Calculation of Moon Phases and 24 Solar Terms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astrodynamics
Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities -
Uncommon Sense in Orbit Mechanics
AAS 93-290 Uncommon Sense in Orbit Mechanics by Chauncey Uphoff Consultant - Ball Space Systems Division Boulder, Colorado Abstract: This paper is a presentation of several interesting, and sometimes valuable non- sequiturs derived from many aspects of orbital dynamics. The unifying feature of these vignettes is that they all demonstrate phenomena that are the opposite of what our "common sense" tells us. Each phenomenon is related to some application or problem solution close to or directly within the author's experience. In some of these applications, the common part of our sense comes from the fact that we grew up on t h e surface of a planet, deep in its gravity well. In other examples, our mathematical intuition is wrong because our mathematical model is incomplete or because we are accustomed to certain kinds of solutions like the ones we were taught in school. The theme of the paper is that many apparently unsolvable problems might be resolved by the process of guessing the answer and trying to work backwards to the problem. The ability to guess the right answer in the first place is a part of modern magic. A new method of ballistic transfer from Earth to inner solar system targets is presented as an example of the combination of two concepts that seem to work in reverse. Introduction Perhaps the simplest example of uncommon sense in orbit mechanics is the increase of speed of a satellite as it "decays" under the influence of drag caused by collisions with the molecules of the upper atmosphere. In everyday life, when we slow something down, we expect it to slow down, not to speed up. -
Ephemeris Time, D. H. Sadler, Occasional
EPHEMERIS TIME D. H. Sadler 1. Introduction. – At the eighth General Assembly of the International Astronomical Union, held in Rome in 1952 September, the following resolution was adopted: “It is recommended that, in all cases where the mean solar second is unsatisfactory as a unit of time by reason of its variability, the unit adopted should be the sidereal year at 1900.0; that the time reckoned in these units be designated “Ephemeris Time”; that the change of mean solar time to ephemeris time be accomplished by the following correction: ΔT = +24°.349 + 72s.318T + 29s.950T2 +1.82144 · B where T is reckoned in Julian centuries from 1900 January 0 Greenwich Mean Noon and B has the meaning given by Spencer Jones in Monthly Notices R.A.S., Vol. 99, 541, 1939; and that the above formula define also the second. No change is contemplated or recommended in the measure of Universal Time, nor in its definition.” The ultimate purpose of this article is to explain, in simple terms, the effect that the adoption of this resolution will have on spherical and dynamical astronomy and, in particular, on the ephemerides in the Nautical Almanac. It should be noted that, in accordance with another I.A.U. resolution, Ephemeris Time (E.T.) will not be introduced into the national ephemerides until 1960. Universal Time (U.T.), previously termed Greenwich Mean Time (G.M.T.), depends both on the rotation of the Earth on its axis and on the revolution of the Earth in its orbit round the Sun. There is now no doubt as to the variability, both short-term and long-term, of the rate of rotation of the Earth; U.T. -
Orbital Mechanics
Orbital Mechanics These notes provide an alternative and elegant derivation of Kepler's three laws for the motion of two bodies resulting from their gravitational force on each other. Orbit Equation and Kepler I Consider the equation of motion of one of the particles (say, the one with mass m) with respect to the other (with mass M), i.e. the relative motion of m with respect to M: r r = −µ ; (1) r3 with µ given by µ = G(M + m): (2) Let h be the specific angular momentum (i.e. the angular momentum per unit mass) of m, h = r × r:_ (3) The × sign indicates the cross product. Taking the derivative of h with respect to time, t, we can write d (r × r_) = r_ × r_ + r × ¨r dt = 0 + 0 = 0 (4) The first term of the right hand side is zero for obvious reasons; the second term is zero because of Eqn. 1: the vectors r and ¨r are antiparallel. We conclude that h is a constant vector, and its magnitude, h, is constant as well. The vector h is perpendicular to both r and the velocity r_, hence to the plane defined by these two vectors. This plane is the orbital plane. Let us now carry out the cross product of ¨r, given by Eqn. 1, and h, and make use of the vector algebra identity A × (B × C) = (A · C)B − (A · B)C (5) to write µ ¨r × h = − (r · r_)r − r2r_ : (6) r3 { 2 { The r · r_ in this equation can be replaced by rr_ since r · r = r2; and after taking the time derivative of both sides, d d (r · r) = (r2); dt dt 2r · r_ = 2rr;_ r · r_ = rr:_ (7) Substituting Eqn. -
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance -
The Speed of a Geosynchronous Satellite Is ___
Physics 106 Lecture 9 Newton’s Law of Gravitation SJ 7th Ed.: Chap 13.1 to 2, 13.4 to 5 • Historical overview • N’Newton’s inverse-square law of graviiitation Force Gravitational acceleration “g” • Superposition • Gravitation near the Earth’s surface • Gravitation inside the Earth (concentric shells) • Gravitational potential energy Related to the force by integration A conservative force means it is path independent Escape velocity Example A geosynchronous satellite circles the earth once every 24 hours. If the mass of the earth is 5.98x10^24 kg; and the radius of the earth is 6.37x10^6 m., how far above the surface of the earth does a geosynchronous satellite orbit the earth? G=6.67x10-11 Nm2/kg2 The speed of a geosynchronous satellite is ______. 1 Goal Gravitational potential energy for universal gravitational force Gravitational Potential Energy WUgravity= −Δ gravity Near surface of Earth: Gravitational force of magnitude of mg, pointing down (constant force) Æ U = mgh Generally, gravit. potential energy for a system of m1 & m2 G Gmm12 mm F = Attractive force Ur()=− G12 12 r 2 g 12 12 r12 Zero potential energy is chosen for infinite distance between m1 and m2. Urg ()012 = ∞= Æ Gravitational potential energy is always negative. 2 mm12 Urg ()12 =− G r12 r r Ug=0 1 U(r1) Gmm U =− 12 g r Mechanical energy 11 mM EKUrmvMVG=+ ( ) =22 + − mech 22 r m V r v M E_mech is conserved, if gravity is the only force that is doing work. 1 2 MV is almost unchanged. If M >>> m, 2 1 2 mM ÆWe can define EKUrmvG=+ ( ) = − mech 2 r 3 Example: A stone is thrown vertically up at certain speed from the surface of the Moon by Superman. -
Lesson 3: Moons, Rings Relationships
GETTING TO KNOW SATURN LESSON Moons, Rings, and Relationships 3 3–4 hrs Students design their own experiments to explore the fundamental force of gravity, and then extend their thinking to how gravity acts to keep objects like moons and ring particles in orbit. Students use the contexts of the Solar System and the Saturn system MEETS NATIONAL to explore the nature of orbits. The lesson SCIENCE EDUCATION enables students to correct common mis- STANDARDS: conceptions about gravity and orbits and to Science as Inquiry • Abilities learn how orbital speed decreases as the dis- Prometheus and Pandora, two of Saturn’s moons, “shepherd” necessary to Saturn’s F ring. scientific inquiry tance from the object being orbited increases. Physical Science • Motions and PREREQUISITE SKILLS BACKGROUND INFORMATION forces Working in groups Background for Lesson Discussion, page 66 Earth and Space Science Reading a chart of data Questions, page 71 • Earth in the Plotting points on a graph Answers in Appendix 1, page 225 Solar System 1–21: Saturn 22–34: Rings 35–50: Moons EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–10 are provided at the end of Overhead projector this lesson. Chalkboard, whiteboard, or large easel FIGURE TRANSPARENCY COPIES with paper; chalk or markers 11 21 For each group of 3 to 4 students 31 Large plastic or rubber ball 4 1 per student Paper, markers, pencils 5 1 1 per student 6 1 for teacher 7 1 (optional) 1 for teacher 8 1 per student 9 1 (optional) 1 per student 10 1 (optional) 1 for teacher 65 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1999-12-008-JPL Background for Lesson Discussion LESSON 3 Science as inquiry The nature of Saturn’s rings and how (See Procedures & Activities, Part I, Steps 1-6) they move (See Procedures & Activities, Part IIa, Step 3) Part I of the lesson offers students a good oppor- tunity to experience science as inquiry. -
Up, Up, and Away by James J
www.astrosociety.org/uitc No. 34 - Spring 1996 © 1996, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Up, Up, and Away by James J. Secosky, Bloomfield Central School and George Musser, Astronomical Society of the Pacific Want to take a tour of space? Then just flip around the channels on cable TV. Weather Channel forecasts, CNN newscasts, ESPN sportscasts: They all depend on satellites in Earth orbit. Or call your friends on Mauritius, Madagascar, or Maui: A satellite will relay your voice. Worried about the ozone hole over Antarctica or mass graves in Bosnia? Orbital outposts are keeping watch. The challenge these days is finding something that doesn't involve satellites in one way or other. And satellites are just one perk of the Space Age. Farther afield, robotic space probes have examined all the planets except Pluto, leading to a revolution in the Earth sciences -- from studies of plate tectonics to models of global warming -- now that scientists can compare our world to its planetary siblings. Over 300 people from 26 countries have gone into space, including the 24 astronauts who went on or near the Moon. Who knows how many will go in the next hundred years? In short, space travel has become a part of our lives. But what goes on behind the scenes? It turns out that satellites and spaceships depend on some of the most basic concepts of physics. So space travel isn't just fun to think about; it is a firm grounding in many of the principles that govern our world and our universe. -
The Calendars of India
The Calendars of India By Vinod K. Mishra, Ph.D. 1 Preface. 4 1. Introduction 5 2. Basic Astronomy behind the Calendars 8 2.1 Different Kinds of Days 8 2.2 Different Kinds of Months 9 2.2.1 Synodic Month 9 2.2.2 Sidereal Month 11 2.2.3 Anomalistic Month 12 2.2.4 Draconic Month 13 2.2.5 Tropical Month 15 2.2.6 Other Lunar Periodicities 15 2.3 Different Kinds of Years 16 2.3.1 Lunar Year 17 2.3.2 Tropical Year 18 2.3.3 Siderial Year 19 2.3.4 Anomalistic Year 19 2.4 Precession of Equinoxes 19 2.5 Nutation 21 2.6 Planetary Motions 22 3. Types of Calendars 22 3.1 Lunar Calendar: Structure 23 3.2 Lunar Calendar: Example 24 3.3 Solar Calendar: Structure 26 3.4 Solar Calendar: Examples 27 3.4.1 Julian Calendar 27 3.4.2 Gregorian Calendar 28 3.4.3 Pre-Islamic Egyptian Calendar 30 3.4.4 Iranian Calendar 31 3.5 Lunisolar calendars: Structure 32 3.5.1 Method of Cycles 32 3.5.2 Improvements over Metonic Cycle 34 3.5.3 A Mathematical Model for Intercalation 34 3.5.3 Intercalation in India 35 3.6 Lunisolar Calendars: Examples 36 3.6.1 Chinese Lunisolar Year 36 3.6.2 Pre-Christian Greek Lunisolar Year 37 3.6.3 Jewish Lunisolar Year 38 3.7 Non-Astronomical Calendars 38 4. Indian Calendars 42 4.1 Traditional (Siderial Solar) 42 4.2 National Reformed (Tropical Solar) 49 4.3 The Nānakshāhī Calendar (Tropical Solar) 51 4.5 Traditional Lunisolar Year 52 4.5 Traditional Lunisolar Year (vaisnava) 58 5. -
Astronomical Time Keeping file:///Media/TOSHIBA/Times.Htm
Astronomical Time Keeping file:///media/TOSHIBA/times.htm Astronomical Time Keeping Introduction Siderial Time Solar Time Universal Time (UT), Greenwich Time Timezones Atomic Time Ephemeris Time, Dynamical Time Scales (TDT, TDB) Julian Day Numbers Astronomical Calendars References Introduction: Time keeping and construction of calendars are among the oldest branches of astronomy. Up until very recently, no earth-bound method of time keeping could match the accuracy of time determinations derived from observations of the sun and the planets. All the time units that appear natural to man are caused by astronomical phenomena: The year by Earth's orbit around the Sun and the resulting run of the seasons, the month by the Moon's movement around the Earth and the change of the Moon phases, the day by Earth's rotation and the succession of brightness and darkness. If high precision is required, however, the definition of time units appears to be problematic. Firstly, ambiguities arise for instance in the exact definition of a rotation or revolution. Secondly, some of the basic astronomical processes turn out to be uneven and irregular. A problem known for thousands of years is the non-commensurability of year, month, and day. Neither can the year be precisely expressed as an integer number of months or days, nor does a month contain an integer number of days. To solves these problems, a multitude of time scales and calenders were devised of which the most important will be described below. Siderial Time The siderial time is deduced from the revolution of the Earth with respect to the distant stars and can therefore be determined from nightly observations of the starry sky. -
The Mathematics of the Chinese Calendar
The Mathematics of the Chinese Calendar Helmer Aslaksen Department of Mathematics National University of Singapore Singapore 117543 Republic of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ August 28, 2003 1 Introduction Chinese New Year is the main holiday of the year for more than one quarter of the world’s population; very few people, however, know how to compute its date. For many years I kept asking people about the rules for the Chinese calendar, but I wasn’t able to find anybody who could help me. Many of the people who were knowledgeable about science felt that the traditional Chinese calendar was backwards and superstitious, while people who cared about Chinese culture usually lacked the scientific knowledge to understand how the calendar worked. In the end I gave up and decided that I had to figure it out for myself. This paper is the result. The rules for the Chinese calendar have changed many times over the years. This has caused a lot of confusion for people writing about it. Many sources describe the rules that were used before the last calendar reform in 1645, and some modern sources even describe the rules that were used before 104 BCE! In addition, the otherwise authoritative work of Needham ([32]) almost completely ignores the topic. For many years, the only reliable source in English was the article by Doggett in the Explanatory Supplement to the Astronomical Almanac ([12]), based on unpublished work of Liu and Stephenson ([25]). But thanks to the efforts of Dershowitz and Reingold ([11]), correct information and computer programs are now easily available. -
Swiss Ephemeris: an Accurate Ephemeris Toolset for Astronomy and Astrology
NOTICES Swiss Ephemeris: An Accurate Ephemeris Toolset for Astronomy and Astrology Victor Reijs Independent scholar [email protected] Ralf Stubner Independent scholar [email protected] Introduction The Swiss Ephemeris is a highly accurate ephemeris toolset developed since 1997 by Astrodienst (Koch and Triendl 2004). It is based upon the DE430/DE431 ephemerides from NASA’s JPL (Folkner et al. 2014) and covers the time range 13,000 BC to AD 17,000. For both astronomical and astrological coordinates (true equinox of date), all corrections such as relativistic aberration, deflection of light in the gravity field of the Sun and others have been included. The Swiss Ephemeris is not a product that can be easily used by end users, but it is an accurate and fast toolset for programmers to build into their own astronomical or astrological software. A few examples where this toolset is used include the swephR package for the R environment (Stubner and Reijs 2019) and ARCHAEOCOSMO, which is used within both Excel and R (Reijs 2006). All discussed packages have open source versions. To provide flexibility (mainly in processing and memory needs), Swiss Ephemeris can use three ephemerides, giving the user the choice of which to use. First there are the original JPL ephemerides data files. These data files need a lot of memory (around 3 GB) and provide the most accurate ephemeris at this moment. The second (and default) SE ephemeris uses Astrodienst’s data files. Astrodienst used sophisticated compres- sion techniques to reduce the original DE430/DE431 data files to around 100 MB.