Supply Circuit Disconnecting Means with Rotary Handles in Compliance with NFPA 79 and UL 508A

Total Page:16

File Type:pdf, Size:1020Kb

Supply Circuit Disconnecting Means with Rotary Handles in Compliance with NFPA 79 and UL 508A www.eaton.com www.moeller.net Supply circuit disconnecting means with rotary handles in compliance with NFPA 79 and UL 508A Technical Paper Dipl.-Ing. Wolfgang Esser Supply circuit disconnecting means with rotary handles in compliance with NFPA 79 and UL 508A – Fulfilling key requirements of relevant North American standards – Abstract Introduction machinery, particularly those involving IEC style door mounted rotary handles, Differences between IEC and North In the IEC world the rotary handle is the its primary goal naturally is not to make American standards already become popular choice, and it’s by far the most component design more difficult, but apparent when discussing even the most widely encountered type of operating rather to provide industry floor person- basic of component accessories, such as handle for main disconnect switches in nel with an extra measure of protection the operating handle of a supply circuit these various countries. In the US and from electric shock through the use of disconnecting switch. For example, main Canada, the situation is markedly differ- suitable enclosures, specifically the disconnect switches equipped with door ent, and the use of similar rotary handles need for adequate interlocking provi- mounted rotary handles, and installed in for main disconnect switch applications sions with the supply disconnecting industrial control panels for industrial is not nearly as prevalent, chiefly due to means whenever there is the potential machinery applications, essentially the fact that the conventionally door for exposure to live equipment. require the use of an additional internally mounted operating handle separates The new supplementary handles Type mounted supplemetary handle in order to from the switch when the door is NZM…-XHB-DA(R)-NA from Eaton meet all of the requirements found in the opened, and this feature is considered Moeller fulfill all of the more stringent relevant North American standards deal- less than desirable. Countless millions of North American standards requirements ing with this application. An important rotary handles in IEC countries through- in this respect. They can also be used in change in an earlier (2002) edition of the out the world are thus located on the all types of control panel applications NFPA 79 standard for industrial machin- outer door portion of a control panel extending beyond those solely related to ery panels led to this significant develop- when the door is open, and that is per- industrial machinery. Their usage would, ment. It became an essential require- ceived as a problem in North America, of course, also provide an additional ment of the standard at that time for an since it is alleged to potentially invite the measure of safety in start-up and main- operating handle to maintain contact with actuation of the switch mounted inside tenance situations for any installation in the disconnect switch at all times, without the use of a proper handle. the IEC world using switches with door regardless of door position. However, that was only a theoretical mounted rotary handles. The supple- Furthermore, in cases where the main problem, since Eaton Moeller, for many mentary handles can be used on all NZM switch needed to be accessed internally years, had been offering a supplemen- circuit breakers, (P)N switch-disconnec- and switched on by qualified persons, tary handle that mounted directly onto tors and NS molded case switches, let’s say for maintenance purposes, the the extension shaft and the body of the whether or not these products are being standard already required, under its door switch inside the panel. The supple- used as a supply circuit disconnecting interlocking provisions, that a deliberate mentary handles Type NZM..-XDZ have means in any given application. action initially be performed by such per- always been available for the purpose of sons before the disconnect switch could providing qualified persons with a IEC compliant solutions are not be engaged successfully, in order to means to actuate the switch from inside always sufficient to meet all require- enhance the inherent safety of person- the control panel without the use of a ments in North America nel and of the assembly. Thus, an addi- tool. (Photo 1). The bar is, however, set tional level of sophistication for the inter- even higher in these cases by current This author has dealt extensively with nal supplemetary handle, combined with NFPA 79 [1] und UL 508A [2] standards the topic of „Export of electrical compo- a door mounted rotary style handle, because, in the event that the door of a nents and systems to North America“ became necessary in order to meet all control panel housing the main discon- by giving comprehensive seminars and of the requirements of the relevant nect switch has been opened, the writing several detailed technical papers standards in this respect. Eaton Moeller standards mandate that an additional on the matter. (http://www.moeller.net/ now supplies such supplementary han- and premeditated action (Deliberate de/company/news/publications/index. dles, which feature a deliberate action Action 1) on the part of a qualified per- jsp). One recurring theme in all of these consisting of a travel of the handle to a son be required in order to effect a endeav ors has been that widely applied certain position, followed by a simulta- change in the operational state of the and accepted technical solutions rooted neous push and turn of the handle switch from OFF to ON. Although this in comprehensive and well established through to the ON position. The handle requirement of the NFPA 79 standard IEC standards are often considered inad- has all the necessary certifications, and directly impacts significant design equate when going up against compara- is now part of the component program. aspects of the operating handle of a ble North American requirements, spe- This paper will address in more detail supply circuit disconnecting means used cifically those from relevant NFPA instal- the ramifications of this development in in electrical control panels for industrial lation standards auch as the NEC2 and North American standards as well as provide potential end-users with various solutions to meet the requirements. 1 will be described in more detail in the paper 2 NEC = NFPA 70 = National Electrical Code, USA 2 Mounting Plate The switch rotary mechanism inside the enclosure is padlockable. Supplementary Door coupler Handle Door opens in Reset handle posi- tion only Extension shaft The supplementary handle inside the The door mounted rotary handle, enclosure is permanently screwed with door interlocking provision, onto the extension shaft is padlockable Photo 1: Former solution with older version supplementary handle, lockable rotary switch mechanismand lockable door mounted han- dle. CEC3, as well as in various UL and CSA tional handles and accessory parts are requirements. IEC type operators are safety standards dealing with product available as well in order to fulfill a dual position (ON and OFF) handles and, and engineered assembly approvals. In number of special application require- if applicable, include a third position many instances, these differences can ments. Standard operating handles (Trip) as dictated by the type of switch. cause conflicts and hardships to arise come in black, with red-yellow versions These models also have UL/CSA certifi- during local inspections of products at for Emergency-OFF applications, as well cation. Control panel doors equipped the end-user facility, or whenever power as operating handles with or without with IEC style door mounted rotary han- is required for the start-up and commis- defeating mechanisms (Table 1), and dles with a built-in door interlocking fea- sioning phases of a new project or refur- handles with environmental ratings to ture can be readily opened as soon as bished installation. cover both IEC and UL/CSA type rated the switch is in the OFF position, This paper deals mainly with the operat- ing handles of circuit breakers, switch- disconnectors and Molded Case Switches [3], which would be used as the supply circuit disconnecting means North American version of electrical control panels for industrial IEC version machinery per the NFPA 79 standard. These switches are normally operated Handle positions from the exterior of the control panel, with the panels doors closed. The “ON” “TRIPPED” “OFF” “OFF” switches themselves are mounted inter- nally and their operating shafts extend Recessed through the door, all the while maintain- insulating ing the necessary environmental rating material screw of the outer handle and enclosure used to assembly. The operating handles are defeat the mounted on the door panel exterior. IEC-Door: “Interlocked or “not door inter- not interlocked” interlocked” locking Eaton Moeller refers to this style of feature switch operator as a „door-mounted NA-Door: “Interlocked” “not (defeat rotary handle“. A coupling piece enables mecha- interlocked” nism) the opening and closing of the control panel door, either with or without any dependence on the position of the main Photo 2: IEC style Door mounted rotary handles feature 3 switching positions whereas contacts. An elaborate offering of addi- North American versions have 4. The North American versions allow the door to open when the handle is rotated through an overtravel, to a position slightly beyond OFF. The word „Reset“ is located at that position. The word „Reset“ further indicates that, after a trip, the handle needs to be first
Recommended publications
  • 2020 National Electrical Code® Style Manual
    2020 NATIONAL ELECTRICAL CODE® STYLE MANUAL 1 FOREWORD August 2020 The National Electrical Code® is used nationally and internationally as the basis for safeguarding persons, buildings, and their contents from hazards arising from the use of electricity. It is vitally important that the text be as explicit as possible, and that maximum consistency be achieved in the language used in the text. The Code contains those provisions considered necessary for safety and thus is widely used as a basis for legal enforcement in the installation of electrical conductors and equipment in buildings and certain other premises (as detailed in the Code itself); this places a major responsibility on those involved in the preparation of document text to use forms of expression that promote uniform interpretation. The National Electrical Code Correlating Committee has recognized these responsibilities and has issued this manual. Preparation and Date of Adoption. This manual was originally prepared by the Editorial Task Group of the National Electrical Code Committee and adopted by the National Electrical Code Correlating Committee on May 13, 1969. It was amended September 22, 1975, October 11, 1984, October 12, 1989, and May 9, 1994. In January 1999, the Correlating Committee Task Group on the Usability of the NEC rewrote the manual. It was adopted by the National Electrical Code Correlating Committee on March 19, 1999 and by the Standards Council on April 15, 1999. It was amended March 1, 2001, January 15, 2003, and August 9, 2011, August 2015, and December 2020. 2 TABLE OF CONTENTS Foreword ........................................................................................................ 2 Chapter 1 General 4 1.1 Purpose ............................................................................................
    [Show full text]
  • Solar PV and the Electrical Code
    PV and the Electrical Code Page 1 PV and the Electrical Code Canadian Solar Industries Association (CanSIA) PV and the Electrical Code Page 2 This course was prepared by the Canadian Solar Industries Association (CanSIA) 2378 Holly Lane, Suite 208 Ottawa, Ontario K1V 7P1 Tel: (613) 736-9077 FAX: (613) 736-8938 Email: [email protected] www.cansia.ca Authors: Charles R. Price Eric Smiley with funding assistance provided by Natural Resources Canada Renewable and Electrical Energy Division Ó Canadian Solar Industries Association 2004 Version 1.2 Notice to the Reader Publisher and authors do not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher and authors do not assume and expressly disclaims any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is expressly warned to co nsider and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instruction. The publisher and authors maks no representation or warranties of any kind, including but not limited to, the warranties of fitness for particular purposes or merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher and authors take no responsibility with respect to such material. The publisher and authors shall not be liable for any special, consequential or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon this material.
    [Show full text]
  • Electrical Inspection Checklist for One-Family Homes Based on the 2020 National Electrical Code® (NEC®)
    Electrical Inspection Checklist for One-Family Homes Based on the 2020 National Electrical Code® (NEC®) NOTE: The Board of Electricity adopted the 2020 National Electrical Code (NEC) with an effective date of Nov. 17, 2020. Accordingly, the Department of Labor and Industry began enforcing the 2020 NEC on Nov.17, 2020. Electrical work authorized by permits issued on or after this date must comply with the 2020 NEC. Electrical license examinations are based on the requirements of the 2020 NEC beginning Jan. 1, 2021. However, due to concerns regarding the availability of 2-pole GFCI circuit breakers, the department delayed enforcement of the requirements for 250-volt GFCI receptacles and outlet requirements found in NEC 210.8(A) and 210.8(F). On April 5, 2021, DLI will begin enforcing the 250-volt GFCI receptacle and outlet requirements found in NEC 210.8(A) and 210.8(F). Industry circuit breaker manufacturers have confirmed that supply-chain challenges will be resolved in March 2021. Electrical work authorized by permits issued on or after April 5, 2021, must comply with the 2020 NEC. 001 An owner (i.e. homeowner) who files a Request for Electrical Inspection form (i.e. permit) with the Department of Labor and Industry or other electrical inspection authority is signing an affidavit and declaring they own and occupy the residence and they will personally perform all of the electrical work, including the planning and laying out of the electrical work. 002 The term “owner” is defined in law as a natural person who physically performs electrical work on premises the person owns and actually occupies as a residence or owns and will occupy as a residence upon completion of construction.
    [Show full text]
  • 90 INTRODUCTION to the National Electrical Code
    ARTICLE INTRODUCTION TO THE 90 NATIONAL ELECTRICAL CODE Introduction to Article 90—Introduction to the National Electrical Code Many NEC violations and misunderstandings wouldn’t occur if people doing the work simply understood Article 90. For exam- ple, many people see Code requirements as performance standards. In fact, the NEC requirements are bare minimums for safety. This is exactly the stance electrical inspectors, insurance companies, and courts take when making a decision regard- ing electrical design or installation. Article 90 opens by saying the NEC isn’t intended as a design specification or instruction manual. The National Electrical Code has one purpose only, and that’s the “practical safeguarding of persons and property from hazards arising from the use of electricity.” The necessity of carefully studying the NEC rules can’t be overemphasized, and the role of textbooks such as this one is to help in that undertaking. Understanding where to find the rules in theCode that apply to the installation is invaluable. Rules in several different articles often apply to even a simple installation. Article 90 then describes the scope and arrangement of the NEC. The balance of this article provides the reader with informa- tion essential to understanding the Code rules. Typically, electrical work requires you to understand the first four chapters of theNEC which apply generally, plus have a working knowledge of the Chapter 9 tables. That understanding begins with Article 90. Chapters 5, 6, and 7 make up a large portion of the Code, but they apply to special occupancies, special equipment, or other special conditions.
    [Show full text]
  • Electrical Code Amendment
    CITY OF GRAPEVINE Chapter 7, Buildings and Construction, Article III, Electrical Code ARTICLE III. ELECTRICAL CODE DIVISION 1. GENERALLY Sec. 7-30. Definitions. For the purposes of this article, hereinafter referred to as the electrical code or this code, the following terms, phrases, words, and their derivatives shall be construed as set out in this section: Approved: Acceptable to the building inspection division and/or the electrical board of appeals of the city. Authorized person: Any person, as defined in section 1-5, registered or licensed under the provisions of this code to do work as permitted under the specific provisions of this code. Buildings, building use: Words relating to buildings and building use, when not otherwise separately defined, shall have meanings which conform to the meanings set out in the zoning ordinance of the city; otherwise, they shall have their usual dictionary meanings. City: The territory within the corporate limits of the city, or the legally constituted governing body thereof, its agents and its officers. Conductor: A wire or cable or other form of metal suitable for carrying electric current or potential. Electrical apprentice: Any person who has been issued a license from the State of Texas as an electrical apprentice as provided for by state law. Electrical construction: All work and materials used in installing, maintaining, or extending a system of electrical wiring and all appurtenances, apparatus or equipment used in connection therewith, inside or outside of or attached to any building, structure, lot or premises. Electrical contractor: Any person who has been issued a license from the State of Texas as an electrical contractor as provided for by state law.
    [Show full text]
  • Industrial MI Wiring Cable
    Industrial MI Wiring Cable Installation Manual for Alloy 825 Sheath Cable Wiring Systems Important Safeguards and Warnings WARNING: FIRE AND SHOCK HAZARD. nVent PYROTENAX mineral insulated (MI) industrial wiring cables must be installed in accordance with the requirements of national and local codes and standards, the installation instructions in this manual, and the customer’s specification. Read these important safeguards and carefully follow the installation instructions. • Ensure the cable has been stored properly and is in good condition prior to commencing installation. • Always use safe working practices when installing cables, observing OSHA and other national safety rules. • Store cables indoors in a clean, dry, covered area, if possible. • During the time that the cables are exposed and during cable pulling activities, protect cables from nearby or overhead work to prevent damage to the cable sheath. • Do not pull cables around corners that have sharp edges, such as corners in cable trays, or other obstructions. • Prevent damage to cables by removing any abrasions or sharp edges from surface of support system. • Damage to cables or components can cause sustained electrical arcing or fire. Do not energize cables that have been damaged. Damaged cable or terminations may need to be repaired or replaced. Damaged cable should be repaired by a qualified person. • When installing cables which may be exposed to hydrocarbon flash fires, use only steel or stainless steel in the support system. ii | nVent.com Table of Contents General Information
    [Show full text]
  • Don't Be Confused by Your Fuse
    Head Office Neptronic® 400 Lebeau Blvd. HVAC Controls Electric Actuators Actuated Valves Montreal, Quebec, Canada H4N 1R6 Tel.: (514) 333-1433 Humidifiers Electric Heaters Fax: (514) 333-3163 Toll Free: 1-800-361-2308 Don’t be confused by your fuse: MCA and MOP for your humidifier explained Before we start, we need first to understand what MCA and MOP are. The minimum circuit ampacity (MCA) and maximum overcurrent protection (MOP) ratings provide a guide for safely connecting field-wired equipment to the building mains. Understanding these ratings, and their relationship to each other, is critical to properly selecting wire and circuit breaker sizes. What is MCA? Minimum Circuit Ampacity (MCA) is a calculated value that specifies the minimum main power wire size. It is also used to determine the minimum wire size required for a field wired product. This specification is necessary in order to guarantee that the wiring will not overheat under expected operating conditions. The wire size takes into account the normal current draw, aging of components and anticipated faults. More specifically, the MCA is the highest steady-state electrical current that the unit should see when operating correctly. What is MOP? Maximum Over-Current Protection (MOP) is a calculated value that determines the maximum size of the over-current protection device (fuse or breaker). There are different MOP equations depending on your application. The maximum overcurrent protection (MOP) is the maximum circuit breaker size required to properly protect the equipment under anticipated fault conditions. The MOP takes into account startup surges and component aging. Supply wiring must be rated to carry the amps shown as MCA.
    [Show full text]
  • 2018 Canadian Electrical Code Saskatchewan Interpretations
    120 Based on the 2018 Canadian Electrical Code Effective: January 1, 2019 V4.2 (this page left intentionally blank) ELECTRICAL INSPECTIONS Preface and Scope The Canadian Electrical Code, Part l, Twenty-Fourth Edition, as interpreted by these requirements, issued under Section 5 of The Electrical Inspection Act, 1993, shall govern the workmanship and all other matters pertaining to electrical equipment and the installation of electrical equipment in or upon any land, buildings, structures, and premises. All previously issued bulletins are superseded by these interpretations. This document contains supplementary information to clarify the requirements of the 24th edition of the Canadian Electrical Code (CEC), and by their inclusion herein is adopted as requirements under Section 5 of The Electrical Inspection Act, 1993. Report of Accident The Electrical Inspection Act, 1993 c.E-6.3 s.27 requires: “Where an accident involving an electrical installation or electrical equipment occurs and results in a death or injury of a person or in a fire or an explosion, the contractor or the contractor’s agent or the owner of the electrical equipment or the owner’s agent shall immediately notify the Chief Electrical Inspector, stating the precise location of the accident, its general nature and results”. Investigation of Accident The Electrical Inspection Act, 1993 c.E-6.3 s.28 requires: The accident site is to be preserved, “no part of any electrical plant or electrical equipment involved is to be removed or its position altered by any person”, “until the written permission of an Inspector has been obtained”. 2018 Saskatchewan Interpretations Page 1 ELECTRICAL INSPECTIONS Table of Contents PREFACE AND SCOPE ..................................................................................................................................................
    [Show full text]
  • Appendix 'C' Division 26 – Electrical Requirements
    The City of Winnipeg Bid Opportunity No. 496-2013 Template Version: C420130321 - RW APPENDIX ‘C’ DIVISION 26 – ELECTRICAL REQUIREMENTS The City of Winnipeg List of Contents Section 00 01 11 Bid Opportunity No. 496-2013 Page 1 Section Title Pages 260005 Electrical Scope of Work 1 260500 Common Work Results - For Electrical 7 260520 Wire and Box Connectors 0-1000 V 2 260521 Wires and Cables 0-1000 V 1 260522 Connectors and Terminations 2 260528 Grounding – Secondary 3 260529 Hangers and Supports for Electrical Systems 2 260531 Splitters, Junction, Pull Boxes and Cabinets 1 260532 Outlet Boxes, Conduit Boxes and Fittings 2 260534 Conduits, Conduit Fastenings and Conduit Fittings 3 260544 Installation of Cables in Trenches and in Ducts 3 262402 Service Entrance Board 3 262417 Panelboards Breaker Type 3 262726 Wiring Devices 3 262821 Moulded Case Circuit Breakers 2 265000 Lighting 2 The City of Winnipeg Section 26 00 05 Bid Opportunity No. 496-2013 SCOPE OF WORK Page 1 Part 1 General 1.1 GENERAL .1 Include in electrical section, provision of labour, new materials, tools, transportation, services and facilities for a complete electrical installation. The installation shall be left complete in all respects and ready for operation. Installation shall be deemed incomplete and final payment shall not be released until the electrical installation is completed to the complete satisfaction of the responsible Contract Administrator. .2 The electrical scope of work includes, but is not necessarily limited to the following provisions: .1 Provision of electrical distribution including CSTE, customer service termination enclosure, buried cabling and cabling in conduit for a 120/240 volt electrical distribution system consisting of a 200 Amp, 120/240 Volt circuit breaker panel c/w 100 Amp 120/240V sub distribution for Fly-over Girder utility power, and provision for an additional power sub distribution.
    [Show full text]
  • POWR-GARD Technical Application Guide
    Application Guide POWR-GARDTechnical Application Guide This Technical Application Guide or ‘Fuseology’ provides the information needed to select the correct types of Littelfuse POWR-GARD® fuses for most applications. If there are any questions or if additional data is needed for a specific use, call the Littelfuse Technical Support and Engineering Service Group at 1-800-TEC-FUSE (1-800-832-3873), email them at [email protected] or visit us at littelfuse.com. TECHNICAL APPLICATION GUIDE Table of Contents Fuseology Fundamentals ............................................................... 3 Selection Considerations ............................................................... 5 Time-current Curves and Peak Let-through Charts ........................ 9 Selective Coordination ..................................................................11 UL/CSA Fuse Classes and Applications ........................................14 Technical Information Terms and Definitions ...................................................................16 White papers, and a library of technical information is Motor Protection Tables ............................................................... 23 available online at littelfuse.com/technicalcenter UL Fuse Classes & Selection CHart ............................................ 26 Condensed Fuse Cross Reference .............................................. 27 littelfuse.com 2 © 2017 Littelfuse POWR-GARD® Products Technical Application Guide FUSEOLOGY FUNDAMENTALS I. OVERCURRENT PROTECTION 3. Minimizes
    [Show full text]
  • Wiring a Wall Section
    Youth Explore Trades Skills Electrician Wiring a Wall Section Description The activities that have led up to wiring a wall should have given students the skills and knowledge to culminate with this activity. This activity could be an opportunity to conduct a summative assessment of students’ previous knowledge of theory, safety, code, and wiring methods. Wiring a wall section will introduce students to a few new CEC rules and wiring methods. Having a wall section is obviously a requirement for this activity. The wall section could be full scale or smaller; to make this activity relate to the real world, it’s recommended that the wall section be at least 4' wide by 4' tall. The wall section shown in Figure 1 would be optimal, as it has some real (although scaled down to half size) features such as door and window openings, as well as a corner section, which will help students learn about routing wire and placement of device boxes in relation to these features. Figure 1—Sample wall section Building a wall section for a class requires a substantial amount of lumber and time. Optimally, this activity would work well with students having completed the carpentry portion of the course first. This activity is an opportunity for students to wire a wall to code specifications and with the teacher’s supervision, energize and test their circuits. Students will likely work in small groups, depending on the availability of material and the number of walls available. The students should have the opportunity to wire their wall sections individually, to give the teacher a clear picture of each student’s skills and competencies.
    [Show full text]
  • 2011 National Electrical Code Amendments
    541 DeKalb Avenue Sycamore, IL 60178 Building (815) 895-4434 Building & Engineering Department Engineering (815) 895-4557 Fax (815) 895-7572 2011 NATIONAL ELECTRICAL CODE AMENDMENTS The 2011 National Electrical Code (NEC), adopted in Section 9-4-1, Subsection A of the Sycamore City Code as the electrical code of the City, is amended and revised in the following respects: 1. Service Equipment – Disconnecting Means: Means shall be provided to disconnect all conductors in a building from the service entrance conductors. The service disconnecting means shall be installed at a readily accessible location either outside the building or inside the building nearest the point of entrance of the service conductors. The maximum distance from the point of entrance of service conductors to a readily accessible service disconnecting means shall be six (6) feet. 2. All residential, commercial and industrial electrical services shall be installed with rigid metal conduit (RMC) or intermediate metal conduit (IMC). PVC and service entrance cable is not allowed. Electrical metallic tubing (EMT) is permitted between the meter enclosure and the electrical panel only if compression fittings are used and provided the EMT exits the back of the meter enclosure and is not exposed to weather. 3. When additional grounding is required for hot tubs, spas or similar equipment, the grounding conductor is allowed to be located at the cold water pipe of that piece of equipment provided the ground clamp is accessible. If the ground clamp is not accessible, a minimum #8 insulated copper conductor shall be run from the motor or pump back to the electrical panel.
    [Show full text]