The Population Health Impacts of Heat Key Learnings from the Victorian Heat Health Information Surveillance System 2011–2013

Total Page:16

File Type:pdf, Size:1020Kb

The Population Health Impacts of Heat Key Learnings from the Victorian Heat Health Information Surveillance System 2011–2013 The population health impacts of heat Key learnings from the Victorian Heat Health Information Surveillance System 2011–2013 The population health impacts of heat Key learnings from the Victorian Heat Health Information Surveillance System 2011–2013 i To receive this publication in an accessible format phone (03) 9096 000, using the National Relay Service 13 36 77 if required. Authorised and published by the Victorian Government, 1 Treasury Place, Melbourne. © State of Victoria, June, 2015. This work is licensed under a Creative Commons Attribution 4.0 licence (creativecommons.org/licenses/by/4.0). You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author, indicate if changes were made and comply with the other licence terms. The licence does not apply to any branding including the Victorian Government logo, images or artistic works. Except where otherwise indicated, the images in this publication show models and illustrative settings only, and do not necessarily depict actual services, facilities or recipients of services. This publication may contain images of deceased Aboriginal and Torres Strait Islander peoples. Where the term ‘Aboriginal’ is used it refers to both Aboriginal and Torres Strait Islander people. Indigenous is retained when it is part of the title of a report, program or quotation. ISBN/ISSN 978-0-7311-6740-1 (pdf) Available at www.health.vic.gov.au/healthstatus (1506001) ii Contents List of tables iv List of figures iv Acknowledgements iv Summary 1 Introduction 3 Heat health temperature thresholds in Victoria 5 Heat Health Information Surveillance System 7 Temperature patterns in Victoria 9 Humidity 19 Acclimatisation 21 Appendix 1: Weather forecast districts by heat health temperature threshold, weather station and local government area, Victoria 23 Appendix 2: Relationship between meteorological indicators and health service use in Melbourne 27 Appendix 3: Methods 29 Abbreviations 34 References 35 iii List of tables Table 1: Number of days heat health temperature thresholds were exceeded, by weather forecast district and year, November–March 2004–2013 10 Table 2: Number of days heat health temperature thresholds were exceeded, by weather forecast district and month, November–March 2011–2013 12 Table 3: Number of days heat health temperature thresholds were exceeded, by weather forecast district and date, November–March 2011–2013 14 Table 4: Ranking of strength of relationship between meteorological indices and health service use in Melbourne 20 List of figures Figure 1: Heat health temperature thresholds (mean temperatures) for weather forecast districts in Victoria 5 Figure 2: Heat Health Information Surveillance System model 8 Figure 3: Mean daily temperature, by weather forecast district and heat health temperature threshold, November–March 2011–2013 16 Figure 4: Percentage of occasions when excess heat-related presentations are experienced, by mean temperature and month, Melbourne, November–January, 2006–2013 22 Acknowledgements This report has been prepared by the Health Intelligence Unit, System Intelligence and Analytics Branch in the Victorian Department of Health & Human Services. It has been prepared with assistance from the Health Protection Branch and staff involved in emergency management in the department. Special thanks are due to all of the organisations and their representatives who provide data to the Heat Health Information Surveillance System over the summer months. Many of the individuals involved in providing information for surveillance purposes have reviewed drafts of this document. Their efforts are greatly appreciated. iv Summary This report provides an overview of heat health temperature thresholds and the Heat Health Information Surveillance System (HHISS) for Victoria. It summarises temperature patterns across Victoria during the 2011–12 and 2012–13 surveillance periods and attempts to answer questions about humidity and acclimatisation and their potential impact on human health. Heat health temperature thresholds in Victoria A heat health temperature threshold is the lower temperature limit above which heat-related illness and mortality increase. Temperature is monitored in Victoria over the summer months by weather forecast district. The temperature thresholds in each district are based on geographical areas with similar, consistent weather patterns and temperatures. The heat health temperature thresholds for Victoria differ by weather forecast district, with higher thresholds established in the northern districts of Victoria. This reflects the higher temperatures experienced in these areas. Heat Health Information Surveillance System In 2009 the Department of Health and Human Services established the HHISS to monitor the impacts of extreme heat on human health in Victoria. The HHISS forms part of a coordinated and integrated response to heatwaves in Victoria, as outlined in the Heatwave plan for Victoria (Department of Health 2011a). The HHISS operates over the summer months, between November and March, and is dependent on meteorological data, health service activity and mortality information obtained from different sources. The HHISS generates a surveillance report to assist departmental staff in assessing public health risk from the heat. Temperature patterns in Victoria On average, each weather forecast district in Victoria exceeds the heat health temperature thresholds between one and three days each summer. At the state level, there are about five days each summer when at least one of the weather forecast districts experiences temperatures at, or above, established heat health temperature thresholds. Most breaches of the heat health temperature thresholds occur in January, the warmest month of the year. During the 2012–13 surveillance period there were four weather forecast districts (Mallee, North Central, Northern Country and Central) in Victoria that experienced a higher than average number of days when temperatures exceeded the established thresholds. On average, we would have expected three days when temperatures would exceed the established thresholds for the Central district, two days for the Mallee, and one day for the North Central and Northern Country districts. The Central district experienced five days, North Central four days, the Mallee district three days and the Northern Country district experienced two days of extreme heat, when temperatures were above established thresholds. Extreme heat was less frequent during the 2011–12 surveillance period. There were two days when the heat health temperature threshold was exceeded for the Central district and one day for the South West and North Central districts. 1 Humidity Humidity is a measure of the amount of water vapour, or moisture in the air. It is important to heat health because it can interfere with the body’s attempt to regulate internal temperature. There are a number of indicators used by different weather services around the world that combine measures of humidity and temperature to provide an indication of ‘how hot it actually feels’. The Bureau of Meteorology in Australia combines humidity with temperature and wind speed to calculate ‘apparent temperature’, which provides an indication of ‘perceived temperature’. The analysis undertaken by the department shows a strong relationship between apparent temperature and heat-related health service use in the metropolitan area. Relative humidity and composite indicators that combine temperature with humidity, which are in use in Canada and the United States, proved less sensitive. The analysis suggests that apparent temperature, which is based on a formula adapted to Australian conditions, is suitable as an indicator to predict human health impacts from heat. However, composite indicators from overseas that are adapted to different conditions and indicators based solely on humidity may not be as useful. Acclimatisation Acclimatisation is best understood as an adaptation to an environmental stressor, such as heat. Acclimatisation in the human context is not clearly understood as it involves a complex interplay between physiological responses and adaptive behaviours. There is a lot more known about plants and animals and the way in which they respond to environmental stressors. An analysis of heat-related emergency department presentations from metropolitan Melbourne demonstrates an acclimatisation effect between spring and summer. The analysis undertaken by the department showed that excess heat-related presentations were more likely, at a given temperature, in late spring (November) rather than the middle of summer (January). 2 Introduction Heatwaves are brief periods of unusually high temperatures. They vary in intensity and duration between locations and may also vary in intensity and duration at different times of the year. They are an important issue in public health because of their risk to human health and wellbeing. Although anyone is susceptible to the effects of extreme temperature, research has shown that those at greatest risk of harm include older adults, the very young, those with pre-existing medical conditions, the homeless, those who live alone and others with limited means to escape the more severe extremes of the heat. There was an extreme heat event in Victoria in late January 2009 (National Climate Centre 2009), associated with a higher than expected level of illness and a higher than expected number of deaths (Department of Human Services 2009). In response, the Department
Recommended publications
  • Climate Variability and Heat Stress Index Have Increasing Potential Ill-Health and Environmental Impacts in the East London, South Africa
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 17 (2017) pp. 6910-6918 © Research India Publications. http://www.ripublication.com Climate Variability and Heat Stress Index have Increasing Potential Ill-health and Environmental Impacts in the East London, South Africa Orimoloye Israel Ropo*, Mazinyo Sonwabo Perez, Nel Werner and Iortyom Enoch T. Department of Geography and Environmental Science, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape Province, South Africa. *Corresponding author *Orcid ID: 0000-0001-5058-2799 Abstract activities and recent development in the region [3]. Furthermore, an investigation of extreme heat since 2003 in Impacts identified with climate variability and heat stress are Europe demonstrates that a considerable lot of the extremes already obvious in various degrees and expected to be recorded during this occasion are at least double as likely in the disruptive in the near future across the globe. Heat Index 1950s [4, 5]. In North America, there is the expected increment describes the joint impact of temperature and humidity on the in the number of hot days over the region [6]. Moreover, some human body. Therefore, we investigated the trend of relative African nations including South Africa likewise experience the humidity, temperature, heat index, and humidex and their ill effects of the outcomes of climate inconstancy in relation to likelihood impacts on human health in the East London over 3 heat-related threats [7, 8]. decades. Real-time data for daily average maximum temperature and relative humidity between 8:00 GMT and It is well known that the discomfort that occurs in warm 18:00GMT hour for the period of 1986-2016 were retrieved weather depends on the significant degree of temperature and from the South Africa Weather Service and analyzed using the humidity present in the air.
    [Show full text]
  • Installation & Owner's Manual
    Sept 2019 Humidex DVS Rev. 1.2En Installation & Owner’s Manual English This Manual Covers the Following Models DVS-CS → Crawl Space DVS-HW → Pony Wall DVS-BS → Basement DVS-CH → Heavy Duty Crawl Space DVS-BH → Heavy Duty Basement Manufactured by: ClairiTech Innovations Inc. 1095 Ohio Rd. Boudreau-Ouest, NB Canada E4P 6N4 Humidex Table of Contents Table of Contents ...................................................................................................................... 1 Service and Warranty ................................................................................................................. 2 FOR CUSTOMER ASSISTANCE ........................................................................................................................ 2 CONSUMER LIMITED WARRANTY ................................................................................................................ 3 Pre-Installation .......................................................................................................................... 4 INCLUDED COMPONENTS ............................................................................................................................. 4 TOOLS REQUIRED FOR INSTALLATION ....................................................................................................... 4 KEY INSTALLATION FACTS ........................................................................................................................... 4 IMPORTANT – WHAT NOT TO DO .........................................................................................................
    [Show full text]
  • Epidemiologic Study of Mortality During the Summer of 2003 in Italy
    P 1.8 EPIDEMIOLOGIC STUDY OF MORTALITY DURING THE SUMMER OF 2003 IN ITALY Susanna Conti *,Paola Meli *, Giada Minelli *, Renata So limini * Virgilia Toccaceli *, Monica Vichi *, M. Carmen Beltrano °° , Luigi Perini ° *National Centre of Epidemiology - Italian High er Institute for Health, Rome, Italy (°) Ufficio Centrale di Ecologia Agraria, Roma – Italy 1. INTRODUCTION the temperature (and humidity) are high and Italy is characterized by Mediterranean climate: persistent also during the night, compared with this sort of climate is usually defined temperate. those living in suburban and rural areas (“urban Seasons are clearly drawn: winter is generally heat island effect”). Heat-wave maximum effects moderate cold, spring is rainy with sunny days, essentially regard old people: there is an increase summer is warm and dry, autumn is almost of their mortality percentage because they have a cloudless, quite rainy, but never severe. During the reduced ability to thermo-regulate body temperature summer there are scarce or null rainfall and and their sweating threshold is generally more temperatures are not usually higher than 35°C. elevated than younger people; moreover, they are Rarely there are meteorological extreme events and affected by other risk-factors linked to the high generally they regard limited areas. frequency of disability, disease, and loneliness. Heat-waves can be defined as extreme and exceptional events, but it has been observed that in the last decades they became more frequent in 2. MATERIALS AND METHODS different parts
    [Show full text]
  • How Hot Is It? Reprinted with Permission from IST-Aim
    A F C I n t e r n a t i o n a l , I n c . G a s D e t e c ti o n & Air M o nitori n g S p e ci a lists How Hot Is It? Reprinted with permission from IST-Aim Mankind has often been concerned with sultriness of his environment. For some this is a mere curiosity or a comfort factor. For others it can be life threatening. In order to determine the actual degree of sultriness in a quantifiable manner several temperature indexes have been developed. Perhaps the most common one is "Humidex". It's technical name is "Apparent Temperature". This index measures the effects of humidity and temperature combined into one value to give a rough impression of how hot it feels or the sultriness. This index does have short- comings, in that it does not include the effect of wind. The little known "Corrected Effective Temperature Index" included a wind speed factor. There is another index, which incudes the effects of humidity, air speed, air temperature and the radi- ant heating factor (from the sun). This index was developed by the U.S. Military in the 1950's and has become widely accepted across the globe for industrial temperature measurements to protect employees. It's called the "wet Bulb Globe Temperature Index". It can be measured with a 6" black sphere containing a thermometer, a naturally ventilated wet thermometer, called a Wet Bulb and a regular air temperature thermometer called a Dry Bulb. There are also instruments available which measure this temperature index directly combining the three factors and their appropriate weighting values.
    [Show full text]
  • Humidex Based Heat Response Plan
    Occupational Health Clinics for Ontario Workers Inc. Humidex Based Heat Response Plan What is it? The Humidex plan is a simplified way of protecting workers from heat stress which is based on the 2009 ACGIH Heat Stress TLV® (Threshold Limit Value®) which uses wet bulb globe temperatures (WBGT) to estimate heat strain. These WBGT’s were translated into Humidex. The ACGIH specifies an action limit and a TLV® to prevent workers’ body temperature from exceeding 38°C (38.5°C for acclimatized workers). Below the action limit (Humidex 1 for work of moderate physical activity) most workers will not experience heat stress. Between Humidex 1 and Humidex 2, general heat stress controls are to be provided. Above Humidex 2 job-specific controls are needed for acclimatized workers. For unacclimatized workers job-specific controls may also be needed to reduce heat strain below the TLV® (Humidex 2) criteria. The TLV® (Humidex 2) only applies to healthy, well-hydrated, acclimatized** workers who are not on medication. Note: in the translation process some simplifications and assumptions have been made, therefore, the plan may not be applicable in all circumstances and/or workplaces (follow steps #1-5 to ensure the Humidex plan is appropriate for your workplace). Humidex 1 Response Humidex 2 25 – 29 supply water to workers on an “as needed” basis 32 – 35 post Heat Stress Alert notice; 30 – 33 encourage workers to drink extra water; 36 – 39 start recording hourly temperature and relative humidity post Heat Stress Warning notice; 34 – 37 notify workers
    [Show full text]
  • INVESTIGATION of APPARENT TEMPERATURE in DIFFERENT CLIMATES (Case Study: Yazd and Coastal Bushehr)
    IJRRAS 28 (1) ● July 2016 www.arpapress.com/Volumes/Vol28Issue1/IJRRAS_28_1_02.pdf INVESTIGATION OF APPARENT TEMPERATURE IN DIFFERENT CLIMATES (case study: Yazd and Coastal Bushehr) Mahnoush Mokhtari, Seyed Majid MirRokni & Parvin Yazdani Space Physics Group, Faculty of Physics, Yazd University, Yazd, Iran Email: [email protected] ABSTRACT Evaluating of climate situations related to human comfort is the major concern of architecture, urbanization and tourism. Therefore, estimating and comparison human comfort in different climates would be necessary. In this research, in order to the assessment of human comfort, two different climates of Iran(central parts and humid coastal of Persian Gulf) were considered by using of Apparent Temperature index (AT) .Yazd and Bushehr are two cities that were selected as a sample of arid and humid climates, respectively. Mean temperature, mean highest temperature, mean relative humidity and mean lowest relative humidity during two decades (1991-2010) from Iran Meteorological Organization were obtained. The results show that during warm months, due to increasing temperature the risk of heat stroke and other health problems is imminent. Keywords: human comfort, apparent temperature, bioclimatic indices, Yazd, Bushehr. 1. Introduction Urban climate studies have a strong potential to provide vital information around improvement of human thermal comfort conditions in cities. Today, bioclimatic studies are the basis for architectural activities, urban planning and tourism (Olgyay, 1963; Schiller and Evans, 1999; Johansson, 2005; Ali-Toudert and Mayer, 2006; Matzarakis, 2006; De Cosata Silva at el., 2008; Farajzdeh and Matzarakis, 2011; Matzarakis et al., 2011; Berkovic et al., 2012; Yilmaz et al., 2013; Taleb, 2014). Researchers have a long recognized that the human thermal comfort is not assessment only by temperature, but other meteorological parameters have involved in the temperature that a person feels.
    [Show full text]
  • Guidelines on Cross-Border Exchange of Warnings
    World Meteorological Organization GUIDELINES ON CROSS-BORDER EXCHANGE OF WARNINGS PWS-9 WMO/TD No. 1179 Authors: Jim Davidson (Australia), Hilda Lam and CY Lam (Hong Kong, China), Stewart Wass (UK), Charles Dupuy and Federic Chavaux (France) Edited by: Haleh Kootval Cover: Rafiek El Shanawani Cover photograph: Météo-France, meteorological vigilance map © 2003, World Meteorological Organization WMO/TD No. 1179 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of any of the participating agencies concerning the legal status of any country, territory, city or area, or of its authorities, or concern- ing the delimitation of its frontiers or boundaries. CONTENTS Page CHAPTER 1 – INTRODUCTION . 1 CHAPTER 2 – GENERAL PRINCIPLES . 2 2.1 Media as a Driving Force . 2 2.2 Focus on Public Safety . 2 2.3 Flexible Threshold Criteria . 2 2.4 Scope of Cooperation . 2 CHAPTER 3 – EXAMPLES OF CROSS-BORDER EXCHANGE OF WARNINGS . 3 3.1 Austria . 3 3.2 China – the Pearl River Estuary . 3 3.2.1 Background . 3 3.2.2 Warnings in Hong Kong . 3 3.2.3 Warnings in Macao and Guangzhou . 3 3.2.4 Coordination and Consultation . 3 3.2.5 Enhanced Data Exchange . 4 3.2.6 Annual Technical Conferences . 5 3.3 Nordic Countries . 5 3.4 Cross-border Exchanges between Germany, France and the Czech Republic . .5 3.5 The European Multi-purpose Awareness (EMMA) Programme . 6 3.5.1 Background . 6 3.5.2 The EMMA Programme . 6 3.5.3 Preconditions and Formal Arrangements .
    [Show full text]
  • Analysis of Wet-Bulb Globe Temperature Calculations Using In-Situ Observations
    N ATIONAL W EATHER C ENTER R ESEARCH E XPERIENCE F OR U NDERGRADUATES Analysis of wet-bulb globe temperature calculations using in-situ observations TIMOTHY D. CORRIE III∗ National Weather Center Research Experiences for Undergraduates Program Norman, Oklahoma GERRY CREAGER National Severe Storms Laboratory Norman, Oklahoma BRADLEY G. ILLSTON Oklahoma Climatological Survey / Oklahoma Mesonet Norman, Oklahoma ABSTRACT Using the Wet-Bulb Globe Temperature (WBGT) to measure heat injury risk is paramount; however, with- out affordable instruments, the public has to rely on formulas. These formulas either overestimate WBGT (bad for production) or worse, underestimate WBGT (bad for humans, heat injury risk increases significantly and unnecessarily). Data were collected from 16 June 2018 through 16 July 2018 from the QUESTemp◦34 (Q34) and synchronous data from the Oklahoma Mesonet, and WBGT index values were compared from Q34’s calculations, Mesonet calculation using approximations of natural wet bulb temperature and black globe tem- perature, and three equations utilized by Eglin Air Force Base. With roughly 2.5 weeks of valid, filtered data, it was determined that the Mesonet calculations underestimate the instruments’, and all three of Eglins cal- culations overestimate the instruments’. Future work includes examining the algorithms created by the Tulsa Weather Forecast Office to calculate the Mesonet WBGT and comparing the WBGT to the Environmental Stress Index. 1. Introduction tested to determine how accurate they are compared to an instrument, compared to one another, and if they are ac- The Wet-Bulb Globe Temperature (WBGT) is a derived curate enough to be used worldwide. With this, correction quantity used to measure the potential for heat injury (e.g., terms may need to be applied to the formulas to make them heat cramps, heat exhaustion, and heat stress).
    [Show full text]
  • Installation & Owner's Manual
    September 2019 Humidex HCS Rev. 2.1 En Installation & Owner’s Manual English This Manual Covers the Following Models HCS-APT-HDEX HCS-APTHC-HDEX Manufactured by: ClairiTech Innovations Inc. 1095 Ohio Rd. Boudreau-Ouest, NB Canada E4P 6N4 Humidex Table of Contents Table of Contents ...................................................................................................................... 1 Service and Warranty ................................................................................................................. 2 FOR CUSTOMER ASSISTANCE ........................................................................................................................ 2 CONSUMER LIMITED WARRANTY ................................................................................................................ 3 PRE-INSTALLATION ....................................................................................................................................... 4 INCLUDED COMPONENTS ............................................................................................................................. 4 TOOLS REQUIRED FOR INSTALLATION ....................................................................................................... 4 KEY INSTALLATION FACTS ........................................................................................................................... 4 IMPORTANT – WHAT NOT TO DO .......................................................................................................... 4 COMBUSTION
    [Show full text]
  • An Evaluation of Summer Discomfort in Niš (Serbia) Using Humidex
    www.gi.sanu.ac.rs, www.doiserbia.nb.rs J. Geogr. Inst. Cvijic. 2019, 69(2), pp. 109–122 Original scientific paper UDC: 911.2:551.586(497.11) https://doi.org/10.2298/IJGI1902109L Received: March 12, 2019 Reviewed: June 12, 2019 Accepted: July 5, 2019 AN EVALUATION OF SUMMER DISCOMFORT IN NIŠ (SERBIA) USING HUMIDEX Milica Lukić1*, Milica Pecelj2,3,4, Branko Protić1, Dejan Filipović1 1University of Belgrade, Faculty of Geography, Belgrade, Serbia; e-mails: [email protected], [email protected], [email protected] 2 Geographical Institute “Jovan Cvijić” SASA, Belgrade, Serbia; e-mail: [email protected] 3University of East Sarajevo, Faculty of Philosophy, Department of Geography, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina 4South Ural State University, Institute of Sports, Tourism and Service, Chelyabinsk, Russia Abstract: The bioclimatic analysis of the central area of the city of Niš conducted in this paper is based on the use of the bioclimatic index Humidex, which represents subjective outdoor temperature that one feels in warm and humid environment. The purpose of this research is to observe the index change on a daily basis during the hottest part of the year (June, July, and August) over the period from 1998 to 2017. For the purposes of this analysis, hourly (7:00, 14:00), maximum and mean daily values of meteorological parameters (air temperature and relative humidity) were used, for the period of 20 years (1998–2017), which were measured at Niš weather station (43°19'N, 21°53'E, at an altitude of 202 meters). The findings indicate a gradual change in the bioclimatic characteristics of this area during this period, especially over the last decade.
    [Show full text]
  • Installation & Owner's Manual
    September 2019 Humidex HCV Rev. 4.4 En Installation & Owner’s Manual English This Manual Covers the Following Models HCV-APT-HDEX HCV-APTHC-HDEX Manufactured by: ClairiTech Innovations Inc. 1095 Ohio Rd. Boudreau-Ouest, NB Canada E4P 6N4 Humidex Table of Contents Table of Contents ...................................................................................................................... 1 Service and Warranty ................................................................................................................. 3 FOR CUSTOMER ASSISTANCE ........................................................................................................................ 3 CONSUMER LIMITED WARRANTY ................................................................................................................ 4 PRE-INSTALLATION ....................................................................................................................................... 5 INCLUDED COMPONENTS ............................................................................................................................. 5 TOOLS REQUIRED FOR INSTALLATION ....................................................................................................... 5 KEY INSTALLATION FACTS ........................................................................................................................... 5 IMPORTANT – WHAT NOT TO DO .......................................................................................................... 5 COMBUSTION
    [Show full text]
  • Installation & Owner's Manual
    April 2019 Humidex HCS myHome Rev 2.1 En Installation & Owner’s Manual English This Manual Covers the Following Models (Basement) HCS-BS-HDEX myHome (Crawl Space) HCS-CS-HDEX myHome (BoosterFan) HCS-BSF-HDEX myHome (Apartment/Slab) HCS-APT-HDEX myHome HCS-APTHC-HDEX myHome (Hard Connect) Manufactured by: ClairiTech Innovations Inc. 1095 Ohio Rd. Boudreau-Ouest, NB Canada E4P 6N4 READ AND SAVE THESE INSTRUCTIONS Humidex Table of Contents Table of Contents ...................................................................................................................... 1 Introduction ............................................................................................................................... 3 COMBUSTION APPLIANCE PRESENT IN DWELLING .................................................................................. 3 Service and Warranty ................................................................................................................. 4 FOR CUSTOMER ASSISTANCE ........................................................................................................................ 4 CONSUMER LIMITED WARRANTY ................................................................................................................ 5 PRE-INSTALLATION........................................................................................................................................ 6 INCLUDED COMPONENTS ............................................................................................................................
    [Show full text]