Density Functional Theory Study of Adamantanediyl Dications C10H14

Total Page:16

File Type:pdf, Size:1020Kb

Density Functional Theory Study of Adamantanediyl Dications C10H14 Density functional theory study of adamantanediyl 2؉ dications C10H14 and protio-adamantyl 2؉ dications C10H16 Golam Rasul, George A. Olah†, and G. K. Surya Prakash Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-1661 Contributed by George A. Olah, June 14, 2004 2؉ Structures of the isomeric adamantanediyl dications C10H14 and 2؉ protio-1- and protio-2-adamantyl dications C10H16 were investi- gated by using the density functional theory (DFT) method at the B3LYP͞6–31G** level. Four structures, 1 b–e, were found to be 2؉ minima on the potential energy surface of C10H14 . The 1,3-adaman- tanediyl dication 1b with two bridgehead tertiary carbocationic centers was found to be the most stable structure. On the potential 2؉ energy surface of C10H16 (protonated adamantly cation), five struc- tures, 2 b–f, were found to be minima. Each of the structure contains a two-electron, three-center bond. The COC protonated 1-adamantyl 13 dication, 2f, was characterized as the most stable structure. C NMR Scheme 2. Protioisopropyl and protio-tert-butyl dications chemical shifts of the structures were also calculated by using gauge- including atomic orbital-density functional theory and gauge-includ- 2ϩ ing atomic orbital-self-consistent field methods. protio-adamantyl dications C10H16 , hitherto not yet observed as persistent long-lived species. Superelectrophilic (6) COHor O damantane, C10H16 i, has been used extensively as a model C C protonation of the adamantyl cation is also possible and Acompound to investigate electrophilic reactions of saturated can lead to extremely reactive protio-adamantyl dications. Pre- hydrocarbons. The unique structural features of adamantane are viously, we have been able to show by hydrogen͞deuterium ideal for a systematic study of its cations, including both their exchange experiments and theoretical calculations that the tert- structure and chemical reactivity. The tight interlocking of butyl (7) as well as isopropyl (8) cations can undergo COH cyclohexane rings into the rigid, relatively strain free-chair protonation in superacids to form the activated highly electron- conformation in adamantane makes it stable against deproto- deficient gitonic carbenium-carbonium dications protio-tert- nation, prohibiting the easy formation of double bonds and butyl and protio-iso-propyl dications, respectively (Scheme 2).‡ back-side (nucleophilic or electrophilic) attack (1). Of particular interest is the bridgehead 1-adamantyl cation, Methods which has been prepared and characterized under long-lived The geometry optimizations were carried out by using the DFT stable ion conditions (2). The bridgehead 1-adamantyl cation method (5) at the B3LYP͞6–31G** level. Vibrational frequen- is stabilized by COC hyperconjugation. X-ray crystal struc- cies at the B3LYP͞6–31G**͞͞B3LYP͞6–31G** level were used tural studies of the 3,5,7-trimethyl-1-adamantyl cation dem- to characterize stationary points as minima (number of imagi- onstrates the COC hyperconjugative effect elegantly (3). A nary frequencies ϭ 0) and to evaluate zero point vibrational series of 2,6-disubstituted 2,6-adamantanediyl dications ii energies (ZPE), which were scaled by a factor of 0.98 (9). Final ϭ (Scheme 1) (R C6H5, c-C3H5) were also prepared in energies were calculated at the B3LYP͞6–31G**͞͞B3LYP͞6– superacid media by Prakash et al. (4). The dications were stable 31G** ϩ ZPE level. All energies are given in Table 1. The only with stabilizing groups such as phenyl and cyclopropyl. B3LYP͞6–31G** geometrical parameters and final energies will Attempts to generate the unsubstituted secondary dication ii be discussed throughout, unless stated otherwise. The 13C NMR ϭ (R H) were unsuccessful (4). The previously attempted chemical shifts were calculated by the gauge-including atomic preparation of the 1,3-adamantanediyl dication in superacid orbital-self-consistent field (GIAO-SCF) and GIAO-DFT solutions were also unsuccessful (3). (B3LYP) methods (10–12) using the 6–311ϩG** basis set. The We now report density functional theory (DFT) studies (5) of 13C NMR chemical shifts were referenced to (CH ) Si [calcu- 2ϩ 4 4 the possible isomeric adamantanediyl dications C10H14 and lated absolute shifts i.e., ␴(C) ϭ 194.1 (GIAO-SCF) and 183.8 (GIAO-DFT)]. The GAUSSIAN 03 program (13) was used for all calculations. Results and Discussion The calculated structures of the isomeric adamantanediyl dica- 2ϩ tions, C10H14 1a—e are depicted in Fig. 1. Interestingly, the 1,2-adamantanediyl dication structure 1a is not a minimum on Abbreviations: DFT, density functional theory; ZPE, zero point vibrational energies; GIAO, gauge-including atomic orbital; SCF, self-consistent field; 2eO3c, two-electron, three- center. †To whom correspondence should be addressed. E-mail: [email protected]. Scheme 1. Adamantane (i) and 2,6-disubstituted 2,6-adamantanediyl ‡This is paper no. 64 in the series ‘‘Chemistry in Superacids.’’ Paper no. 63 is ref. 16. dications (ii) © 2004 by The National Academy of Sciences of the USA 10868–10871 ͉ PNAS ͉ July 27, 2004 ͉ vol. 101 ͉ no. 30 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0404137101 Downloaded by guest on September 25, 2021 Table 1. Total energies (-au), ZPE, and relative minima. The carbocationic centers in structure 1c are separated energies (kcal͞mol) by two carbons. Despite charge separation the structure 1c is less No. of stable than 1b. However, the energy difference is only 0.4 ͞ B3LYP͞6–31G**͞͞ imaginary Rel. energy‡ kcal mol. Thus, the structures 1c and 1b are almost isoenergetic, No. B3LYP͞6–31G** ZPE† frequency (kcal͞mol) because both formally charge-bearing carbons are tertiary in 1b but only one of them is tertiary and the other one is secondary Adamantanediyl dication in 1c. Structure 1d can be considered a nonclassical dication. 1a 388.73700 131.6 1 14.6 Carbocationic centers of the structure 1d involve two-electron, 1b 388.76244 133.0 0 0.0 three-center (2eO3c) bonding as indicated by the two adjacent 1c 388.76203 133.1 0 0.4 long COC bond distances of 2.194 and 1.737 Å. On the other 1d 388.75571 132.5 0 3.7 hand, the structure 1e contains two secondary carbocationic 1e 388.75726 133.0 0 3.3 centers separated by three carbons. Both structures 1d and 1e are Protioadamantyl dication less stable than 1b (by 3.7 and 3.3 kcal͞mol, respectively). The 2b 389.93685 144.8 0 18.5 order of stability for adamantanediyl dications is, therefore, 1b Ͼ 2c 389.94022 145.1 0 16.7 1c Ͼ 1e Ͼ 1d Ͼ 1a at the level of calculations. 2d 389.92916 144.6 0 23.1 The COHorCOC protonation of the adamantyl cation could 2e 389.93621 145.3 0 19.4 lead to superelectrophilic (6) protio-adamantyl dications. Five 2f 389.96668 145.0 0 0.0 structures, 2b–f, corresponding to protio-adamantyl dications Adamantyl cation were found to be minima. Structures 2b–f together with the 2g 389.85927 142.0 0 64.4 calculated structures of 1-adamantyl cation 2g and 2-adamantyl 2h 389.83850 141.5 0 76.9 cation 2h are displayed in Fig. 2. The structure 2b corresponds †At B3LYP͞6–316**͞͞B3LYP͞6–31G** scaled by a factor of 0.98. to the C(3)-H protonated 1-adamantyl dication. The structure ‡At B3LYP͞6–316**͞͞B3LYP͞6–31G**† ϩZPE level. contains a carbonium ion center involving a 2eO3c bond and a trivalent carbenium ion center separated by a methylene group. Energy comparison shows that in fact the carbonium-carbenium the potential energy surface as the vibrational frequencies at the structure 2b is 45.9 kcal͞mol lower in energy than the 1- B3LYP͞6–31G**͞͞B3LYP͞6–31G** level shows that it con- adamantyl cation 2g. This finding indicates that similar to the tains an imaginary frequency (i.e., number of imaginary fre- tert-butyl cation (7), the 1-adamantyl cation 2g could also quencies ϭ 1). The gitonic structure 1a can be considered as a undergo proton-deuterium exchange under superacidic condi- substituted ethylene dication with a tertiary and a secondary tions involving structure 2b.In2b three COC bonds are aligned carbocationic center adjacent to each other. The 1,3- in plane with the empty p-orbital on the tertiary carbocation adamantanediyl dication 1b is a minimum on the potential center. However, one of them (C2OC3) is considerably shorter energy surface. The distonic dication contains two tertiary (1.568 Å) than that of the 2g (1.629 Å). This finding suggests that carbocationic centers separated by a methylene group. Expect- hyperconjugative stabilization in 2g can be partly diminished by edly, 1b is considerably more stable than 1a by 14.6 kcal͞mol. further protonation since only two and not three bonds interact CHEMISTRY Structures 1c, 1d, and 1e representing 1,9-, 2,8-, and 2,6- with the carbocation center. As a result the other two aligned adamantanediyl dications were also calculated to be energy bonds (C5OC10 and C7OC8) are elongated to 1.653 Å. Disso- Fig. 1. B3LYP͞6–31G**-optimized structures of adamantanediyl dictations 1a–e. Rasul et al. PNAS ͉ July 27, 2004 ͉ vol. 101 ͉ no. 30 ͉ 10869 Downloaded by guest on September 25, 2021 Fig. 2. B3LYP͞6–31G**-optimized structures of protio-adamantyl dictations 2b–f and 1- and 2-adamantyl cations 2g and 2h. ciation of 2f into 1,3-adamantanediyl dication 1b and H2, how- The global energy minimum for the protio-adamantyl dication ever, was calculated to be favored by 8.4 kcal͞mol. In a related was found to be 2f, which can be considered as the C(3)-C(9) study, Esteves et al. (14) calculated the structures of protio- protonated 1-adamantyl cation. The structure contains a 2eO3c adamantane cation by an ab initio method.
Recommended publications
  • DFT-Based Reaction Pathway Analysis of Hexadiene Cyclization Via Carbenium Ion Intermediates: Mechanistic Study of Light Alkane Aromatization Catalysis
    J. Phys. Chem. B 2004, 108, 971-980 971 DFT-Based Reaction Pathway Analysis of Hexadiene Cyclization via Carbenium Ion Intermediates: Mechanistic Study of Light Alkane Aromatization Catalysis Yogesh V. Joshi, Aditya Bhan, and Kendall T. Thomson* School of Chemical Engineering, Purdue UniVersity, West Lafayette, Indiana 47907 ReceiVed: July 28, 2003; In Final Form: NoVember 4, 2003 We conducted density functional theory calculations to identify the complete cyclization mechanism (ring formation and ring expansion) for protonated hexadiene in the gas-phase as a precursory means of studying aromatization of light alkanes in acidic zeolite catalysts. We identify the rate-determining step to consist of ring expansion from a methylcyclopenta carbenium precursor to a stable cyclohexa carbenium intermediate, exhibiting an activation barrier of 9.6 kcal/mol and proceeding through a bicyclic intermediate starting from a secondary cyclopentyl carbocation. This pathway for ring closure was preferred over tertiary precursor expansion and direct cyclization to a cyclohexyl carbocation. Expecting carbocation intermediates to be represented by alkoxide species near Brønsted acid sites, we calculated the relative stability of primary, secondary, and tertiary alkoxide analogues to cyclopentyl carbocation intermediates involved in ring expansion and notice a reversal of stability relative to gas-phase carbocation stabilities (i.e., primary > secondary > tertiary stability). However, on the basis of the notion that transition state stability depends heavily
    [Show full text]
  • The Legacy of George Olah Chemical Engineering
    PP Periodica Polytechnica The Legacy of George Olah Chemical Engineering 61(4), pp. 301-307, 2017 https://doi.org/10.3311/PPch.11352 Creative Commons Attribution b Miklós Simonyi1* research article Received 27 June 2017; accepted after revision 11 August 2017 Abstract 1 Introduction The life of George Olah exemplifies the fate of Hungarian The New York Times wrote on March 14, 2017: „George scientific excellence in the 20th century. He was talented and A. Olah, a Hungarian-born scientist who won the Nobel Prize a hard worker, but he could not remain in his country and had in Chemistry in 1994 for his study of the chemical reactions of to seek a new life in the West. His life-long scientific interests carbon compounds, died on Wednesday at his home in Beverly developed in the Budapest Technical University helped him Hills, Calif. He was 89.” to overcome obstacles and he became a leading chemist of Once again, a man of outstanding excellence with world- worldwide fame. His qualities and flexibility in both scientific wide fame died abroad. Olah’s studies and career started in research and practical applications serve as a brilliant example Budapest, as vividly described in his autobiography [1]. He for generations to come. obtained a diploma in chemical engineering at the Budapest Technical University (BTU) in 1949 and joined the Organic Keywords Chemistry Institute founded by Professor Géza Zemplén in early achievements, accommodating to foreign norms, scientific 1913, as the first University Department for Organic Chemistry breakthrough, the super-acids, in the service of mankind in Hungary.
    [Show full text]
  • George A. Olah 151
    MY SEARCH FOR CARBOCATIONS AND THEIR ROLE IN CHEMISTRY Nobel Lecture, December 8, 1994 by G EORGE A. O L A H Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661, USA “Every generation of scientific men (i.e. scientists) starts where the previous generation left off; and the most advanced discov- eries of one age constitute elementary axioms of the next. - - - Aldous Huxley INTRODUCTION Hydrocarbons are compounds of the elements carbon and hydrogen. They make up natural gas and oil and thus are essential for our modern life. Burning of hydrocarbons is used to generate energy in our power plants and heat our homes. Derived gasoline and diesel oil propel our cars, trucks, air- planes. Hydrocarbons are also the feed-stock for practically every man-made material from plastics to pharmaceuticals. What nature is giving us needs, however, to be processed and modified. We will eventually also need to make hydrocarbons ourselves, as our natural resources are depleted. Many of the used processes are acid catalyzed involving chemical reactions proceeding through positive ion intermediates. Consequently, the knowledge of these intermediates and their chemistry is of substantial significance both as fun- damental, as well as practical science. Carbocations are the positive ions of carbon compounds. It was in 1901 that Norris la and Kehrman lb independently discovered that colorless triphe- nylmethyl alcohol gave deep yellow solutions in concentrated sulfuric acid. Triphenylmethyl chloride similarly formed orange complexes with alumi- num and tin chlorides. von Baeyer (Nobel Prize, 1905) should be credited for having recognized in 1902 the salt like character of the compounds for- med (equation 1).
    [Show full text]
  • Benzene Alkylation with 1-Dodecene Over Y Zeolite
    1056 Bull. Korean Chem. Soc. 2001, Vol. 22, No. 9 Notes Benzene Alkylation with 1-Dodecene over Y Zeolite Bo Wang,† Chul Wee Lee, Tian-Xi Cai,† and Sang-Eon Park* Catalysis Center for Molecular Engineering, KRICT, Taejon 305-600, Korea †School of Chemical Engineering, DUT, 116012, Dalian, P.R. China Received April 18, 2001 Keywords : Benzene alkylation, Solid acid, Zeolite. Linear alkylbenzene (LAB) is an important intermediate Results and Discusssion used in the detergency sector. The industrial process for LAB production is based on alkylation of benzene with The results of the alkylation of benzene with 1-dodecene olefins using aluminium trichloride or hydrofluoric acid as over various catalysts are presented in Table 1. The conver- catalyst. Due to the hazardous nature of these catalysts, sions of 1-dodecene over three kinds of Y zeolites and Mg2+ efforts have been made to replace it with environmentally and Na+ ion exchanged USH-Y at benzene to 1-dodecene safer catalysts such as heteropolyacids,1 H-ZSM-5, H-ZSM- molar ratio of 8.7 : 1 are 100%, 90.4%, 50.7%, 38.6% and 12,2 HY,3 clays4 and H-mordenite.5,6 0%, respectively, in the order of USH-Y > H-Y > DAY > In this study, benzene alkylation with 1-dodecene was Mg-USY > Na-USY. The selectivity for LAB also decreases studied over three kinds of faujasite type zeolites from with the decrease of conversion from 100% for USH-Y to different company with different SiO2/Al2O3 ratios. The 0% for Na-USY. Among five different positional phenyl- effects of reaction parameters such as temperature and molar dodecane isomers, as for the reaction product, isomer ratio of benzene to 1-dodecene were also investigated.
    [Show full text]
  • 4.2. Carbenium Ion Chemistry of Catalytic Cracking
    Faculteit Ingenieurswetenschappen Chemische Proceskunde en Technische Chemie Laboratorium voor Petrochemische Techniek Directeur: Prof. Dr. Ir. Guy B. Marin Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation Author: Carmen M. Alonso Romero Promoters: Prof. Dr. Ir. G. B. Marin Prof. Dr. Lic. M.-F. Reyniers Coach: Ir. R. Van Borm Thesis work submitted to obtain the degree of chemical engineer 2006 - 2007 FACULTEIT INGENIEURSWETENSCHAPPEN Chemische Proceskunde en Technische Chemie Laboratorium voor Petrochemische Techniek Directeur: Prof. Dr. Ir. Guy B. Marin Opleidingscommissie Scheikunde Verklaring in verband met de toegankelijkheid van de scriptie Ondergetekende, Carmen M. Alonso Romero afgestudeerd aan de UGent in het academiejaar 2006 - 2007en auteur van de scriptie met als titel: Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation verklaart hierbij: 1. dat hij/zij geopteerd heeft voor de hierna aangestipte mogelijkheid in verband met de consultatie van zijn/haar scriptie: de scriptie mag steeds ter beschikking gesteld worden van elke aanvrager de scriptie mag enkel ter beschikking gesteld worden met uitdrukkelijke, schriftelijke goedkeuring van de auteur de scriptie mag ter beschikking gesteld worden van een aanvrager na een wachttijd van jaar de scriptie mag nooit ter beschikking gesteld worden van een aanvrager 2. dat elke gebruiker te allen tijde gehouden is aan een correcte en volledige bronverwijzing Gent, 20 august 2007 (Carmen M. Alonso Romero) ___________________________________________________________________________________________ Krijgslaan 281 S5, B-9000 Gent (Belgium) tel. +32 (0)9 264 45 16 • fax +32 (0)9 264 49 99 • GSM +32 (0)475 83 91 11 • e-mail: [email protected] http://www.tw12.ugent.be Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation by Carmen M.
    [Show full text]
  • The Role of Butylbenzene Carbenium Ions in the Acid Catalyzed Cracking of Polystyrene
    Reac Kinet Mech Cat DOI 10.1007/s11144-016-1050-5 The role of butylbenzene carbenium ions in the acid catalyzed cracking of polystyrene. Transformation of n-butylbenzene, sec-butylbenzene, iso-butylbenzene, tert-butylbenzene, 4-phenyl-1-butene, n-propylbenzene and n-hexylbenzene over silicaalumina and alumina acid catalysts 1 1 Marek Marczewski • Magdalena Kominiak • 1 1 Magdalena Dul • Hanna Marczewska Received: 24 May 2016 / Accepted: 27 June 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The obtained results show that styrene dimers, which are the primary transition products of PS cracking undergo consecutive reactions over acid centers of high acid strength (SiO2–Al2O3(45 %); -10.8 \ HO B-7.9) as well as centers of low acid strength (c-Al2O3;HO [ -3.3) at sufficiently high reaction tempera- tures (723–773 K). It is proposed that phenylbutenyl carbenium ion obtained due to dealkylation reaction converts into coke by the successive elimination of H? and H- ions, which in turn take part in hydrogen transfer reactions resulting in the hydro- genation of styrene dimers to diphenylbutane. The dealkylation of this compound leads to active c-butylbenzene carbenium ion which is a key intermediate for the formation of indane and naphthalene derivatives. Keywords Polystyrene decomposition Á Butylbenzenes reactions Á Acid strength Á Silicaalumina Á Alumina Introduction The catalytic processing of polymer wastes is a solution for their uncontrolled accumulation in numerous landfills. The choice of suitable catalysts makes it possible for the conversion of wastes to monomers, valuable raw materials for chemical syntheses or fuel components.
    [Show full text]
  • Methyl Anion Affinities of the Canonical Organic Functional Groups
    pubs.acs.org/joc Article Methyl Anion Affinities of the Canonical Organic Functional Groups Aaron Mood, Mohammadamin Tavakoli, Eugene Gutman, Dora Kadish, Pierre Baldi, and David L. Van Vranken* Cite This: J. Org. Chem. 2020, 85, 4096−4102 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Calculated methyl anion affinities are known to correlate with experimentally determined Mayr E parameters for individual organic functional group classes but not between neutral and cationic organic electrophiles. We demonstrate that methyl anion affinities calculated with a solvation model (MAA*) give a linear correlation with Mayr E parameters for a broad range of functional groups. Methyl anion affinities (MAA*), plotted on the log scale of Mayr E, provide insights into the full range of electrophilicity of organic functional groups. On the Mayr E scale, the electrophilicity toward the methyl anion spans 180 orders of magnitude. ■ INTRODUCTION Organic chemistry is taught using a canonical set of functional groups. To a first order approximation, prediction of polar chemical reactivity rests on the deceptively simple act of quantifying the nucleophilicity and electrophilicity of every functional group that is present in the reactants. The ability to independently quantify nucleophilicity and electrophilicity largely eluded organic chemists until the pioneering work of Mayr and coworkers.1 In a heroic body of work, Mayr’s team has shown that solution-phase nucleophilicity and electro- philicity can be independently quantified using a log scale, allowing useful predictions of reaction rate constants using the equation log k20° = sN sE (E + N), where E and N are Downloaded via UNIV OF CALIFORNIA IRVINE on August 10, 2020 at 19:20:42 (UTC).
    [Show full text]
  • A Carbanion Is an Anion in Which Carbon Has an Unshared Pair Of
    A carbanion is an anion in which carbon has an unshared pair of electrons and bears a negative charge usually with three substituents for a total of eight valence electrons.[1] The carbanion exists in a trigonal pyramidal geometry. Formally a carbanion is the conjugate base of a carbon acid. − − R3C-H + B → R3C + H-B where B stands for the base. A carbanion is one of several reactive intermediates in organic chemistry. Definitions A carbocation was previously often called a carbonium ion but questions arose on the exact meaning.[1] In present day chemistry a carbocation is any positively charged carbon atom. Two special types have been suggested: carbenium ions (protonated carbenes, hence the name) are trivalent and carbonium ions (protonated alkanes) are pentavalent or hexavalent. University level textbooks only discuss carbocations as if they are carbenium ions,[2] or discuss carbocations with a fleeting reference to the older phrase of carbonium ion[3] or carbenium and carbonium ions.[4] One textbook to this day clings on to the older name of carbonium ion for carbenium ion and reserves the phrase hypervalent carbenium + [5] ion for CH5 . Carbonium ion of methane Radical (chemistry) From Wikipedia, the free encyclopedia Jump to: navigation, search "Free radical" redirects here. For other uses, see Free radical (disambiguation). Moses Gomberg (1866-1947), the founder of radical chemistry Radicals (often referred to as free radicals) are atoms, molecules, or ions with unpaired electrons or an open shell configuration. Free radicals may have positive, negative, or zero charge. With some exceptions, these unpaired electrons cause radicals to be highly chemically reactive.
    [Show full text]
  • Carbonylonium Ions: the Onium Ions of the Carbonyl Group
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/196454 Please be advised that this information was generated on 2021-10-02 and may be subject to change. Carbonylonium ions: the onium ions of the carbonyl group Daniel Blanco-Ania* and Floris P. J. T. Rutjes Commentary Open Access Address: Beilstein J. Org. Chem. 2018, 14, 2568–2571. Institute for Molecules and Materials, Radboud University, doi:10.3762/bjoc.14.233 Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Received: 05 June 2018 Email: Accepted: 21 September 2018 Daniel Blanco-Ania* - [email protected] Published: 04 October 2018 * Corresponding author Associate Editor: J. A. Murphy Keywords: © 2018 Blanco-Ania and Rutjes; licensee Beilstein-Institut. carboxonium ion; glycosylium ion; oxacarbenium ion; oxocarbenium License and terms: see end of document. ion; oxycarbenium ion Abstract The nomenclature of cations R1C(=O+R3)R2 (R1, R2, R3 = H or organyl) has been examined and shown to be in a state of immea- surable confusion: a pragmatic recommendation is made that the generic term “carbonylonium ions” should be adopted for these intermediates, which comprises the terms “aldehydium” (R1 = H, R2, R3 = H or organyl) and “ketonium ions” (R1, R2 = organyl, R3 = H or organyl) for the corresponding aldehyde- and ketone-based intermediates, respectively. Introduction There is much confusion in the literature over the name of the In principle, these intermediates could be represented by the intermediates R1C(=O+R3)R2 (R1, R2, R3 = H or organyl [1], 1; canonical form with a carbon–oxygen double bond, that is, a Figure 1).
    [Show full text]
  • Destabilized Carbenium Ions. Secondary and Tertiary
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Publications at Bielefeld University ORGANIC MASS SPECTROMETRY, VOL. 22, 437-443 (1987) Destabilized Carbenium Ions Secondary and Tertiary a-Acetylbenzyl Cations and a -Benzoylbenzyl Cations Anne-Marie Dommrose and Hans-Friedrich Grutzmacher Fakultat fur Chemie, Universitat Bielefeld, UniversitatsstraBe 25, D-4800 Bielefeld, FRG The secondary a-acetylbenzyl and a-benzoylbenzyl cations, as well as their tertiary analogues, have been generated in a mass spectrometer by electron impact induced fragmentation of the corresponding a-bromoketones. These ions belong to the interesting family of destabilized a-acylcarbenium ions. While primary a-acylcarbenium ions appear to be unstable, the secondary and tertiary ions exhibit the usual behaviour of stable entities in a potential energy well. This can be attributed to a ‘push-pull’ substitution at the carbenium ion centre by an electron-releasing phenyl group and an electron-withdrawing acyl substituent. The characteristic unimolecular reaction of the metastable secondary and tertiary a-acylbenzyl cations is the elimination of CO by a rearrangement reaction involving a 1,Zshift of a methyl group and a phenyl group, respectively. The loss of CO is accompanied by a very large kinetic energy release, which gives rise to broad and dish-topped peaks for this process in the mass-analysed ion kinetic energy spectra of the corresponding ions. This behaviour is attributed to the rigid critical configuration of a corner-protonated cyclopropanone derivative and a bridged phenonium ion derivative, respectively, for this reaction. For the tertiary a-acetyl-a-methylbenzyl cations, it has been shown by deuterium labelling and by comparison of collisional activation spectra that these ions equilibrate prior to decomposition with their ‘protomer’ derivatives formed by proton migration from the a-methyl substituent to the carbonyl group and to the benzene ring.
    [Show full text]
  • Properties of C-C Bonds in N-Alkanes: Relevance to Cracking Mechanisms
    1346 J. Phys. Chem. A 2002, 106, 1346-1356 Properties of C-C Bonds in n-Alkanes: Relevance to Cracking Mechanisms Ken C. Hunter and Allan L. L. East* Department of Chemistry and Biochemistry, UniVersity of Regina, Regina, Saskatchewan S4S 0A2, Canada ReceiVed: July 26, 2001; In Final Form: October 11, 2001 The slight variations among the proton affinities and bond strengths of the C-C bonds in straight-chain n-alkanes have been determined to 1 kcal mol-1 accuracy for the first time, using computational quantum chemistry. Four computational methods (B3LYP, MP2, CCSD(T), and G2) were used to study n-alkanes (up to C20H42 with B3LYP), including computations on the related alkyl radicals, carbenium ions, and carbonium ions. The proton affinities of the C-C bonds vary from 142 to over 166 kcal mol-1, are highest for the center C-C bond, and decrease monotonically toward the end bonds. Bond strength, unlike proton affinity, is very constant (88 kcal mol-1), except for the R and â bonds (89 and 87 kcal mol-1, respectively). For thermal cracking, the results suggest that the most favored initiation step is the breaking of the â bond of the alkane to create an ethyl radical. For Bronsted-acid-catalyzed cracking of straight-chain paraffins, if the initiation mechanism is via carbonium ions, then the results indicate that the central C-C bonds of n-alkanes will be most attractive to the Bronsted proton. However, for direct protolysis (Bronsted-mediated fission) of an n-alkane via a carbonium intermediate, the net exothermicities do not strongly discern among the C-C bonds.
    [Show full text]
  • Mechanism of Phenol Alkylation in Zeolite H-BEA Using in Situ
    Article pubs.acs.org/JACS Mechanism of Phenol Alkylation in Zeolite H‑BEA Using In Situ Solid- State NMR Spectroscopy † § † § † † ‡ † Zhenchao Zhao, , Hui Shi, , Chuan Wan, Mary Y. Hu, Yuanshuai Liu, Donghai Mei, † † † ‡ Donald M. Camaioni, Jian Zhi Hu,*, and Johannes A. Lercher*, , † Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States ‡ Department of Chemistry and Catalysis Research Center, TU München, Lichtenbergstrasse 4, 85748 Garching, Germany *S Supporting Information ABSTRACT: The reaction mechanism of solid-acid-catalyzed phenol alkylation with cyclohexanol and cyclohexene in the apolar solvent decalin has been studied using in situ 13C MAS NMR spectroscopy. Phenol alkylation with cyclohexanol sets in only after a majority of cyclohexanol is dehydrated to cyclohexene. As phenol and cyclohexanol show similar adsorption strength, this strict reaction sequence is not caused by the limited access of phenol to cyclohexanol, but is due to the absence of a reactive electrophile as long as a significant fraction of cyclohexanol is present. 13C isotope labeling demonstrates that the reactive electrophile, the cyclohexyl carbenium ion, is directly formed in a protonation step when cyclohexene is the coreactant. In the presence of cyclohexanol, its protonated dimers at Brønsted acid sites hinder the adsorption of cyclohexene and the formation of a carbenium ion. Thus, it is demonstrated that protonated cyclohexanol dimers dehydrate without the formation of a carbenium ion, which would otherwise have contributed to the alkylation in the kinetically relevant step. Isotope scrambling shows that intramolecular rearrangement of cyclohexyl phenyl ether does not significantly contribute to alkylation at the aromatic ring.
    [Show full text]