Physics 4A Chapter 13

Total Page:16

File Type:pdf, Size:1020Kb

Physics 4A Chapter 13 Chapter 13 Newton’s Universal Law of Gravity Today: • Force • Energy • Circular Orbits Weds: • Kepler’s Laws mm • Types of Orbits FrG 12ˆ • Escape Velocity 12r2 12 • Tidal Forces • General Relativity Sun at Center Orbits are Circular Tycho Brahe 1546-1601 Tycho was the greatest observational astronomer of his time. Tycho did not believe in the Copernican model because of the lack of observational parallax. He didn’t believe that the Earth Moved. The Rejection of the Copernican Heliocentric Model Tycho Brahe 1546-1601 Kepler worked for Tycho as his mathematician. Kepler derived his laws of planetary motion from Tycho’s observational data. Kepler’s Laws are thus empirical - based on observation and not Theory. Kepler’s 3 Laws of Planetary Motion 1: The orbit of each planet about the sun is an ellipse with the sun at one focus. 2. Each planet moves so that it sweeps out equal areas in equal times. 3. The square of the orbital period of any planet is proportional to the 2 cube of the semimajor axis of the T1 elliptical orbit. 3 constant r1 Planet Orbits are Elliptical "The next question was - what makes planets go around the sun? At the time of Kepler some people answered this problem by saying that there were angels behind them beating their wings and pushing the planets around an orbit. As you will see, the answer is not very far from the truth. The only difference is that the angels sit in a different direction and their wings push inward." -Richard Feynman Man of the Millennium Sir Issac Newton (1642 -1727) Milky Way Galaxy Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Mercury: 48 km/s Venus: 35 km/s Earth: 30 km/s Mars: 24 km/s Jupiter: 13 km/s Neptune: 5 km/s Although the Moon is always lit from the Sun, we see different amounts of the lit portion from Earth depending on where the Moon is located in its month-long Orbital Speed of Moon: ~ 1 km/s orbit. Gravitational Force is Universal The same force that makes the apple fall to Earth, causes the moon to fall around the Earth. Universal Law of Gravity 1687 Every particle in the Universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product to their masses and inversely proportional to the square of the distance between them. M d m mM F ~ d 2 Measuring G: Cavendish 1798 mM GmM F ~ 2 F d d 2 Nm2 Gx 6.67 1011 kg 2 G is the same everywhere in the Universe. G’s small size is a measure of relative strength of gravity. By comparison, the proportionality constant for the electric force is k~109!! Universal Law of Gravity 2 11 Nm Minus because of the direction Gx 6.67 10 2 of the unit vector. Attractive kg Central Forces are negative! Ignore when finding magnitude! The sign is critical for solvng mm FrG 12ˆ Energy Problems. 12r2 12 Gravity: Inverse Square Law GmM F d 2 Gravitational Force INSIDE the Earth How would the force of gravity and the acceleration due to gravity change as you fell through a hole in the Earth? What would your motion be? Assume you jump from rest. Ignore Air Resistance. Gravitational Force INSIDE the Earth Inside the Earth the Gravitational Force is Linear. Acceleration decreases as you fall to the center (where your speed is the greatest) and then the acceleration increases but in the opposite direction, slowing you down to a stop at the other end…but then you would fall back in again, bouncing back and forth forever! Earth-Moon Gravity Calculate the magnitude of the force of gravity between the Earth and the Moon. The distance between the Earth and Moon centers is 3.84x108m GmM F EM d 2 6.673x 1011 Nm 2 / kg 2 5.98 x 10 24 kg 7.35 x 10 22 kg FEM 2 3.84xm 108 20 FEM 2.01 x 10 N Earth-Moon Gravity Calculate the acceleration of the Earth due to the Earth-Moon gravitational interaction. FEM aE mE 2.01xN 1020 5.98x 1024 kg 52 aE 3.33 x 10 m / s Earth-Moon Gravity Calculate the acceleration of the Moon due to the Earth-Moon gravitational interaction. FEM aM mM 2.01xN 1020 7.35x 1022 kg 32 aM 2.73 x 10 m / s Earth-Moon Gravity The acceleration of gravity at the Moon due to the Earth is: 32 aM 2.73 x 10 m / s The acceleration of gravity at the Earth due to the moon is: 52 aE 3.33 x 10 m / s Why the difference? FORCE is the same. Acceleration is NOT!!! BECAUSE MASSES ARE DIFFERENT! Force is not Acceleration! FFEarth on Moon Moon on Earth The forces are equal but the accelerations are not! Superposition of Gravitational Force Vectors What is the net force on the mass at the origin? Problem Solving Strategy 1. Draw FBD 2. Calculate Force Magnitudes 3. Resolve into components 4. Add components mm FrG 12ˆ 5. Express as ijk vector 12r2 12 6. Find magnitude and direction of resultant force. Problem Finding little g Calculate the acceleration of gravity acting on you at the surface of the Earth. What is g? Gm M you E F m a F 2 you RE Source of the Force Response to the Force Gmyou M E This is your 2 mayou WEIGHT! RE Independent of your mass! GM E This is why a rock and a 2 feather fall with the RE same acceleration! Finding little g Calculate the acceleration of gravity acting on you at the surface of the Earth. What is g? Gmyou M E F myou a F 2 RE GM Source of the Force E Reaction to the Force a 2 RE 6.673x 1011 Nm 2 / kg 2 5.98 x 10 24 kg a 2 6.38xm 106 a 9.81 m/ s2 = g! In general, g for any Planet: GM g planet planet R2 planet g field is an acceleration field The gravitational field describes the “effect” that any object has on the empty space around itself in terms of the force that would be present if a second object were somewhere in that space F GM grg ˆ mr2 In Sum, Gravitational Force & Field Gm12 m FGG rˆ F m g r 2 2 Gravity field is the force that +1kg would feel if it were placed at this location. It is an acceleration field. The gravitational Field of the Earth at the surface of the Earth is simply, g: GM Fg GM ggrE 9.81 N / kg ˆ 9.81 m / s2 r2 mr2 Physics 42 Electric Force and Field qq Fr k 12ˆ 12 r2 F qE Two flavors of charge (+/-) kq Electric Field E due to q : E 1 1 r2 Curvature of Earth Curvature of the Earth: Every 8000 m, the Earth curves by 5 meters! If you threw the ball at 8000 m/s off the surface of the Earth (and there were no buildings or mountains in the way) how far would it travel in the vertical direction in 1 second? 1 y gt2~ 5 m / s 2 (1 s 2 ) 5 m 2 The ball will achieve orbit. Orbital Velocity If you can throw a ball at 8000m/s, the Earth curves away from it so that the ball continually falls in free fall around the Earth – it is in orbit around the Earth! Ignoring air resistance. Above the atmosphere Projectile Motion/Orbital Motion Projectile Motion is Orbital motion that hits the Earth! Orbital Motion| & Escape Velocity 8km/s: Circular orbit Between 8 & 11.2 km/s: Elliptical orbit 11.2 km/s: Escape Earth 42.5 km/s: Escape Solar System! Orbits Circular Orbit Elliptical Orbit Circular Orbits As the ball falls around the Earth in a circular orbit, does the acceleration due to gravity change its orbital speed? It only changes its direction! Ignoring air resistance. Above the atmosphere Circular Orbital Velocity The force of gravity is perpendicular to the velocity of the ball so it doesn’t speed it up – it changes only the direction of the ball. Gravity provides a centripetal acceleration the keeps it in a circle! The PE and KE are the same throughout the orbit. Since F is parallel to r, angular momentum is also conserved. v Elliptical Orbits As the satellite falls around the Earth in an elliptical orbit, does the acceleration due to gravity change its orbital speed? There is a component of force (and A acceleration) in the direction of motion! Gravity changes the satellite’s speed when in elliptical orbits. Mechanical Energy is conserved but KE and PE change throughout the orbit. Is angular momentum conserved? Why? Where is the speed greatest- A or B? B Satellite Orbits Circular Orbit Speed With Increasing Altitude g and v Above the Earth’s Surface GMm If an object is some F distance h above the r2 Earth’s surface, r GM g E becomes RE + h 2 RhE v2 The tangential speed of an g r object is its orbital speed v2 GM and is given by the E Rh 2 centripetal acceleration, g: E RhE GM Orbital speed decreases with v E increasing altitude! ()RhE Orbit Question Find the orbital speed of a satellite 200 km above the Earth. 24 6 Assume a circular orbit. MEE5.97 x 10 kg , R 6.38 x 10 m v2 msE M G F F ms a a r 2 r 2 msE M G v MGE Fm2 s v rr RhE What is this? (5.97x 1024 kg )(6.67 x 10 11 Nm 2 / kg 2 ) v 6.58xm 106 Notice that this 3 v 7.78 x 10 m / s is less 8km/s! Orbit Question What is the period of a satellite orbiting 200 km above the Earth? M5.97 x 1024 kg , R 6.38 x 10 6 m Assume a circular orbit.
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Uncommon Sense in Orbit Mechanics
    AAS 93-290 Uncommon Sense in Orbit Mechanics by Chauncey Uphoff Consultant - Ball Space Systems Division Boulder, Colorado Abstract: This paper is a presentation of several interesting, and sometimes valuable non- sequiturs derived from many aspects of orbital dynamics. The unifying feature of these vignettes is that they all demonstrate phenomena that are the opposite of what our "common sense" tells us. Each phenomenon is related to some application or problem solution close to or directly within the author's experience. In some of these applications, the common part of our sense comes from the fact that we grew up on t h e surface of a planet, deep in its gravity well. In other examples, our mathematical intuition is wrong because our mathematical model is incomplete or because we are accustomed to certain kinds of solutions like the ones we were taught in school. The theme of the paper is that many apparently unsolvable problems might be resolved by the process of guessing the answer and trying to work backwards to the problem. The ability to guess the right answer in the first place is a part of modern magic. A new method of ballistic transfer from Earth to inner solar system targets is presented as an example of the combination of two concepts that seem to work in reverse. Introduction Perhaps the simplest example of uncommon sense in orbit mechanics is the increase of speed of a satellite as it "decays" under the influence of drag caused by collisions with the molecules of the upper atmosphere. In everyday life, when we slow something down, we expect it to slow down, not to speed up.
    [Show full text]
  • Launch and Deployment Analysis for a Small, MEO, Technology Demonstration Satellite
    46th AIAA Aerospace Sciences Meeting and Exhibit AIAA 2008-1131 7 – 10 January 20006, Reno, Nevada Launch and Deployment Analysis for a Small, MEO, Technology Demonstration Satellite Stephen A. Whitmore* and Tyson K. Smith† Utah State University, Logan, UT, 84322-4130 A trade study investigating the economics, mass budget, and concept of operations for delivery of a small technology-demonstration satellite to a medium-altitude earth orbit is presented. The mission requires payload deployment at a 19,000 km orbit altitude and an inclination of 55o. Because the payload is a technology demonstrator and not part of an operational mission, launch and deployment costs are a paramount consideration. The payload includes classified technologies; consequently a USA licensed launch system is mandated. A preliminary trade analysis is performed where all available options for FAA-licensed US launch systems are considered. The preliminary trade study selects the Orbital Sciences Minotaur V launch vehicle, derived from the decommissioned Peacekeeper missile system, as the most favorable option for payload delivery. To meet mission objectives the Minotaur V configuration is modified, replacing the baseline 5th stage ATK-37FM motor with the significantly smaller ATK Star 27. The proposed design change enables payload delivery to the required orbit without using a 6th stage kick motor. End-to-end mass budgets are calculated, and a concept of operations is presented. Monte-Carlo simulations are used to characterize the expected accuracy of the final orbit.
    [Show full text]
  • Orbital Mechanics
    Orbital Mechanics These notes provide an alternative and elegant derivation of Kepler's three laws for the motion of two bodies resulting from their gravitational force on each other. Orbit Equation and Kepler I Consider the equation of motion of one of the particles (say, the one with mass m) with respect to the other (with mass M), i.e. the relative motion of m with respect to M: r r = −µ ; (1) r3 with µ given by µ = G(M + m): (2) Let h be the specific angular momentum (i.e. the angular momentum per unit mass) of m, h = r × r:_ (3) The × sign indicates the cross product. Taking the derivative of h with respect to time, t, we can write d (r × r_) = r_ × r_ + r × ¨r dt = 0 + 0 = 0 (4) The first term of the right hand side is zero for obvious reasons; the second term is zero because of Eqn. 1: the vectors r and ¨r are antiparallel. We conclude that h is a constant vector, and its magnitude, h, is constant as well. The vector h is perpendicular to both r and the velocity r_, hence to the plane defined by these two vectors. This plane is the orbital plane. Let us now carry out the cross product of ¨r, given by Eqn. 1, and h, and make use of the vector algebra identity A × (B × C) = (A · C)B − (A · B)C (5) to write µ ¨r × h = − (r · r_)r − r2r_ : (6) r3 { 2 { The r · r_ in this equation can be replaced by rr_ since r · r = r2; and after taking the time derivative of both sides, d d (r · r) = (r2); dt dt 2r · r_ = 2rr;_ r · r_ = rr:_ (7) Substituting Eqn.
    [Show full text]
  • AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
    AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance
    [Show full text]
  • The Speed of a Geosynchronous Satellite Is ___
    Physics 106 Lecture 9 Newton’s Law of Gravitation SJ 7th Ed.: Chap 13.1 to 2, 13.4 to 5 • Historical overview • N’Newton’s inverse-square law of graviiitation Force Gravitational acceleration “g” • Superposition • Gravitation near the Earth’s surface • Gravitation inside the Earth (concentric shells) • Gravitational potential energy Related to the force by integration A conservative force means it is path independent Escape velocity Example A geosynchronous satellite circles the earth once every 24 hours. If the mass of the earth is 5.98x10^24 kg; and the radius of the earth is 6.37x10^6 m., how far above the surface of the earth does a geosynchronous satellite orbit the earth? G=6.67x10-11 Nm2/kg2 The speed of a geosynchronous satellite is ______. 1 Goal Gravitational potential energy for universal gravitational force Gravitational Potential Energy WUgravity= −Δ gravity Near surface of Earth: Gravitational force of magnitude of mg, pointing down (constant force) Æ U = mgh Generally, gravit. potential energy for a system of m1 & m2 G Gmm12 mm F = Attractive force Ur()=− G12 12 r 2 g 12 12 r12 Zero potential energy is chosen for infinite distance between m1 and m2. Urg ()012 = ∞= Æ Gravitational potential energy is always negative. 2 mm12 Urg ()12 =− G r12 r r Ug=0 1 U(r1) Gmm U =− 12 g r Mechanical energy 11 mM EKUrmvMVG=+ ( ) =22 + − mech 22 r m V r v M E_mech is conserved, if gravity is the only force that is doing work. 1 2 MV is almost unchanged. If M >>> m, 2 1 2 mM ÆWe can define EKUrmvG=+ ( ) = − mech 2 r 3 Example: A stone is thrown vertically up at certain speed from the surface of the Moon by Superman.
    [Show full text]
  • Optimisation of Propellant Consumption for Power Limited Rockets
    Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimisation of Propellant Consumption for Power Limited Rockets. What Role do Power Limited Rockets have in Future Spaceflight Missions? (Dutch title: Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten. De rol van deze raketten in toekomstige ruimtevlucht missies. ) A thesis submitted to the Delft Institute of Applied Mathematics as part to obtain the degree of BACHELOR OF SCIENCE in APPLIED MATHEMATICS by NATHALIE OUDHOF Delft, the Netherlands December 2017 Copyright c 2017 by Nathalie Oudhof. All rights reserved. BSc thesis APPLIED MATHEMATICS \ Optimisation of Propellant Consumption for Power Limited Rockets What Role do Power Limite Rockets have in Future Spaceflight Missions?" (Dutch title: \Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten De rol van deze raketten in toekomstige ruimtevlucht missies.)" NATHALIE OUDHOF Delft University of Technology Supervisor Dr. P.M. Visser Other members of the committee Dr.ir. W.G.M. Groenevelt Drs. E.M. van Elderen 21 December, 2017 Delft Abstract In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the trajectory which costs the least amount of propellant. First some background information as well as the differences between thrust limited and power limited rockets will be discussed. Then the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained. Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found. Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets for these trajectories with the power limited rockets.
    [Show full text]
  • Flight and Orbital Mechanics
    Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics AE2-104, lecture hours 21-24: Interplanetary flight Ron Noomen October 25, 2012 AE2104 Flight and Orbital Mechanics 1 | Example: Galileo VEEGA trajectory Questions: • what is the purpose of this mission? • what propulsion technique(s) are used? • why this Venus- Earth-Earth sequence? • …. [NASA, 2010] AE2104 Flight and Orbital Mechanics 2 | Overview • Solar System • Hohmann transfer orbits • Synodic period • Launch, arrival dates • Fast transfer orbits • Round trip travel times • Gravity Assists AE2104 Flight and Orbital Mechanics 3 | Learning goals The student should be able to: • describe and explain the concept of an interplanetary transfer, including that of patched conics; • compute the main parameters of a Hohmann transfer between arbitrary planets (including the required ΔV); • compute the main parameters of a fast transfer between arbitrary planets (including the required ΔV); • derive the equation for the synodic period of an arbitrary pair of planets, and compute its numerical value; • derive the equations for launch and arrival epochs, for a Hohmann transfer between arbitrary planets; • derive the equations for the length of the main mission phases of a round trip mission, using Hohmann transfers; and • describe the mechanics of a Gravity Assist, and compute the changes in velocity and energy. Lecture material: • these slides (incl. footnotes) AE2104 Flight and Orbital Mechanics 4 | Introduction The Solar System (not to scale): [Aerospace
    [Show full text]
  • Up, Up, and Away by James J
    www.astrosociety.org/uitc No. 34 - Spring 1996 © 1996, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Up, Up, and Away by James J. Secosky, Bloomfield Central School and George Musser, Astronomical Society of the Pacific Want to take a tour of space? Then just flip around the channels on cable TV. Weather Channel forecasts, CNN newscasts, ESPN sportscasts: They all depend on satellites in Earth orbit. Or call your friends on Mauritius, Madagascar, or Maui: A satellite will relay your voice. Worried about the ozone hole over Antarctica or mass graves in Bosnia? Orbital outposts are keeping watch. The challenge these days is finding something that doesn't involve satellites in one way or other. And satellites are just one perk of the Space Age. Farther afield, robotic space probes have examined all the planets except Pluto, leading to a revolution in the Earth sciences -- from studies of plate tectonics to models of global warming -- now that scientists can compare our world to its planetary siblings. Over 300 people from 26 countries have gone into space, including the 24 astronauts who went on or near the Moon. Who knows how many will go in the next hundred years? In short, space travel has become a part of our lives. But what goes on behind the scenes? It turns out that satellites and spaceships depend on some of the most basic concepts of physics. So space travel isn't just fun to think about; it is a firm grounding in many of the principles that govern our world and our universe.
    [Show full text]
  • Spacecraft Trajectories in a Sun, Earth, and Moon Ephemeris Model
    SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL A Project Presented to The Faculty of the Department of Aerospace Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Romalyn Mirador i ABSTRACT SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL by Romalyn Mirador This project details the process of building, testing, and comparing a tool to simulate spacecraft trajectories using an ephemeris N-Body model. Different trajectory models and methods of solving are reviewed. Using the Ephemeris positions of the Earth, Moon and Sun, a code for higher-fidelity numerical modeling is built and tested using MATLAB. Resulting trajectories are compared to NASA’s GMAT for accuracy. Results reveal that the N-Body model can be used to find complex trajectories but would need to include other perturbations like gravity harmonics to model more accurate trajectories. i ACKNOWLEDGEMENTS I would like to thank my family and friends for their continuous encouragement and support throughout all these years. A special thank you to my advisor, Dr. Capdevila, and my friend, Dhathri, for mentoring me as I work on this project. The knowledge and guidance from the both of you has helped me tremendously and I appreciate everything you both have done to help me get here. ii Table of Contents List of Symbols ............................................................................................................................... v 1.0 INTRODUCTION
    [Show full text]
  • Habitability of Planets on Eccentric Orbits: Limits of the Mean Flux Approximation
    A&A 591, A106 (2016) Astronomy DOI: 10.1051/0004-6361/201628073 & c ESO 2016 Astrophysics Habitability of planets on eccentric orbits: Limits of the mean flux approximation Emeline Bolmont1, Anne-Sophie Libert1, Jeremy Leconte2; 3; 4, and Franck Selsis5; 6 1 NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium e-mail: [email protected] 2 Canadian Institute for Theoretical Astrophysics, 60st St George Street, University of Toronto, Toronto, ON, M5S3H8, Canada 3 Banting Fellow 4 Center for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada 5 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France 6 CNRS, LAB, UMR 5804, 33270 Floirac, France Received 4 January 2016 / Accepted 28 April 2016 ABSTRACT Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ∼0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet.
    [Show full text]
  • GRAVITATION UNIT H.W. ANS KEY Question 1
    GRAVITATION UNIT H.W. ANS KEY Question 1. Question 2. Question 3. Question 4. Two stars, each of mass M, form a binary system. The stars orbit about a point a distance R from the center of each star, as shown in the diagram above. The stars themselves each have radius r. Question 55.. What is the force each star exerts on the other? Answer D—In Newton's law of gravitation, the distance used is the distance between the centers of the planets; here that distance is 2R. But the denominator is squared, so (2R)2 = 4R2 in the denominator here. Two stars, each of mass M, form a binary system. The stars orbit about a point a distance R from the center of each star, as shown in the diagram above. The stars themselves each have radius r. Question 65.. In terms of each star's tangential speed v, what is the centripetal acceleration of each star? Answer E—In the centripetal acceleration equation the distance used is the radius of the circular motion. Here, because the planets orbit around a point right in between them, this distance is simply R. Question 76.. A Space Shuttle orbits Earth 300 km above the surface. Why can't the Shuttle orbit 10 km above Earth? (A) The Space Shuttle cannot go fast enough to maintain such an orbit. (B) Kepler's Laws forbid an orbit so close to the surface of the Earth. (C) Because r appears in the denominator of Newton's law of gravitation, the force of gravity is much larger closer to the Earth; this force is too strong to allow such an orbit.
    [Show full text]