NIH Public Access Provided by CDC Stacks Author Manuscript Chem Biol Interact
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ASM 2013 Countermotions.Pdf
Christiane Schnura, Schweidnitzer Str. 41, 40231 Düsseldorf Christiane Schnura, Schweidnitzer Str. 41, 40231 Düsseldorf Bayer Aktiengesellschaft Gebäude Q 26 (Rechtsabteilung) Kaiser-Wilhelm-Allee 51368 Leverkusen Annual Stockholders’ Meeting on April 26, 2013 I hereby notify you that I will oppose the proposals of the Board of Management and the Supervisory Board as regards Items 2 and 3 of the Agenda, and will induce the other stockholders to vote in favor of the following countermotions. Countermotion to Item 2: The actions of the members of the Board of Management are not ratified The BAYER Group is responsible for many environmental and social problems. The Board of Management bears responsibility for this, and for this reason its actions should not be ratified. The following is a selection of current problem areas. Labeling of genetically engineered products BAYER contributed USD 2 million to a campaign operated by chemical corporations in the United States which resulted in an initiative to have genetically engineered food products labeled accordingly being defeated. Proposition 37, an initiative put forward in the federal state of California which called for mandatory European-style labeling, went to the ballot on Presidential Election Day, November 6. The companies invested more than USD 40 million in their advertising campaign, roughly ten times more than the proponents of the initiative. This is a classic example of double standards. In Europe it goes without saying that genetically modified ingredients are declared on the labeling of a food product. In the United States, on the other hand, spurious arguments are put forward to prevent labeling of this kind. -
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq. -
Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles. -
Hyperactivity and Seizure Induced by Tricresyl Phosphate Are Isomer
TOXICOLOGICAL SCIENCES, 2021, 1–15 doi: 10.1093/toxsci/kfab006 Research Article Downloaded from https://academic.oup.com/toxsci/advance-article/doi/10.1093/toxsci/kfab006/6112059 by guest on 12 February 2021 Hyperactivity and Seizure Induced by Tricresyl Phosphate Are Isomer Specific and Not Linked to Phenyl Valerate-Neuropathy Target Esterase Activity Inhibition in Zebrafish Anja Knoll-Gellida, Leslie E. Dubrana, Laure M. Bourcier, Theo Merce, Gaelle€ Gruel, Magalie Soares, and Patrick J. Babin 1 Department of Life and Health Sciences, INSERM, Maladies Rares: Gen etique et Metabolisme (MRGM), U1211, Universite de Bordeaux, F-33615 Pessac, France Anja Knoll-Gellida and Leslie E. Dubrana contributed equally to this study. 1To whom correspondence should be addressed at: Laboratoire Maladies Rares: Gen etique et Metabolisme (MRGM), Universite de Bordeaux, Allee Geoffroy St-Hilaire, Bat. B2, 2e`meetage, CS 50023, 33615 Pessac Cedex, France. E-mail: [email protected] ABSTRACT Environmental exposure to tricresyl phosphate (TCP) may lead to severe neurotoxic effects, including organophosphate (OP)-induced delayed neuropathy. TCP has three symmetric isomers, distinguished by the methyl group position on the aromatic ring system. One of these isomers, tri-ortho-cresyl phosphate (ToCP), has been reported for years as a neuropathic OP, targeting neuropathic target esterase (NTE/PNPLA6), but its mode of toxic action had not been fully elucidated. Zebrafish eleuthero-embryo and larva were used to characterize the differential action of the TCP isomers. The symmetric isomers inhibited phenyl valerate (PV)-NTE enzymatic activity in vivo with different IC50, while no effect was observed on acetylcholinesterase activity. Moreover, the locomotor behavior was also affected by tri-para-cresyl phosphate and tri- meta-cresyl phosphate, only ToCP exposure led to locomotor hyperactivity lasting several hours, associated with defects in the postural control system and an impaired phototactic response, as revealed by the visual motor response test. -
Warning: the Following Lecture Contains Graphic Images
What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl). -
Alphabetical Index of Substances and Articles
ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES - 355 - NOTES TO THE INDEX 1. This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in Chapter 3.2. 2. For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations “sec” and “tert”; and the letters “N” (nitrogen), “n” (normal), “o” (ortho) “m” (meta), “p” (para) and “N.O.S.” (not otherwise specified). 3. The name of a substance or article in block capital letters indicates a proper shipping name. 4. The name of a substance or article in block capital letters followed by the word “see” indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs). 5. An entry in lower case letters followed by the word “see” indicates that the entry is not a proper shipping name; it is a synonym. 6. Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name. 7. A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking. - 356 - INDEX Name and description Class UN No. Name and description Class UN No. Accumulators, electric, see 4.3 3292 Acid mixture, nitrating acid, see 8 1796 8 2794 8 2795 Acid mixture, spent, nitrating acid, see 8 1826 8 2800 8 3028 Acraldehyde, inhibited, see 6.1 1092 ACETAL 3 1088 -
Chemical Name Federal P Code CAS Registry Number Acutely
Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime. -
Structural Dynamics of Acetylcholinesterase and Its Implications in Reactivators Design Gianluca Santoni
Structural dynamics of acetylcholinesterase and its implications in reactivators design Gianluca Santoni To cite this version: Gianluca Santoni. Structural dynamics of acetylcholinesterase and its implications in reactivators design. Biomolecules [q-bio.BM]. Université Grenoble Alpes, 2015. English. NNT : 2015GREAY019. tel-01212481 HAL Id: tel-01212481 https://tel.archives-ouvertes.fr/tel-01212481 Submitted on 6 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Physique pour les sciences du vivant Arrêté ministériel : 7 Aout 2006 Présentée par Gianluca SANTONI Thèse dirigée par Martin WEIK et codirigée par Florian NACHON préparée au sein de l’Institut de Biologie Structurale de Grenoble et de l’école doctorale de physique Structural dynamics of acetyl- cholinesterase and its implications in reactivator design Thèse soutenue publiquement le 30/01/2015, devant le jury composé de : Dr. Yves Bourne Directeur de recherche CNRS, AFMB Marseille, Rapporteur Dr. Etienne Derat Maitre de conference, Université Pierre et Marie Curie, Paris, Rapporteur Prof. Pierre-Yves Renard Professeur, Université de Normandie, Rouen, Examinateur Prof. Israel Silman Professeur, Weizmann Institute of Science,Rehovot, Examinateur Dr. -
SARIN the History and Politics of a Chemical Warfare Agent
SARIN The History and Politics of a Chemical Warfare Agent Sarin: A Nerve Agent Sarin, a.k.a. GB, and its other organophosphorus relatives (VX, etc.) are members of the class of chemical weapons known as "nerve agents." These SARIN compounds target the central nervous system where they serve as cholinesterase inhibitors, blocking nerve impulse transmission across synapses. This effect can be lethal. From Sarin's MSDS: "Symptoms of overexposure may occur within minutes or hours, depending upon dose. They include: miosis (constriction of pupils) and visual effects, (C4H10FO2P) headaches and pressure sensation, runny nose and nasal congestion, salivation, Isopropylmethanefluorophosphonate tightness in the chest, nausea, vomiting, giddiness, anxiety, difficulty in thinking and sleeping, nightmares, muscle twitches, tremors, weakness, Common Names: GB, Zarin abdominal cramps, diarrhea, involuntary urination and defecation. With severe A volatile, colorless, odorless liquid exposure symptoms progress to convulsions and respiratory failure." Least-Effect Dose: Japan subway: Vomiting of blood 0.002 mg/L over 15 inhalations For detoxification: Lethal Dose: 0.07 mg/L over 15 inhalations Treat contaminated area with 10% NaOH solution or In humans: "administer, in rapid succession, all three Nerve Agent 1.7 g on skin (for a 70 kg human) Antidote Kit(s), Mark I injectors (or atropine if directed by physician). " The History of Nerve Agents 1936 Dr. Gerhard Schrader, a chemist at IG Farben, discovered the first of the organophosphorus nerve agents, Tabun, en route to finding more effective pesticides. The project had started in 1934. 1942-45 Germans develop the first generation "G" nerve agents. Schrader and colleagues make 2000 new compounds. -
Chemical Compatibility of the Tubing Materials
Chemical Compatibility of the Tubing Materials 1: excellent; 2: good; 3: fair; 4: not recommended Tygon Tygon ST PharMed Tygon HC Tygon Tygon SI Silicone Norprene Flurane LFL R-3603 F-4040-A MH Silicone Peroxide A-60-G F-5500-A Name 2075 Platinum (Viton) Acetaldehyde 4 4 4 4 3 3 3 4 4 Acetamide, 67% in w 4 4 2 4 1 1 1 2 4 Acetate Solvents 4 4 2 4 4 4 4 2 4 Acetic Acid, 10% in w 1 1 1 1 1 1 1 1 4 Acetic Acid, 50-60% in w 1 1 2 1 1 1 1 2 4 Acetic Acid, Glacial, 100% 4 4 2 4 1 4 4 2 4 Acetic Anhydride 4 4 1 4 1 1 1 1 4 Acetone 4 4 4 4 2 3 3 4 4 Acetonitrile 4 4 4 4 4 4 4 4 2 Acetyl Bromide 4 4 3 4 4 4 4 3 4 Acetyl Chloride 4 4 3 4 4 4 4 3 4 Acetylene Gas 1 1 1 1 1 1 1 1 1 Acrylonitrile 4 4 4 4 4 4 4 4 2 Adipic Acid, 100% in alc 4 4 2 3 4 4 4 2 4 Air 1 1 1 1 1 1 1 1 1 Alcohols General 4 4 1 2 1 2 2 1 4 Aliphatic Hydrocarbons 4 4 4 2 4 4 4 4 2 Allyl Alcohol 4 4 3 1 1 4 4 3 1 Alum, 5% in w 1 1 1 1 1 1 1 1 1 Aluminum Chloride, 53% in w 1 1 1 1 1 1 1 1 1 Aluminum Hydroxide, 2% in w 1 1 1 1 1 1 1 1 1 Aluminum Salts 1 1 1 1 1 1 1 1 1 Aluminum Sulfate, 50% in w 1 1 1 1 1 1 1 1 1 Amines 443444434 Ammonia Gas 1 1 1 1 1 4 4 1 4 Ammonia, Anhydrous Liquid 2 2 1 2 2 4 4 2 4 Ammonium Acetate, 45% in w 1 1 1 1 1 1 1 1 4 Ammonium Carbonate, 20% in w 1 1 1 1 1 1 1 1 1 Ammonium Hydroxide, 30% in w 1 1 1 3 1 4 4 1 4 Ammonium Hydroxide, 5-10% in w 1 1 1 2 1 4 4 1 4 Ammonium Persulfate, 30% in w 1 1 1 1 1 1 1 1 1 Ammonium Salts 1 1 1 1 1 1 1 1 1 Ammonium Sulfate, 30% in w 1 1 1 1 1 1 1 1 1 Amyl Acetate 4 4 2 4 4 4 4 2 4 Amyl Alcohol 4 4 4 1 1 4 4 4 1 Amyl Chloride -
Environmental Health Criteria 110 Tricresyl Phosphate
Environmental Health Criteria 110 Tricresyl phosphate Please note that the layout and pagination of this web version are not identical with the printed version. Tricresyl phosphate (EHC 110, 1990) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 110 TRICRESYL PHOSPHATE This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1990 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals. WHO Library Cataloguing in Publication Data Tricresyl phosphate. (Environmental health criteria ; 110) 1.Tritolyl phosphates - adverse effects 2.Tritolyl phosphates - toxicity I.Series Page 1 of 84 Tricresyl phosphate (EHC 110, 1990) ISBN 92 4 157110 1 (NLM Classification: QV 627) ISSN 0250-863X The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. -
NIOSH Method 5600: Organophosphorus Pesticides
ORGANOPHOSPHORUS PESTICIDES 5600 Formula: Table 1 MW: Table 1 CAS: Table 1 RTECS: Table 1 METHOD: 5600, Issue 1 EVALUATION: FULL Issue 1: 15 August 1994 OSHA : Table 2 PROPERTIES: Table 3 NIOSH: Table 2 ACGIH: Table 2 SYNONYMS: Table 4 SAMPLING MEASUREMENT SAMPLER: FILTER/SOLID SORBENT TUBE (OVS-2 tube: TECHNIQUE: GC, FLAME PHOTOMETRIC DETECTION 13-mm quartz filter; XAD-2, 270 mg/140 mg) (FPD) FLOW RATE: 0.2 to 1 L/min ANALYTE: organophosphorus pesticides, Table 1 VOL-MIN: 12 L EXTRACTION: 2-mL 90% toluene/10% acetone solution -MAX: 240 L; 60 L (Malathion, Ronnel) INJECTION SHIPMENT: cap both ends of tube VOLUME: 1-2 µL SAMPLE TEMPERATURE STABILITY: at least 10 days at 25 °C -INJECTION: 240 °C at least 30 days at 0 °C -DETECTOR: 180 °C to 215 °C (follow manufacturer's recommendation) BLANKS: 2 to 10 field blanks per set -COLUMN: Table 6 CARRIER GAS: He at 15 psi (104 kPa) ACCURACY COLUMN: fused silica capillary column; Table 6 RANGE STUDIED: Table 5, Column A DETECTOR: FPD (phosphorus mode) ACCURACY: Table 5, Column B CALIBRATION: standard solutions of organophosphorus compounds in toluene BIAS: Table 5, Column C RANGE: Table 8, Column C ˆ OVERALL PRECISION (S rT): Table 5, Column D ESTIMATED LOD: Table 8, Column F PRECISION (S r): Table 5, Column E APPLICABILITY: The working ranges are listed in Table 5. They cover a range of 1/10 to 2 times the OSHA PELs. This INTERFERENCES: Several organophosphates may co-elute method also is applicable to STEL measurements using 12-L with either target analyte or internal standard causing samples.