loss of motor neurons in spinal cord, motor cortex and brainstem which results into muscular paralysis and ultimate respiratory failure leading to death. Dominant mutations in Superoxide Dismutase 1 (SOD1) gene are one of the frequent causes of familial ALS. Mutant SOD1 confers cell autonomous as well as non cell autonomous toxicity towards motor neurons in ALS. Therefore, along with motor neurons, surrounding non-neuronal cells like astrocytes, microglia and oligodendrocytes play important role in the pathogenesis of familial ALS. Non cell autonomous toxicity towards the motor neurons is also evident in sporadic ALS cases. Thus, suggesting that reduction of motor neuron toxicity from multiple cell types within the CNS is required to achieve the maximum therapeutic benefits in ALS. Transgenic removal of mutant SOD1 from motor neurons and astrocytes significantly delays the disease onset and progression of ALS mice with significant extension in survival. Here, we determined the feasibility and efficacy of post-natal downregulation of mutant SOD1 via AAV9-mediated shRNA delivery in two distinct mouse models of ALS.
    [Show full text]
  • Phosphorylation of Neurofilament Proteins and Chromatolysis Following Transection of Rat Sciatic Nerve
    The Journal of Neuroscience, May 1987, 7(5): 1588-1594 Phosphorylation of Neurofilament Proteins and Chromatolysis Following Transection of Rat Sciatic Nerve Margi E. Goldstein, Harold S. Cooper, Jennifer Bruce, Martin J. Carden, Virginia M.-Y. Lee, and William W. Schlaepfer Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104 States of phosphorylation of neurofilament proteins were peripheral margination of Nissl substance, nuclear displace- examined in the perikarya of rat sensory and motor neurons ment, and nucleolar enlargement(Guth, 1956; Kirkpatrick, 1968; between 3 and 28 d following either a distal transection [6- Lieberman, 1971; Grafstein, 1975; Torvik, 1976; Hughs, 1978; 7 cm from the L4-L5 dorsal root ganglia (DRG)] or a proximal Tennyson and Gershon, 1984) are manifestations of the cell’s transection (l-2 cm from the L4-L5 DRG) of the sciatic nerve. attempt to regeneratethe injured axon (Cragg, 1970; Price and Paraffin sections of the right (experimental) and left (control) Porter, 1972; Grafstein, 1975; Torvik, 1976; Hall et al., 1978). L4 and L5 DRG from animals with unilateral transection of The dependenceof these changeson the type and location of the right distal sciatic nerve were stained immunocytochem- the lesion (Humbertson, 1963; Watson, 1968; Lieberman, 1971; ically with monoclonal antibodies to phosphorylation-de- Torvik and Skjorten, 197 1; Torvik, 1976; Aldskogius and Ar- pendent (NF-P), dephosphorylation-dependent (NF-dP), or vidsson, 1978; Hall et al., 1978; Hughs, 1978; Sterman and phosphorylation-independent (NF-ind) epitopes on the larg- Delannoy, 1985) indicates that the chromatolytic reaction is est (NF200), mid-sized (NF150), or smallest (NF68) neuro- mediated by retrograde signals from the site of injury (Cava- filament protein subunits.
    [Show full text]
  • Vacuolation of Chromatolysis of Lower Motoneurons in Tetanus
    Case report Vacuolation and chromatolysis of lower motoneurons in tetanus A case report and review of the literature In recent years, the pathophysiological action of tetanus toxin has been extensively studied by many investigators.1,2 The role of the toxin in decreasing Samuel M. Chou, M.D., Ph.D. inhibitory input to alpha motoneurons is well known. Morphological alterations in neurons in Department of Pathology both clinical and experimental tetanus have not been consistently described. Indeed, several authors William N. Payne, M.D.* simply state that no changes are found. There are, however, reports of nuclear capping, and either chromophobia or chromophilia3 as well as central or perinuclear chromatolysis in motoneurons4,5 in tetanus. The finding of striking concurrence of cen- tral chromatolysis and vacuolation confined to mo- toneurons in a case of human tetanus prompts this report and a review of the literature. Case report A 58-year-old black man was admitted because of inability to swallow. The night before admission, he choked while trying to drink water; he also noted pain and stiffness in the neck and back. He was diabetic and took 40 units of insulin each morning. He had had an ulcer on his left heel for the preceding 10 months, but there was no history of recent wounds. He had not had a tetanus immunization for "many years." Chronic ulcers on the right leg had necessitated an above-the-knee am- putation l'/2 years before. The patient also had been * Section of Neuropathology, West Virginia taking phenytoin (Dilantin) and phenobarbital for a University Medical Center, Morgantown, West Virginia 26506.
    [Show full text]
  • Microtubule Destabilization and Neurofilament Phosphorylation
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 5016-5020, June 1991 Neurobiology Microtubule destabilization and neurofilament phosphorylation precede dendritic sprouting after close axotomy of lamprey central neurons (dendritic identity/neuronal polarity/axonal regeneration/Petromyzon mannus) GARTH F. HALL*t, VIRGINIA M.-Y. LEEO, AND KENNETH S. KosIK* *Department of Neurology (Neuroscience), Harvard Medical School and Center for Neurologic Diseases, Department of Medicine (Division of Neurology), Brigham and Womens Hospital, Boston, MA 02115; and tDivision of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Communicated by Melvin J. Cohen, December 27, 1990 (receivedfor review June 5, 1990) ABSTRACT Axotomy of giant lamprey (Petromyzon man- We have chosen a set ofidentified central neurons [anterior nus) central neurons (anterior bulbar cells) close to their bulbar cells (ABCs)] in the lamprey (Petromyzon marinus), a somata results in ectopic axon-like sprouting from the dendritic primitive vertebrate, to study the events leading up to axon- tips. Such sprouts first appear as swellings at the tips ofa small like sprouting from the dendrites at early times after close subset of dendrites 2-3 weeks after "close" axotomy. We axotomy. Such sprouting has already been investigated in report here that immunocychemical examination of these some detail in lamprey ABCs (8, 9, 12-14), where dendritic swellings reveals a structure and composition that differs from sprouts have been observed to emerge from the dendritic tips that of conventional growth cones; incipient sprouts contain by 2-3 weeks after close axotomy and to grow steadily for many highly phosphorylated neurofilaments (NFs), little tubu- many weeks along typically axonal trajectories.
    [Show full text]