Regulation of Target Genes of PAX3−FOXO1 in Alveolar Rhabdomyosarcoma

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Target Genes of PAX3−FOXO1 in Alveolar Rhabdomyosarcoma ANTICANCER RESEARCH 33: 2029-2036 (2013) Regulation of Target Genes of PAX3−FOXO1 in Alveolar Rhabdomyosarcoma EUN HYUN AHN1,2 1Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A.; 2Department of Pathology, School of Medicine, University of Washington, Seattle, WA, U.S.A. Abstract. Background: The majority of alveolar major subtypes based on their histological appearance: rhabdomyosarcoma (ARMS) are distinguished through the embryonal rhabdomyosarcoma (ERMS) and alveolar paired box 3−forkhead box protein O1 (PAX3−FOXO1) rhabdomyosarcoma (ARMS) (1). ARMS has a higher fusion oncoprotein, being generated by a 2;13 chromosomal frequency of metastases at the initial diagnosis than ERMS, translocation. This fusion-positive ARMS is the most commonly conferring a poorer prognosis than ERMS (2, 3). clinically difficult type of rhabdomyosarcoma. The present A common characteristic of ERMS is a loss of study characterized four genes [gremlin 1 (GREM1), death- heterozygosity at 11p15, however ERMS has not been associated protein kinase-1 (DAPK1), myogenic reported to exhibit a diagnostic genetic alteration. In contrast, differentiation-1 (MYOD1), and hairy/enhancer-of-split chromosomal translocation is frequently observed for ARMS related with YRPW motif-1 (HEY1)] as targets of (4, 5). The translocation t(2;13)(q35;q14) generating the PAX3−FOXO1. Materials and Methods: The expression of paired box 3−forkhead box protein O1 (PAX3−FOXO1) gene the four genes, PAX3−FOXO1, and v-myc myelocytomatosis fusion was found to occur in 55% of ARMS cases, while the viral-related oncogene, neuroblastoma-derived (avian) translocation t(1;13)(q36;q14) generating the paired box (MYCN) was determined in various ARMS cell models and 7−forkhead box protein O1 (PAX7−FOXO1) gene fusion primary tumors. The roles of PAX3−FOXO1 and MYCN occurred in 22% of cases, and 23% of ARMS were fusion- expression were examined. Results: Pulse-chase and negative (2). The 2;13 translocation present in ARMS is cycloheximide experiments suggest that GREM1, DAPK1, characterized by an overexpression of PAX3−FOXO1 and MYOD1 are directly regulated by PAX3−FOXO1. relative to wild-type PAX3 (6). PAX3−FOXO1 appears to indirectly down-regulate HEY1 by Although PAX3−FOXO1-positive ARMS is the most up-regulating MYCN. Data reveal that the growth- clinically intractable fusion subtype of pediatric suppressive activity of high PAX3−FOXO1 expression is rhabdomyosarcoma, it can be difficult to histologically closely-associated with up-regulation of the GREM1 and classify rhabdomyosarcoma into ARMS and ERMS in some DAPK1 tumor-suppressor genes. Conclusion: This study cases (7), and no specific drugs are available for treating a characterized four downstream targets of PAX3−FOXO1 that specific fusion or histological subtype (1, 2, 7, 8). Therefore, contribute to the biological activities of growth suppression there is a strong incentive to elucidate target genes of and myogenic differentiation. PAX3−FOXO1, which has the utility of being a therapeutic target and marker for the purpose of diagnosis and treatment Rhabdomyosarcoma is the most prominent type of pediatric of rhabdomyosarcoma. Several recent studies have utilized soft tissue sarcoma, being associated with the skeletal muscle the gene expression profiles to classify rhabdomyosarcoma lineage. Among pediatric rhabdomyosarcoma, there are two or identify target genes of only PAX3−FOXO1, or both PAX3−FOXO1 and PAX7−FOXO1, however, more research is needed to validate the biological function of the genes in ARMS development (9-15). Correspondence to: Eun Hyun Ahn, Ph.D., Department of Recently Ahn and co-authors identified 34 potential Pathology, University of Washington School of Medicine, Box target genes and validated the four genes, gremlin-1 357705. 1959 NE Pacific St., Seattle, WA 98195, U.S.A. E-mail: [email protected]/[email protected] (GREM1), death-associated protein kinase-1 (DAPK1), myogenic differentiation (MYOD1), and hairy/enhancer- Key Words: Rabdomyosarcoma, PAX3−FOXO1, gene expression, of-split related with YRPW motif-1 (HEY1), as target growth suppression. genes of PAX3−FOXO1 in ARMS by analyzing gene 0250-7005/2013 $2.00+.40 2029 ANTICANCER RESEARCH 33: 2029-2036 (2013) expression profiles from two independent systems: primary RNA extraction and qRT-PCR analysis. Total RNA was extracted tumors (PAX3−FOXO1-positive ARMS and fusion- using RNA STAT-60 (Tel-Test Inc., Friendswood, TX, USA). The negative ERMS) and a cell culture system expressing the qRT-PCR assay was performed as described previously (14). The expression of test genes was normalized to the expression of 18S inducible PAX3−FOXO1-estrogen receptor (ER) ligand ribosomal RNA (18S rRNA). Taqman gene expression assays used binding domain construct (40). The present study focused (Applied Biosystems, Foster City, CA, USA) were: DAPK1 (assay on these four genes in order to investigate whether these ID# Hs00234489_m1), GREM1 (assay ID# Hs00171951_m1), and target genes are directly or indirectly regulated by MYOD1 (assay ID# Hs00159528_m1) and sequences of these gene PAX3−FOXO1, the nature of interactions between target expression assays are not disclosed by Applied Biosystems. The genes of PAX3−FOXO1, and whether specific targets of sequences of forward and reverse primers and probes are for PAX3−FOXO1 are associated with growth suppressive PAX3−FOXO1 [5’CCT CAA CCM CAT GAA CCC3’ (M: either A or C); 5’ CCT TCA TTC TGC ACA CGA ATG A 3’; 5’ VIC_TGG activity of high PAX3−FOXO1 expression. CAA TGG CCT CTC ACC TCA GAA TT_TAMRA 3’], for HEY1 [5’ TGA CCG TGG ATC ACC TGA AA 3’; 5’ GCG TGC GCG Materials and Methods TCA AAG TAA 3’; 5’ FAM_TGC TGC ATA CGG CAG GAG GGA AAG_TAMRA 3’], and for MYCN [5 ‘ACC ACA AGG CCC Tumor samples. Tumor specimens used for quantitative reverse- TCA GTA CCT 3’; 5’ ACG TCG ATT TCT TCC TCT TCA TCT transcription polymerase chain reaction (qRT-PCR) (13 3’; 5’ FAM_CTC TTC ATC ATC TTC ATC ATC TGA ATC GCT PAX3−FOXO1-positive ARMS) were described previously (14). CA _TAMRA 3’]. The presence of PAX3−FOXO1 in ARMS tumor specimens was confirmed by qRT-PCR (16). Extraction of cellular proteins and immunoblot analysis. The RD cells transduced with pKH or pKH-MYCN were seeded at 106 cells Cell culture and cell growth assay. RD ERMS cell line and RD- per 100 mm dish in DMEM containing 10% FBS, 1% P/S, and 1% derived PAX3−FOXO1 and PAX3−FOXO1-ER-positive cells were AM for 24 hours prior to hygromycin B treatment. Cellular proteins maintained in Dulbecco’s modified Eagle’s medium (DMEM) were extracted and immunoblot analysis was performed as described (Invitrogen, Grand Island, NY, USA) with 10% fetal bovine serum previously with modifications (22). MYCN (cat# sc-791) and actin (FBS) (HyClone Thermo Scientific, Logan, UT, USA), 1% (sc-1616) used as primary antibodies were from Santa Cruz penicillin:streptomycin (P/S) (Invitrogen) and 1% antibiotic- Biotechnology (Santa Cruz, CA, USA). antimycotic (AM) (Invitrogen). For cell growth experiments, 2×105 cells constitutively expressing PAX3−FOXO1 in pK1 (pK-P3F) and Statistical analysis. The correlation between MYCN and HEY1 2×104 cells carrying the pK1 vector alone (pK) were plated per well expression levels determined by qRT-PCR in 13 PAX3−FOXO1- in six-well plates, trypsinized at the indicated time points, and positive ARMS tumors was analyzed by Pearson’s correlation viable cells were then counted. coefficient after log-transformation of gene expression values. DNA constructs. Retroviral constructs with relevant DNA inserts Results [inducible PAX3−FOXO1 in pK1 with puromycin resistance marker (pK-P3F-ER), constitutive PAX3−FOXO1 in pK1 with puromycin PAX3−FOXO1 directly regulates GREM1, DAPK1, and resistance marker (pK-P3F), and v-myc myelocytomatosis viral MYOD1, while HEY1 may be indirectly regulated. The two related oncogene, neuroblastoma derived (avian) (MYCN) in pK1 approaches were followed to explore whether GREM1, with hygromycin resistance marker (pKH-MYCN)] were previously generated by Dr. Frederic G. Barr’s laboratory (17-20). A modified DAPK1, MYOD1, and HEY1 are direct transcriptional ER ligand-binding domain was provided by Dr. G. Evan (21). targets regulated by PAX3−FOXO1. Firstly, pulse-chase time course experiments were conducted to determine how Establishment of ERMS cell culture systems inducibly or quickly the maximum expression change was achieved. RD constitutively expressing PAX3−FOXO1 and ERMS cells ERMS-derived cells expressing an inducible PAX3−FOXO1- overexpressing MYCN. Retroviral transduction was performed as ER in pK1 (pK-P3F-ER) or pK1 vector-alone (pK) were described previously with modifications (19, 20). Cells that were treated without or with 100 nM TMF for one hour. Then transduced with retroviral DNA constructs were selected with TMF was removed and cells were cultured with medium for puromycin (BD Biosciences, San Jose, CA, USA) at: 1 μg/ml for RD-derived cells with PAX3−FOXO1-ER in pK1 and 0.8 μg/ml 3, 6, 12, and 24 h. The expression of GREM1, DAPK1, for RD-derived cells with PAX3−FOXO1 in pK1. Cells carrying MYOD1, and HEY1 was determined by qRT-PCR at each inducible PAX3−FOXO1-ER were treated with the ligand time point (Figure 1). In RD cells expressing pK-P3F-ER, 4-hydroxytamoxifen (TMF) (Sigma-Aldrich, St. Louis, MO, the maximum up-regulation of GREM1 (Figure 1A), DAPK1 USA), which activates and induces transcriptional activity of (Figure 1B), and MYOD1 (Figure 1C) was achieved at 6 h. In PAX3−FOXO1-ER by translocating PAX3−FOXO1-ER to the contrast, the maximum down-regulation of HEY1 was nucleus (18). RD cells were transduced with MYCN in pK1 with observed at 12 hours (Figure 1D). the hygromycin resistance marker (pKH-MYCN) or with pKH vector only (pKH) and then were selected by incubation with In the second approach, RD ERMS cells expressing an hygromycin B (Roche Diagnostics, Indianapolis, IN, USA) at inducible PAX3−FOXO1-ER construct in pK1 (pK-P3F-ER) 250 μg/ml.
Recommended publications
  • The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer
    Published OnlineFirst October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 RESEARCH ARTICLE The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer Jennifer L. Bishop1, Daksh Thaper1,2, Sepideh Vahid1,2, Alastair Davies1, Kirsi Ketola1, Hidetoshi Kuruma1, Randy Jama1, Ka Mun Nip1,2, Arkhjamil Angeles1, Fraser Johnson1, Alexander W. Wyatt1,2, Ladan Fazli1,2, Martin E. Gleave1,2, Dong Lin1, Mark A. Rubin3, Colin C. Collins1,2, Yuzhuo Wang1,2, Himisha Beltran3, and Amina Zoubeidi1,2 ABSTRACT Mechanisms controlling the emergence of lethal neuroendocrine prostate cancer (NEPC), especially those that are consequences of treatment-induced suppression of the androgen receptor (AR), remain elusive. Using a unique model of AR pathway inhibitor–resistant prostate cancer, we identified AR-dependent control of the neural transcription factor BRN2 (encoded by POU3F2) as a major driver of NEPC and aggressive tumor growth, both in vitro and in vivo. Mecha- nistic studies showed that AR directly suppresses BRN2 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker SOX2. Underscoring its inverse correlation with clas- sic AR activity in clinical samples, BRN2 expression was highest in NEPC tumors and was significantly increased in castration-resistant prostate cancer compared with adenocarcinoma, especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent control of NEPC and suggest that targeting BRN2 is a strategy to treat or prevent neuroendocrine differentiation in prostate tumors. SIGNIFICANCE: Understanding the contribution of the AR to the emergence of highly lethal, drug- resistant NEPC is critical for better implementation of current standard-of-care therapies and novel drug design.
    [Show full text]
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • List of Abbreviation
    Exploring and Potentiating Human Bone Marrow Derived Mesenchymal Stem Cells [hBMSCs] and Differentiated Islets for Effective Diabetes Therapy ABBREVIATION LIST OF ABBREVIATION AF555-Alexa Fluor 555 EBs- Embryoid bodies AGE- advanced glycosylation end-product EDTA- Ethylenediaminetetraacetic acid aPKC- Atypical protein kinase C EGF-Epidermal growth factor ANOVA-Analysis of variance EGFR- epidermal growth factor receptor Arx- Aristaless-related homeobox gene EL- Enicostemma littorale ATP- Adenosine triphosphate ELISA- Enzyme linked immunosorbent bHLH- Basic helix–loop–helix assay BM- Bone marrow EMT - epithelial–mesenchymal transition BMC- Bioactive molecules cocktail ESCs- Embryonic stem cells BMP-bone morphogenic protein FACS- Fluorescent activated cell sorter BSA- Bovine serum albumin FBS- Fetal Bovine Serum cAMP- Cyclic Adenosine monophosphate FDA- Food and Drug Administration CaCl2 –Calcium chloride FGF- Fibroblast growth factor CD-Cluster of differentiation FITC- Fluorescein isothiocyanate cDNA –Complementary DNA FOXO1-Forkhead box protein O1 ChIP-Chromatin immunoprecipitation FOXA2 - Forkhead box protein A2 CCl4- Carbon tetrachloride GAD- Glutamate decarboxylase CDK- Cyclin dependent kinase GATA4 -(GATA Binding Protein 4) CK-Cytokeratin GATA6- (GATA Binding Protein 6) CNS- Central Nervous System GCK- Glucokinase CPCSEA- Committee for the purpose of GFP- Green Fluorescent protein control and supervision of experiments on GLP-1- Glucagon-like peptide-1 animals GLUT- Glucose Transporter DAPI- 4’6’-diamidino-2-phenylindole GPx- Glutathione peroxidase Dihydrochloride GSH- Reduced glutathione DCFDA- 2',7' –dichlorofluorescin diacetate GSIS- Glucose-stimulated insulin secretion DM-Diabetes mellitus GTT- Glucose tolerance test DMEM- KO -Dulbecco’s Modified Eagle H & E- Hematoxylin and Eosin Media-Knock out hBMSCs: Human bone marrow-derived DMSO- Dimethyl Sulphoxide mesenchymal stem cell DTZ- Dithizone HGF- Hepatocyte Growth Factor Mitul Vakani.
    [Show full text]
  • PAX3–FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain
    Published OnlineFirst April 26, 2017; DOI: 10.1158/2159-8290.CD-16-1297 RESEARCH ARTICLE PAX3–FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability Berkley E. Gryder 1 , Marielle E. Yohe 1 , 2 , Hsien-Chao Chou 1 , Xiaohu Zhang 3 , Joana Marques 4 , Marco Wachtel4 , Beat Schaefer 4 , Nirmalya Sen 1 , Young Song 1 , Alberto Gualtieri 5 , Silvia Pomella 5 , Rossella Rota5 , Abigail Cleveland 1 , Xinyu Wen 1 , Sivasish Sindiri 1 , Jun S. Wei 1 , Frederic G. Barr 6 , Sudipto Das7 , Thorkell Andresson 7 , Rajarshi Guha 3 , Madhu Lal-Nag 3 , Marc Ferrer 3 , Jack F. Shern 1 , 2 , Keji Zhao8 , Craig J. Thomas 3 , and Javed Khan 1 Downloaded from cancerdiscovery.aacrjournals.org on September 29, 2021. © 2017 American Association for Cancer Research. 16-CD-16-1297_p884-899.indd 884 7/20/17 2:21 PM Published OnlineFirst April 26, 2017; DOI: 10.1158/2159-8290.CD-16-1297 ABSTRACT Alveolar rhabdomyosarcoma is a life-threatening myogenic cancer of children and ado- lescent young adults, driven primarily by the chimeric transcription factor PAX3–FOXO1. The mechanisms by which PAX3–FOXO1 dysregulates chromatin are unknown. We fi nd PAX3–FOXO1 repro- grams the cis -regulatory landscape by inducing de novo super enhancers. PAX3–FOXO1 uses super enhancers to set up autoregulatory loops in collaboration with the master transcription factors MYOG, MYOD, and MYCN. This myogenic super enhancer circuitry is consistent across cell lines and primary tumors. Cells harboring the fusion gene are selectively sensitive to small-molecule inhibition of protein targets induced by, or bound to, PAX3–FOXO1-occupied super enhancers.
    [Show full text]
  • PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1
    Published OnlineFirst November 18, 2016; DOI: 10.1158/0008-5472.CAN-16-1546 Cancer Therapeutics, Targets, and Chemical Biology Research PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1 Abstract Alveolar rhabdomyosarcoma (ARMS) is a devastating pediatric PAX3-FOXO1A. Mechanistic investigations revealed a requirement disease driven by expression of the oncogenic fusion gene PAX3- for the NR4A1/Sp4 complex to bind GC-rich promoter regions FOXO1A. In this study, we report overexpression of the nuclear to elevate transcription of the PAX3-FOXO1A gene. In parallel, receptor NR4A1 in rhabdomyosarcomas that is sufficient to NR4A1 also regulated expression of b1-integrin, which with PAX3- drive high expression of PAX3-FOXO1A there. RNAi-mediated FOXO1A, contributed to tumor cell migration that was blocked by silencing of NR4A1 decreased expression of PAX3-FOXO1A and C-DIM/NR4A1 antagonists. Taken together, our results provide a its downstream effector genes. Similarly, cell treatment with the preclinical rationale for the use of NR4A1 small-molecule antago- NR4A1 small-molecule antagonists 1,1-bis(3-indolyl)-1-(p- nists to treat ARMS and other rhabdomyosarcomas driven by hydroxy or p-carbomethoxyphenyl)methane (C-DIM) decreased PAX3-FOXO1A. Cancer Res; 77(3); 1–10. Ó2016 AACR. Introduction activity for NR4A1. In contrast, NR4A1 exhibits tumor promoter activity (6, 7) in solid tumors. NR4A1 is also overexpressed in Rhabdomyosarcoma is the most common soft-tissue sarco- tumors from patients with breast, lung, pancreatic, colon, and ma that is primarily observed in children and adolescents and ovarian cancer and is a negative prognostic factor for patients with accounts for 50% of all pediatric cancers and 50% of soft-tissue breast, lung, and ovarian cancer (9–15).
    [Show full text]
  • Identifying the Role of Wilms Tumor 1 Associated Protein in Cancer Prediction Using Integrative Genomic Analyses
    MOLECULAR MEDICINE REPORTS 14: 2823-2831, 2016 Identifying the role of Wilms tumor 1 associated protein in cancer prediction using integrative genomic analyses LI‑SHENG WU1*, JIA-YI QIAN2*, MINGHAI WANG3* and HAIWEI YANG4 1Department of General Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001; 2Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029; 3Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241002; 4Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China Received August 31, 2015; Accepted June 2, 2016 DOI: 10.3892/mmr.2016.5528 Abstract. The Wilms tumor suppressor, WT1 was first iden- regulatory factor 1, glucocorticoid receptor and peroxisome tified due to its essential role in the normal development of proliferator‑activated receptor γ transcription factor binding the human genitourinary system. Wilms tumor 1 associated sites were identified in the upstream (promoter) region of the protein (WTAP) was subsequently revealed to interact with human WTAP gene, suggesting that these transcription factors WT1 using yeast two‑hybrid screening. The present study may be involved in WTAP functions in tumor formation. identified 44 complete WTAP genes in the genomes of verte- brates, including fish, amphibians, birds and mammals. The Introduction vertebrate WTAP proteins clustered into the primate, rodent and teleost lineages using phylogenetic tree analysis. From The Wilms tumor suppressor gene WT1 was first identified 1,347 available SNPs in the human WTAP gene, 19 were due to its essential role in the normal development of the identified to cause missense mutations.
    [Show full text]
  • PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1
    Published OnlineFirst November 18, 2016; DOI: 10.1158/0008-5472.CAN-16-1546 Cancer Therapeutics, Targets, and Chemical Biology Research PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1 Abstract Alveolar rhabdomyosarcoma (ARMS) is a devastating pediatric PAX3-FOXO1A. Mechanistic investigations revealed a requirement disease driven by expression of the oncogenic fusion gene PAX3- for the NR4A1/Sp4 complex to bind GC-rich promoter regions FOXO1A. In this study, we report overexpression of the nuclear to elevate transcription of the PAX3-FOXO1A gene. In parallel, receptor NR4A1 in rhabdomyosarcomas that is sufficient to NR4A1 also regulated expression of b1-integrin, which with PAX3- drive high expression of PAX3-FOXO1A there. RNAi-mediated FOXO1A, contributed to tumor cell migration that was blocked by silencing of NR4A1 decreased expression of PAX3-FOXO1A and C-DIM/NR4A1 antagonists. Taken together, our results provide a its downstream effector genes. Similarly, cell treatment with the preclinical rationale for the use of NR4A1 small-molecule antago- NR4A1 small-molecule antagonists 1,1-bis(3-indolyl)-1-(p- nists to treat ARMS and other rhabdomyosarcomas driven by hydroxy or p-carbomethoxyphenyl)methane (C-DIM) decreased PAX3-FOXO1A. Cancer Res; 77(3); 1–10. Ó2016 AACR. Introduction activity for NR4A1. In contrast, NR4A1 exhibits tumor promoter activity (6, 7) in solid tumors. NR4A1 is also overexpressed in Rhabdomyosarcoma is the most common soft-tissue sarco- tumors from patients with breast, lung, pancreatic, colon, and ma that is primarily observed in children and adolescents and ovarian cancer and is a negative prognostic factor for patients with accounts for 50% of all pediatric cancers and 50% of soft-tissue breast, lung, and ovarian cancer (9–15).
    [Show full text]
  • SMAD3/Stat3 Signaling Mediates Β-Cell Epithelial-Mesenchymal
    2646 Diabetes Volume 66, October 2017 SMAD3/Stat3 Signaling Mediates b-Cell Epithelial- Mesenchymal Transition in Chronic Pancreatitis–Related Diabetes Xiangwei Xiao,1 Shane Fischbach,1 Tina Zhang,1,2 Congde Chen,1 Qingfeng Sheng,1 Ray Zimmerman,1 Sneha Patnaik,1 Joseph Fusco,1 Yungching Ming,1 Ping Guo,1 Chiyo Shiota,1 Krishna Prasadan,1 Nupur Gangopadhyay,1 Sohail Z. Husain,3 Henry Dong,2 and George K. Gittes1 Diabetes 2017;66:2646–2658 | https://doi.org/10.2337/db17-0537 Many patients with chronic pancreatitis develop diabetes Many patients with chronic pancreatitis develop insulinopenia, (chronic pancreatitis–related diabetes [CPRD]) through an glucose intolerance, insulin resistance, and eventually diabetes undetermined mechanism. Here we used long-term par- (2), largely as a result of the intimate proximity of the tial pancreatic duct ligation (PDL) as a model to study CPRD. endocrine pancreas to the exocrine pancreas (3). Moreover, We found that long-term PDL induced significant b-cell de- patients with chronic pancreatitis often develop a fibrotic differentiation, followed by a time-dependent decrease in pancreas with a reduced b-cell mass and have a 15- to b — fi functional -cell mass all speci cally in the ligated tail 16-fold increased risk for pancreatic cancer (4). To date, the portion of the pancreas (PDL-tail). High levels of transform- understanding of the development and pathogenesis of b b ing growth factor 1(TGF 1) were detected in the PDL-tail chronic pancreatitis–relateddiabetes(CPRD)isverylimited. and were mainly produced by M2 macrophages at the In addition, the mechanisms of b-cell loss in CPRD may in early stage and by activated myofibroblasts at the later part be similar to those in type 2 diabetes (T2D) (5,6) and in stage.
    [Show full text]
  • In Mediating Transcriptional Activity of Androgen Receptor Splice Variants
    ROLE OF TRANSCRIPTIONAL ACTIVATION UNIT 5 (TAU5) IN MEDIATING TRANSCRIPTIONAL ACTIVITY OF ANDROGEN RECEPTOR SPLICE VARIANTS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SARITA KUMARI MUTHA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE SCOTT DEHM & JIM McCARTHY DECEMBER 2012 © Sarita Kumari Mutha 2012 ACKNOWLEDGEMENTS I would like to thank the Dehm Lab: Scott Dehm, Yingming Li, Siu Chiu Chan, and Luke Brand for the support, discussions, journal clubs, and training. I would like to thank MCBD&G faculty Kathleen Conklin and Meg Titus for their support. Finally, I would also to acknowledge my committee Scott Dehm, Jim McCarthy, and Kaylee Schwertfeger for their time and support. i DEDICATION This thesis is dedicated to my mentor and advisor Scott Dehm. This work would not have been possible without his support. I am very grateful for my time under his mentorship and the opportunity to learn from him. ii ABSTRACT The standard treatment for advanced prostate cancer is chemical castration, which inhibits the activity of the androgen receptor (AR). Eventually, prostate cancer reemerges with a castration-resistant phenotype (CRPC) but still depends on AR signaling. One mechanism of AR activity in CRPC is the synthesis of AR splice variants, which lack the ligand binding domain. These splice variants function as constitutively active transcription factors that promote expression of endogenous AR target genes and support androgen independent prostate cancer cell growth. Previous work has shown transcriptional activation unit 5 (TAU5) is necessary for ligand independent activity of the full length AR in low or no androgen conditions and that this activation is mediated by the WHTLF motif.
    [Show full text]
  • Functional Impact of a Germline RET Mutation in Alveolar Rhabdomyosarcoma
    Downloaded from molecularcasestudies.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Follow-up Report for CSHL Molecular Case Studies Functional impact of a germline RET mutation in alveolar rhabdomyosarcoma Mutant RET in alveolar rhabdomyosarcoma Noah E. Berlow1*, Kenneth A. Crawford1, Carol J. Bult2, Christopher Noakes3, Ido Sloma3, Erin R. Rudzinski4, Charles Keller1* 1 Children’s Cancer Therapy Development Institute, Beaverton, OR 97005 USA 2 The Jackson Laboratory, Bar Harbor, ME 04609 USA 3 Champions Oncology, One University Plaza, Hackensack, NJ 07601 USA 4 Seattle Children's Hospital, Seattle, WA 98105 USA * Correspondence: Noah E. Berlow, Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton OR 97005 USA, Tel (806) 370-8119, Fax (270) 675-3313, email [email protected] Charles Keller, Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton OR 97005 USA, Tel (801) 232-8038, Fax (270) 675-3313, email [email protected] Keywords: RET, alveolar rhabdomyosarcoma, endotypes in rhabdomyosarcoma, genetic profiles, transcriptomic profiles, drug screening, combination therapy word count (2333 words in main text, excluding Abstract, Methods, References and figure legends) 1 Downloaded from molecularcasestudies.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Specific mutations in the RET proto-oncogene are associated with multiple endocrine neoplasia type 2A, a hereditary syndrome characterized by tumorigenesis in multiple glandular elements. In rare instances, MEN2A- associated germline RET mutations have also occurred with non-MEN2A associated cancers. One such germline mutant RET mutation occurred concomitantly in a young adult diagnosed with alveolar rhabdomyosarcoma, a pediatric and young adult soft-tissue cancer with a generally poor prognosis.
    [Show full text]
  • TBX3 Represses TBX2 Under the Control of the PRC2 Complex In
    Oh et al. Oncogenesis (2019) 8:27 https://doi.org/10.1038/s41389-019-0137-z Oncogenesis ARTICLE Open Access TBX3 represses TBX2 under the control of the PRC2 complex in skeletal muscle and rhabdomyosarcoma Teak-Jung Oh1, Abhinav Adhikari 2, Trefa Mohamad3, Aiysha Althobaiti2 and Judith Davie2 Abstract TBX2 and TBX3 function as repressors and are frequently implicated in oncogenesis. We have shown that TBX2 represses p21, p14/19, and PTEN in rhabdomyosarcoma (RMS) and skeletal muscle but the function and regulation of TBX3 were unclear. We show that TBX3 directly represses TBX2 in RMS and skeletal muscle. TBX3 overexpression impairs cell growth and migration and we show that TBX3 is directly repressed by the polycomb repressive complex 2 (PRC2), which methylates histone H3 lysine 27 (H3K27me). We found that TBX3 promotes differentiation only in the presence of early growth response factor 1 (EGR1), which is differentially expressed in RMS and is also a target of the PRC2 complex. The potent regulation axis revealed in this work provides novel insight into the effects of the PRC2 complex in normal cells and RMS and further supports the therapeutic value of targeting of PRC2 in RMS. Introduction phenotypes and the presence of myogenic markers such 4 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Rhabdomyosarcoma (RMS) is the most common soft as myogenic regulatory factors (MRFs) , yet these factors tissue pediatric sarcoma, which is thought to largely arise appear to be inactive in RMS5. from the skeletal muscle lineage1. The more common The T-box family of transcription factors are highly form of the disease is the embryonal subtype (ERMS), conserved and related throughout all metazoan lineages.
    [Show full text]
  • The Role of Epigenomics in Osteoporosis and Osteoporotic Vertebral Fracture
    International Journal of Molecular Sciences Review The Role of Epigenomics in Osteoporosis and Osteoporotic Vertebral Fracture Kyoung-Tae Kim 1,2 , Young-Seok Lee 1,3 and Inbo Han 4,* 1 Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; [email protected] (K.-T.K.); [email protected] (Y.-S.L.) 2 Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41944, Korea 3 Department of Neurosurgery, Kyungpook National University Chilgok Hospital, Daegu 41944, Korea 4 Department of Neurosurgery, CHA University School of medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do 13496, Korea * Correspondence: [email protected]; Tel.: +82-31-780-1924; Fax: +82-31-780-5269 Received: 6 November 2020; Accepted: 8 December 2020; Published: 11 December 2020 Abstract: Osteoporosis is a complex multifactorial condition of the musculoskeletal system. Osteoporosis and osteoporotic vertebral fracture (OVF) are associated with high medical costs and can lead to poor quality of life. Genetic factors are important in determining bone mass and structure, as well as any predisposition for bone degradation and OVF. However, genetic factors are not enough to explain osteoporosis development and OVF occurrence. Epigenetics describes a mechanism for controlling gene expression and cellular processes without altering DNA sequences. The main mechanisms in epigenetics are DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). Recently, alterations in epigenetic mechanisms and their activity have been associated with osteoporosis and OVF. Here, we review emerging evidence that epigenetics contributes to the machinery that can alter DNA structure, gene expression, and cellular differentiation during physiological and pathological bone remodeling.
    [Show full text]