Carbonium Ion Formation in Zeolite Catalysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DFT-Based Reaction Pathway Analysis of Hexadiene Cyclization Via Carbenium Ion Intermediates: Mechanistic Study of Light Alkane Aromatization Catalysis
J. Phys. Chem. B 2004, 108, 971-980 971 DFT-Based Reaction Pathway Analysis of Hexadiene Cyclization via Carbenium Ion Intermediates: Mechanistic Study of Light Alkane Aromatization Catalysis Yogesh V. Joshi, Aditya Bhan, and Kendall T. Thomson* School of Chemical Engineering, Purdue UniVersity, West Lafayette, Indiana 47907 ReceiVed: July 28, 2003; In Final Form: NoVember 4, 2003 We conducted density functional theory calculations to identify the complete cyclization mechanism (ring formation and ring expansion) for protonated hexadiene in the gas-phase as a precursory means of studying aromatization of light alkanes in acidic zeolite catalysts. We identify the rate-determining step to consist of ring expansion from a methylcyclopenta carbenium precursor to a stable cyclohexa carbenium intermediate, exhibiting an activation barrier of 9.6 kcal/mol and proceeding through a bicyclic intermediate starting from a secondary cyclopentyl carbocation. This pathway for ring closure was preferred over tertiary precursor expansion and direct cyclization to a cyclohexyl carbocation. Expecting carbocation intermediates to be represented by alkoxide species near Brønsted acid sites, we calculated the relative stability of primary, secondary, and tertiary alkoxide analogues to cyclopentyl carbocation intermediates involved in ring expansion and notice a reversal of stability relative to gas-phase carbocation stabilities (i.e., primary > secondary > tertiary stability). However, on the basis of the notion that transition state stability depends heavily -
The Problem the Diols, Such As Ethane-1,2-Diol, Which Are The
The problem The diols, such as ethane-1,2-diol, which are the products of the reaction with cold dilute potassium manganate(VII), are themselves quite easily oxidised by manganate(VII) ions. That means that the reaction won't stop at this point unless the potassium manganate(VII) solution is very dilute, very cold, and preferably not under acidic conditions. If you are using hot concentrated acidified potassium manganate(VII) solution, what you finally end up with depends on the arrangement of groups around the carbon-carbon double bond. Writing a structural formula to represent any alkene The formula below represents a general alkene. In organic chemistry, the symbol R is used to represent hydrocarbon groups or hydrogen in a formula when you don't want to talk about specific compounds. If you use the symbol more than once in a formula (as here), the various groups are written as R1, R2, etc. In this particular case, the double bond is surrounded by four such groups, and these can be any combination of same or different - so they could be 2 hydrogens, a methyl and an ethyl, or 1 hydrogen and 3 methyls, or 1 hydrogen and 1 methyl and 1 ethyl and 1 propyl, or any other combination you can think of. In other words, this formula represents every possible simple alkene: The first stage of the extended oxidation The acidified potassium manganate(VII) solution oxidises the alkene by breaking the carbon-carbon double bond and replacing it with two carbon-oxygen double bonds. 1 The products are known as carbonyl compounds because they contain the carbonyl group, C=O. -
The Legacy of George Olah Chemical Engineering
PP Periodica Polytechnica The Legacy of George Olah Chemical Engineering 61(4), pp. 301-307, 2017 https://doi.org/10.3311/PPch.11352 Creative Commons Attribution b Miklós Simonyi1* research article Received 27 June 2017; accepted after revision 11 August 2017 Abstract 1 Introduction The life of George Olah exemplifies the fate of Hungarian The New York Times wrote on March 14, 2017: „George scientific excellence in the 20th century. He was talented and A. Olah, a Hungarian-born scientist who won the Nobel Prize a hard worker, but he could not remain in his country and had in Chemistry in 1994 for his study of the chemical reactions of to seek a new life in the West. His life-long scientific interests carbon compounds, died on Wednesday at his home in Beverly developed in the Budapest Technical University helped him Hills, Calif. He was 89.” to overcome obstacles and he became a leading chemist of Once again, a man of outstanding excellence with world- worldwide fame. His qualities and flexibility in both scientific wide fame died abroad. Olah’s studies and career started in research and practical applications serve as a brilliant example Budapest, as vividly described in his autobiography [1]. He for generations to come. obtained a diploma in chemical engineering at the Budapest Technical University (BTU) in 1949 and joined the Organic Keywords Chemistry Institute founded by Professor Géza Zemplén in early achievements, accommodating to foreign norms, scientific 1913, as the first University Department for Organic Chemistry breakthrough, the super-acids, in the service of mankind in Hungary. -
Nonclassical Carbocations: from Controversy to Convention
Nonclassical Carbocations H H C From Controversy to Convention H H H A Stoltz Group Literature Meeting brought to you by Chris Gilmore June 26, 2006 8 PM 147 Noyes Outline 1. Introduction 2. The Nonclassical Carbocation Controversy - Winstein, Brown, and the Great Debate - George Olah and ending the discussion - Important nonclassical carbocations 3. The Nature of the Nonclassical Carbocation - The 3-center, 2-electron bond - Cleaving C-C and C-H σ−bonds - Intermediate or Transition state? Changing the way we think about carbocations 4. Carbocations, nonclassical intermediates, and synthetic chemistry - Biosynthetic Pathways - Steroids, by W.S. Johnson - Corey's foray into carbocationic cascades - Interesting rearrangements - Overman and the Prins-Pinacol Carbocations: An Introduction Traditional carbocation is a low-valent, trisubstituted electron-deficient carbon center: R superacid R R LG R R R R R R "carbenium LGH ion" - 6 valence e- - planar structure - empty p orbital Modes of stabilization: Heteroatomic Assistance π-bond Resonance σ-bond Participation R X H2C X Allylic Lone Pair Anchimeric Homoconjugation Hyperconjugation Non-Classical Resonance Assistance Stabilization Interaction Outline 1. Introduction 2. The Nonclassical Carbocation Controversy - Winstein, Brown, and the Great Debate - George Olah and ending the discussion - Important nonclassical carbocations 3. The Nature of the Nonclassical Carbocation - The 3-center, 2-electron bond - Cleaving C-C and C-H σ−bonds - Intermediate or Transition state? Changing the way we think about carbocations 4. Carbocations, nonclassical intermediates, and synthetic chemistry - Biosynthetic Pathways - Steroids, by W.S. Johnson - Corey's foray into carbocationic cascades - Interesting rearrangements - Overman and the Prins-Pinacol The Nonclassical Problem: Early Curiosities Wagner, 1899: 1,2 shift OH H - H+ Meerwein, 1922: 1,2 shift OH Meerwin, H. -
George A. Olah 151
MY SEARCH FOR CARBOCATIONS AND THEIR ROLE IN CHEMISTRY Nobel Lecture, December 8, 1994 by G EORGE A. O L A H Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1661, USA “Every generation of scientific men (i.e. scientists) starts where the previous generation left off; and the most advanced discov- eries of one age constitute elementary axioms of the next. - - - Aldous Huxley INTRODUCTION Hydrocarbons are compounds of the elements carbon and hydrogen. They make up natural gas and oil and thus are essential for our modern life. Burning of hydrocarbons is used to generate energy in our power plants and heat our homes. Derived gasoline and diesel oil propel our cars, trucks, air- planes. Hydrocarbons are also the feed-stock for practically every man-made material from plastics to pharmaceuticals. What nature is giving us needs, however, to be processed and modified. We will eventually also need to make hydrocarbons ourselves, as our natural resources are depleted. Many of the used processes are acid catalyzed involving chemical reactions proceeding through positive ion intermediates. Consequently, the knowledge of these intermediates and their chemistry is of substantial significance both as fun- damental, as well as practical science. Carbocations are the positive ions of carbon compounds. It was in 1901 that Norris la and Kehrman lb independently discovered that colorless triphe- nylmethyl alcohol gave deep yellow solutions in concentrated sulfuric acid. Triphenylmethyl chloride similarly formed orange complexes with alumi- num and tin chlorides. von Baeyer (Nobel Prize, 1905) should be credited for having recognized in 1902 the salt like character of the compounds for- med (equation 1). -
Benzene Alkylation with 1-Dodecene Over Y Zeolite
1056 Bull. Korean Chem. Soc. 2001, Vol. 22, No. 9 Notes Benzene Alkylation with 1-Dodecene over Y Zeolite Bo Wang,† Chul Wee Lee, Tian-Xi Cai,† and Sang-Eon Park* Catalysis Center for Molecular Engineering, KRICT, Taejon 305-600, Korea †School of Chemical Engineering, DUT, 116012, Dalian, P.R. China Received April 18, 2001 Keywords : Benzene alkylation, Solid acid, Zeolite. Linear alkylbenzene (LAB) is an important intermediate Results and Discusssion used in the detergency sector. The industrial process for LAB production is based on alkylation of benzene with The results of the alkylation of benzene with 1-dodecene olefins using aluminium trichloride or hydrofluoric acid as over various catalysts are presented in Table 1. The conver- catalyst. Due to the hazardous nature of these catalysts, sions of 1-dodecene over three kinds of Y zeolites and Mg2+ efforts have been made to replace it with environmentally and Na+ ion exchanged USH-Y at benzene to 1-dodecene safer catalysts such as heteropolyacids,1 H-ZSM-5, H-ZSM- molar ratio of 8.7 : 1 are 100%, 90.4%, 50.7%, 38.6% and 12,2 HY,3 clays4 and H-mordenite.5,6 0%, respectively, in the order of USH-Y > H-Y > DAY > In this study, benzene alkylation with 1-dodecene was Mg-USY > Na-USY. The selectivity for LAB also decreases studied over three kinds of faujasite type zeolites from with the decrease of conversion from 100% for USH-Y to different company with different SiO2/Al2O3 ratios. The 0% for Na-USY. Among five different positional phenyl- effects of reaction parameters such as temperature and molar dodecane isomers, as for the reaction product, isomer ratio of benzene to 1-dodecene were also investigated. -
4.2. Carbenium Ion Chemistry of Catalytic Cracking
Faculteit Ingenieurswetenschappen Chemische Proceskunde en Technische Chemie Laboratorium voor Petrochemische Techniek Directeur: Prof. Dr. Ir. Guy B. Marin Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation Author: Carmen M. Alonso Romero Promoters: Prof. Dr. Ir. G. B. Marin Prof. Dr. Lic. M.-F. Reyniers Coach: Ir. R. Van Borm Thesis work submitted to obtain the degree of chemical engineer 2006 - 2007 FACULTEIT INGENIEURSWETENSCHAPPEN Chemische Proceskunde en Technische Chemie Laboratorium voor Petrochemische Techniek Directeur: Prof. Dr. Ir. Guy B. Marin Opleidingscommissie Scheikunde Verklaring in verband met de toegankelijkheid van de scriptie Ondergetekende, Carmen M. Alonso Romero afgestudeerd aan de UGent in het academiejaar 2006 - 2007en auteur van de scriptie met als titel: Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation verklaart hierbij: 1. dat hij/zij geopteerd heeft voor de hierna aangestipte mogelijkheid in verband met de consultatie van zijn/haar scriptie: de scriptie mag steeds ter beschikking gesteld worden van elke aanvrager de scriptie mag enkel ter beschikking gesteld worden met uitdrukkelijke, schriftelijke goedkeuring van de auteur de scriptie mag ter beschikking gesteld worden van een aanvrager na een wachttijd van jaar de scriptie mag nooit ter beschikking gesteld worden van een aanvrager 2. dat elke gebruiker te allen tijde gehouden is aan een correcte en volledige bronverwijzing Gent, 20 august 2007 (Carmen M. Alonso Romero) ___________________________________________________________________________________________ Krijgslaan 281 S5, B-9000 Gent (Belgium) tel. +32 (0)9 264 45 16 • fax +32 (0)9 264 49 99 • GSM +32 (0)475 83 91 11 • e-mail: [email protected] http://www.tw12.ugent.be Single-event microkinetic modelling of the catalytic cracking of hydrocarbons over acid zeolite catalysts in the presence of coke formation by Carmen M. -
The Role of Butylbenzene Carbenium Ions in the Acid Catalyzed Cracking of Polystyrene
Reac Kinet Mech Cat DOI 10.1007/s11144-016-1050-5 The role of butylbenzene carbenium ions in the acid catalyzed cracking of polystyrene. Transformation of n-butylbenzene, sec-butylbenzene, iso-butylbenzene, tert-butylbenzene, 4-phenyl-1-butene, n-propylbenzene and n-hexylbenzene over silicaalumina and alumina acid catalysts 1 1 Marek Marczewski • Magdalena Kominiak • 1 1 Magdalena Dul • Hanna Marczewska Received: 24 May 2016 / Accepted: 27 June 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The obtained results show that styrene dimers, which are the primary transition products of PS cracking undergo consecutive reactions over acid centers of high acid strength (SiO2–Al2O3(45 %); -10.8 \ HO B-7.9) as well as centers of low acid strength (c-Al2O3;HO [ -3.3) at sufficiently high reaction tempera- tures (723–773 K). It is proposed that phenylbutenyl carbenium ion obtained due to dealkylation reaction converts into coke by the successive elimination of H? and H- ions, which in turn take part in hydrogen transfer reactions resulting in the hydro- genation of styrene dimers to diphenylbutane. The dealkylation of this compound leads to active c-butylbenzene carbenium ion which is a key intermediate for the formation of indane and naphthalene derivatives. Keywords Polystyrene decomposition Á Butylbenzenes reactions Á Acid strength Á Silicaalumina Á Alumina Introduction The catalytic processing of polymer wastes is a solution for their uncontrolled accumulation in numerous landfills. The choice of suitable catalysts makes it possible for the conversion of wastes to monomers, valuable raw materials for chemical syntheses or fuel components. -
Methyl Anion Affinities of the Canonical Organic Functional Groups
pubs.acs.org/joc Article Methyl Anion Affinities of the Canonical Organic Functional Groups Aaron Mood, Mohammadamin Tavakoli, Eugene Gutman, Dora Kadish, Pierre Baldi, and David L. Van Vranken* Cite This: J. Org. Chem. 2020, 85, 4096−4102 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Calculated methyl anion affinities are known to correlate with experimentally determined Mayr E parameters for individual organic functional group classes but not between neutral and cationic organic electrophiles. We demonstrate that methyl anion affinities calculated with a solvation model (MAA*) give a linear correlation with Mayr E parameters for a broad range of functional groups. Methyl anion affinities (MAA*), plotted on the log scale of Mayr E, provide insights into the full range of electrophilicity of organic functional groups. On the Mayr E scale, the electrophilicity toward the methyl anion spans 180 orders of magnitude. ■ INTRODUCTION Organic chemistry is taught using a canonical set of functional groups. To a first order approximation, prediction of polar chemical reactivity rests on the deceptively simple act of quantifying the nucleophilicity and electrophilicity of every functional group that is present in the reactants. The ability to independently quantify nucleophilicity and electrophilicity largely eluded organic chemists until the pioneering work of Mayr and coworkers.1 In a heroic body of work, Mayr’s team has shown that solution-phase nucleophilicity and electro- philicity can be independently quantified using a log scale, allowing useful predictions of reaction rate constants using the equation log k20° = sN sE (E + N), where E and N are Downloaded via UNIV OF CALIFORNIA IRVINE on August 10, 2020 at 19:20:42 (UTC). -
A Carbanion Is an Anion in Which Carbon Has an Unshared Pair Of
A carbanion is an anion in which carbon has an unshared pair of electrons and bears a negative charge usually with three substituents for a total of eight valence electrons.[1] The carbanion exists in a trigonal pyramidal geometry. Formally a carbanion is the conjugate base of a carbon acid. − − R3C-H + B → R3C + H-B where B stands for the base. A carbanion is one of several reactive intermediates in organic chemistry. Definitions A carbocation was previously often called a carbonium ion but questions arose on the exact meaning.[1] In present day chemistry a carbocation is any positively charged carbon atom. Two special types have been suggested: carbenium ions (protonated carbenes, hence the name) are trivalent and carbonium ions (protonated alkanes) are pentavalent or hexavalent. University level textbooks only discuss carbocations as if they are carbenium ions,[2] or discuss carbocations with a fleeting reference to the older phrase of carbonium ion[3] or carbenium and carbonium ions.[4] One textbook to this day clings on to the older name of carbonium ion for carbenium ion and reserves the phrase hypervalent carbenium + [5] ion for CH5 . Carbonium ion of methane Radical (chemistry) From Wikipedia, the free encyclopedia Jump to: navigation, search "Free radical" redirects here. For other uses, see Free radical (disambiguation). Moses Gomberg (1866-1947), the founder of radical chemistry Radicals (often referred to as free radicals) are atoms, molecules, or ions with unpaired electrons or an open shell configuration. Free radicals may have positive, negative, or zero charge. With some exceptions, these unpaired electrons cause radicals to be highly chemically reactive. -
Carbonylonium Ions: the Onium Ions of the Carbonyl Group
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/196454 Please be advised that this information was generated on 2021-10-02 and may be subject to change. Carbonylonium ions: the onium ions of the carbonyl group Daniel Blanco-Ania* and Floris P. J. T. Rutjes Commentary Open Access Address: Beilstein J. Org. Chem. 2018, 14, 2568–2571. Institute for Molecules and Materials, Radboud University, doi:10.3762/bjoc.14.233 Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Received: 05 June 2018 Email: Accepted: 21 September 2018 Daniel Blanco-Ania* - [email protected] Published: 04 October 2018 * Corresponding author Associate Editor: J. A. Murphy Keywords: © 2018 Blanco-Ania and Rutjes; licensee Beilstein-Institut. carboxonium ion; glycosylium ion; oxacarbenium ion; oxocarbenium License and terms: see end of document. ion; oxycarbenium ion Abstract The nomenclature of cations R1C(=O+R3)R2 (R1, R2, R3 = H or organyl) has been examined and shown to be in a state of immea- surable confusion: a pragmatic recommendation is made that the generic term “carbonylonium ions” should be adopted for these intermediates, which comprises the terms “aldehydium” (R1 = H, R2, R3 = H or organyl) and “ketonium ions” (R1, R2 = organyl, R3 = H or organyl) for the corresponding aldehyde- and ketone-based intermediates, respectively. Introduction There is much confusion in the literature over the name of the In principle, these intermediates could be represented by the intermediates R1C(=O+R3)R2 (R1, R2, R3 = H or organyl [1], 1; canonical form with a carbon–oxygen double bond, that is, a Figure 1). -
Reactive Intermediates
PART 1 REACTIVE INTERMEDIATES CHAPTER 1 Carbocations ROBERT A. McCLELLAND Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada 1. Historical Perspective . .......................................... 4 1.1. Definitions . .............................................. 4 1.2. Early Studies. .......................................... 4 1.3. Carbocations as Reactive Intermediates . ......................... 4 2. Persistent Carbocations under Stable Ion Conditions. ..................... 5 2.1. Superacids . .............................................. 5 2.2. Stable Ion Chemistry . ..................................... 5 2.3. Theory .................................................. 6 2.4. Carbocation Rearrangements. ................................. 8 2.5. Nonclassical Ions. .......................................... 9 2.6. Isotopic Perturbation of Symmetry. ............................ 12 2.7. Crystal Structures ......................................... 13 3. Reactivity of Carbocations. .................................... 15 3.1. Introduction ............................................. 15 3.2. Ritchie’s Nþ Scale......................................... 16 3.3. Azide Clock ............................................. 18 3.4. Flash Photolytic Generation of Carbocations. .................... 18 3.5. Lifetimes of Carbocations in Protic Solvents. .................... 21 3.6. Rate-Equilibrium Correlation . ................................ 23 3.7. Reactivity with Added Nucleophiles ............................ 25 3.8.