Phd Thesis Bartosova STAG
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acquired Protective Immune Response in a Fish-Myxozoan Model
Fish and Shellfish Immunology 90 (2019) 349–362 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Acquired protective immune response in a fish-myxozoan model T encompasses specific antibodies and inflammation resolution Amparo Picard-Sánchez1, Itziar Estensoro1, Raquel del Pozo, M. Carla Piazzon, ∗ Oswaldo Palenzuela, Ariadna Sitjà-Bobadilla Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain ARTICLE INFO ABSTRACT Keywords: The myxozoan parasite Enteromyxum leei causes chronic enteritis in gilthead sea bream (GSB, Sparus aurata) Acquired immune response leading to intestinal dysfunction. Two trials were performed in which GSB that had survived a previous infection Fish IgM with E. leei (SUR), and naïve GSB (NAI), were exposed to water effluent containing parasite stages. Humoral Sparus aurata factors (total IgM and IgT, specific anti-E. leei IgM, total serum peroxidases), histopathology and gene expression Enteromyxum leei were analysed. Results showed that SUR maintained high levels of specific anti-E. leei IgM (up to 16 months), Parasite resistance expressed high levels of immunoglobulins at the intestinal mucosa, particularly the soluble forms, and were Gene expression resistant to re-infection. Their acquired-type response was complemented by other immune effectors locally and systemically, like cell cytotoxicity (high granzyme A expression), complement activity (high c3 and fucolectin expression), and serum peroxidases. In contrast to NAI, SUR displayed a post-inflammatory phenotype in the intestine and head kidney, characteristic of inflammation resolution (low il1β, high il10 and low hsp90α ex- pression). 1. Introduction causing different degrees of anorexia, delayed growth with weight loss, cachexia, reduced marketability and increased mortality [6]. -
Histopathological Changes Caused by Enteromyxum Leei Infection in Farmed Sea Bream Sparus Aurata
Vol. 79: 219–228, 2008 DISEASES OF AQUATIC ORGANISMS Published May 8 doi: 10.3354/dao01832 Dis Aquat Org Histopathological changes caused by Enteromyxum leei infection in farmed sea bream Sparus aurata R. Fleurance1, C. Sauvegrain2, A. Marques3, A. Le Breton4, C. Guereaud1, Y. Cherel1, M. Wyers1,* 1Department of Veterinary Pathology, UMR 703 INRA/ENVN, Nantes Veterinary School, BP 40706, 44307 Nantes cedex 03, France 2Aquanord, Terre des marins, 59820 Gravelines, France 3DRIM Dept BEE, UM2, case 080 Université Montpellier, 34095 Montpellier cedex 5, France 4Fish Health Consultant, 31330 Grenade sur Garonne, France ABSTRACT: Histological examinations were carried out on the stomach, pyloric caeca and 4 differ- ent parts of the intestine, as well as the rectum, hepatopancreas, gall bladder and spleen of 52 sea bream Sparus aurata spontaneously infected by Enteromyxum leei. Fifteen fish from a non-infected farm were included as a control. Clinical signs appeared only in extensively and severely infected fish. We observed Enteromyxum leei almost exclusively in the intestinal tract, and very rarely in the intrahepatic biliary ducts or gall bladder. We observed heavily infected intestinal villi adjacent to par- asite-free villi. Histological changes indicated a parasite infection gradually extending from villus to villus, originating from an initial limited infected area probably located in the rectum. The parasite forms were exclusively pansporoblasts located along the epithelial basement membrane. Periodic acid-Schiff (PAS)–Alcian blue was the most useful histological stain for identifying the parasite and characterising the degree of intestinal infection. We observed severe enteritis in infected fish, with inflammatory cell infiltration and sclerosis of the lamina propria. -
A New Species of Myxidium (Myxosporea: Myxidiidae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 6-2006 A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy Miloslav Jirků University of Veterinary and Pharmaceutical Sciences, Palackého, [email protected] Matthew G. Bolek Oklahoma State University, [email protected] Christopher M. Whipps Oregon State University John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Mike L. Kent OrFollowegon this State and Univ additionalersity works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons See next page for additional authors Jirků, Miloslav; Bolek, Matthew G.; Whipps, Christopher M.; Janovy, John J. Jr.; Kent, Mike L.; and Modrý, David, "A New Species of Myxidium (Myxosporea: Myxidiidae), from the Western Chorus Frog, Pseudacris triseriata triseriata, and Blanchard's Cricket Frog, Acris crepitans blanchardi (Hylidae), from Eastern Nebraska: Morphology, Phylogeny, and Critical Comments on Amphibian Myxidium Taxonomy" (2006). John Janovy Publications. 60. https://digitalcommons.unl.edu/bioscijanovy/60 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Miloslav Jirků, Matthew G. Bolek, Christopher M. Whipps, John J. Janovy Jr., Mike L. Kent, and David Modrý This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ bioscijanovy/60 J. -
In Vitro Studies on Viability and Proliferation of Enteromyxum Scophthalmi (Myxozoa), an Enteric Parasite of Cultured Turbot Scophthalmus Maximus
DISEASES OF AQUATIC ORGANISMS Vol. 55: 133–144, 2003 Published July 8 Dis Aquat Org In vitro studies on viability and proliferation of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of cultured turbot Scophthalmus maximus María J. Redondo, Oswaldo Palenzuela*, Pilar Alvarez-Pellitero Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura Torre la Sal, 12595 Ribera de Cabanes, Castellón, Spain ABSTRACT: In vitro cultivation of the myxozoan Enteromyxum scophthalmi was attempted using dif- ferent culture media and conditions. The progress of the cultures was monitored using dye-exclusion viability counts, tetrazolium-based cell-proliferation assays, measuring the incorporation of BrdU during DNA synthesis, and by morphological studies using light and electron microscopes. In pre- liminary experiments, the persistence of viable stages for a few days was ascertained in both medium 199 (M199) and in seawater. An apparent initial proliferation was noticed in the culture media, with many young stages observed by Day 7 post-inoculation (p.i.). In contrast, fast degeneration occurred in seawater, with but a few living stages persisting to Day 1 p.i and none to Day 5 p.i. Both tetrazolium-based cell-proliferation assays and dye-exclusion viability counts demonstrated a pro- gressive degeneration of the cultures. Although M199 medium and neutral pH with the addition of sera appeared to provide the most favourable conditions during the first few hours, all cultures degenerated with time and no parasite proliferation or maintenance could be achieved in the long term in any of the conditions assayed, including attempts of co-cultivation with a turbot cell line. The ultrastructure of stages cultured for 15 d demonstrated complete degeneration of organelles and mitochondria, although the plasma membrane remained intact in many stages. -
Unesco-Eolss Sample Chapters
FISHERIES AND AQUACULTURE - Myxozoan Biology And Ecology - Dr. Ariadna Sitjà-Bobadilla and Oswaldo Palenzuela MYXOZOAN BIOLOGY AND ECOLOGY Ariadna Sitjà-Bobadilla and Oswaldo Palenzuela Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain Keywords: Myxozoa, Myxosporea, Actinosporea, Malacosporea, Metazoa, Parasites, Fish Pathology, Invertebrates, Taxonomy, Phylogeny, Cell Biology, Life Cycle Contents 1. Introduction 2. Phylogeny 3. Morphology and Taxonomy 3.1. Spore Morphology 3.2. Taxonomy 4. Life Cycle 4.1. Life Cycle of Myxosporea 4.2. Life Cycle of Malacosporea 5. Cell Biology and Development 6. Ecological Aspects 6.1. Hosts 6.2. Habitats 6.3. Environmental Cues 7. Pathology 7.1. General Remarks 7.2. Pathogenic Effects of Myxozoans 7.2.1. Effects on Invertebrates 7.2.2. Effects on Fish 7.2.3. Effects on non-fish Vertebrates Acknowledgements Glossary Bibliography Biographical Sketches Summary UNESCO-EOLSS The phylum Myxozoa is a group of microscopic metazoans with an obligate endoparasitic lifestyle.SAMPLE Traditionally regarded CHAPTERS as protists, research findings during the last decades have dramatically changed our knowledge of these organisms, nowadays understood as examples of early metazoan evolution and extreme adaptation to parasitic lifestyles. Two distinct classes of myxozoans, Myxosporea and Malacosporea, are characterized by profound differences in rDNA evolution and well supported by differential biological and developmental features. This notwithstanding, most of the existing Myxosporea subtaxa require revision in the light of molecular phylogeny data. Most known myxozoans exhibit diheteroxenous cycles, alternating between a vertebrate host (mostly fish but also other poikilothermic vertebrates, and exceptionally birds and mammals) and an invertebrate (mainly annelids and bryozoans but possibly other ©Encyclopedia of Life Support Systems (EOLSS) FISHERIES AND AQUACULTURE - Myxozoan Biology And Ecology - Dr. -
First Report of Enteromyxum Leei (Myxozoa)
魚病研究 Fish Pathology, 49 (2), 57–60, 2014. 6 © 2014 The Japanese Society of Fish Pathology Short communication Typical mature spores in the intestine and gall blad- der of infected fish were in an arcuate, almost semicircu- First Report of Enteromyxum leei lar shape (Fig. 1B–D). Polar capsules were elongated, (Myxozoa) in the Black Sea in a tapering to their distal ends, open at one side of the spore, diverging at an angle of about 90°. Polar Potential Reservoir Host filaments coiled 7 times on average (range 6–8). Chromis chromis Spore and polar capsule dimensions are provided in Table 1. Based on the overall morphology and spore dimentions, the parasite was identified as a myxozoan, Ahmet Özer*, Türkay Öztürk, Hakan Özkan Enteromyxum leei. and Arzu Çam The phylum Myxozoa is composed entirely of endo- parasites, including some that cause diseases which Sinop University, Faculty of Fisheries and Aquatic substantial impact on aquaculture and fisheries around Sciences, 57000 Sinop, Turkey the world (Kent et al., 2001). Myxosporean infection occurs in a wide range of both marine and freshwater (Received January 25, 2014) fish species. Some reviews have stressed the impor- tance of those species that are associated with pathol- ogy in mariculture (Alvarez-Pellitero and Sitjà-Bobadilla, ABSTRACT—Damselfish Chromis chromis collected from 1993; Alvarez-Pellitero et al., 1995) and in freshwater the Black Sea coasts of Sinop, Turkey, were examined for farming (El-Matbouli et al., 1992). Enteromyxum leei is myxosporeans in June and July 2013. One of 25 healthy certainly one species of such concern. To our knowl- fish and 2 dead fish had infections with Enteromyxum leei. -
Studies on Transmission and Life Cycle of Enteromyxum Scophthalmi (Myxozoa), an Enteric Parasite of Turbot Scophthalmus Maximus
FOLIA PARASITOLOGICA 51: 188–198, 2004 Studies on transmission and life cycle of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmus maximus María J. Redondo, Oswaldo Palenzuela and Pilar Alvarez-Pellitero Instituto de Acuicultura de Torre de la Sal (CSIC), Ribera de Cabanes, 12595 Castellón, Spain Key words: Myxozoa, Myxosporea, Enteromyxum, life cycle, transmission, turbot, intestinal explants, in vitro Abstract. In order to elucidate the transmission and dispersion routes used by the myxozoan parasite Enteromyxum scophthalmi Palenzuela, Redondo et Alvarez-Pellitero, 2002 within its host (Scophthalmus maximus L.), a detailed study of the course of natural and experimental infections was carried out. Purified stages obtained from infected fish were also used in in vitro assays with explants of uninfected intestinal epithelium. The parasites can contact and penetrate loci in the intestinal epithelium very quickly. From there, they proliferate and spread to the rest of the digestive system, generally in an antero-posterior pattern. The dispersion routes include both the detachment of epithelium containing proliferative stages to the intestinal lumen and the breaching of the subepithelial connective system and local capillary networks. The former mechanism is also responsible for the release of viable proliferative stages to the water, where they can reach new fish hosts. The finding of parasite stages in blood smears, haematopoietic organs, muscular tissue, heart and, less frequently, skin and gills, suggests the existence of additional infection routes in transmission, especially in spontaneous infections, and indicates the role of vascular system in parasite dispersion within the fish. The very high virulence of this species in turbot and the rare development of mature spores in this fish may suggest it is an accidental host for this parasite. -
AN ABSTRACT of the DISSERTATION of Damien E
AN ABSTRACT OF THE DISSERTATION OF Damien E. Barrett for the degree of Doctor of Philosophy in Microbiology presented on September 17, 2020. Title: What Makes a Fish Resistant? Comparative Genomics and Transcriptomics of Oncorhynchus mykiss with Differential Resistance to the Parasite Ceratonova shasta Abstract approved: ______________________________________________________ Jerri L. Bartholomew The myxozoan Ceratonova shasta is an intestinal parasite of salmon and trout that causes ceratomyxosis, a disease characterized by severe inflammation of the intestine that can lead to hemorrhaging, necrosis, and death of the fish host. The parasite is endemic to the Pacific Northwest of the United States and Canada, where it has been linked to the decline of wild fish stocks. The parasite exerts a strong selective force on its fish host, and fish populations from C. shasta endemic watersheds become genetically fixed for resistance to ceratomyxosis. This contrasts with fish from watersheds where the parasite is not established, who are highly susceptible the disease, with a single spore capable of causing a lethal infection. Management of the disease relies on selective stocking of resistant fish, however, even these fish can succumb to the infection. Understanding the genetic and immunological basis of resistance to this disease would provide the framework for the development of therapeutics and identification of genetic markers that could be used in selective breeding. In this project, we employed a comparative transcriptomics and genomics approach to understand how resistant and susceptible strains of Oncorhynchus mykiss (rainbow trout/steelhead) respond to C. shasta infection and identify the genomic loci conferring resistance. We found that infection by C. -
Myxobolus Opsaridiumi Sp. Nov. (Cnidaria: Myxosporea) Infecting
European Journal of Taxonomy 733: 56–71 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1221 www.europeanjournaloftaxonomy.eu 2021 · Lekeufack-Folefack G.B. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:901649C0-64B5-44B5-84C6-F89A695ECEAF Myxobolus opsaridiumi sp. nov. (Cnidaria: Myxosporea) infecting different tissues of an ornamental fi sh, Opsaridium ubangiensis (Pellegrin, 1901), in Cameroon: morphological and molecular characterization Guy Benoit LEKEUFACK-FOLEFACK 1, Armandine Estelle TCHOUTEZO-TIWA 2, Jameel AL-TAMIMI 3, Abraham FOMENA 4, Suliman Yousef AL-OMAR 5 & Lamjed MANSOUR 6,* 1,2,4 University of Yaounde 1, Faculty of Science, PO Box 812, Yaounde, Cameroon. 3,5,6 Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451 Riyadh, Saudi Arabia. 6 Laboratory of Biodiversity and Parasitology of Aquatic Ecosystems (LR18ES05), Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, University Campus, 2092 Tunis, Tunisia. * Corresponding author: [email protected]; [email protected] 1 Email: [email protected] 2 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:A9AB57BA-D270-4AE4-887A-B6FB6CCE1676 2 urn:lsid:zoobank.org:author:27D6C64A-6195-4057-947F-8984C627236D 3 urn:lsid:zoobank.org:author:0CBB4F23-79F9-4246-9655-806C2B20C47A 4 urn:lsid:zoobank.org:author:860A2A52-A073-49D8-8F42-312668BD8AC7 5 urn:lsid:zoobank.org:author:730CFB50-9C42-465B-A213-BE26BCFBE9EB 6 urn:lsid:zoobank.org:author:2FB65FF2-E43F-40AF-8C6F-A743EEAF3233 Abstract. -
Bioluminescence Imaging of Live Infected Salmonids Reveals That the Fin Bases Are the Major Portal of Entry for Novirhabdovirus
JOURNAL OF VIROLOGY, Apr. 2006, p. 3655–3659 Vol. 80, No. 7 0022-538X/06/$08.00ϩ0 doi:10.1128/JVI.80.7.3655–3659.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Bioluminescence Imaging of Live Infected Salmonids Reveals that the Fin Bases Are the Major Portal of Entry for Novirhabdovirus Abdallah Harmache,1 Monique LeBerre,1 Ste´phanie Droineau,1 Marco Giovannini,2 and Michel Bre´mont1* Unite´ de Virologie et Immunologie Mole´culaires, INRA, CRJ Domaine de Vilvert, 78352 Jouy en Josas, France,1 and Inserm U434 Fondation Jean Dausset, CEPH 27 rue Juliette Dodu, 75010 Paris, France2 Received 10 November 2005/Accepted 13 January 2006 Although Novirhabdovirus viruses, like the Infectious hematopietic necrosis virus (IHNV), have been extensively studied, limited knowledge exists on the route of IHNV entry during natural infection. A recombinant IHNV (rIHNV) expressing the Renilla luciferase gene was generated and used to infect trout. A noninvasive bioluminescence assay was developed so that virus replication in live fish could be followed hours after infection. We provide here evidence that the fin bases are the portal of entry into the fish. Confirmation was brought by the use of a nonpathogenic rIHNV, which was shown to persist in fins for 3 weeks postinfection. The Infectious hematopoietic necrosis virus (IHNV) be- Renilla reniformis luciferase reporter gene (20), rIHNVLUC longs to the Novirhabdovirus genus in the Rhabdoviridae (Fig. 1A, middle). A full-length pIHNV cDNA clone (4) was family and is the etiological agent of a serious disease in modified such that an additional expression cassette, con- salmonids, mainly in yearling trout. -
Disease of Aquatic Organisms 89:209
Vol. 89: 209–221, 2010 DISEASES OF AQUATIC ORGANISMS Published April 9 doi: 10.3354/dao02202 Dis Aquat Org OPEN ACCESS Light and electron microscopic studies on turbot Psetta maxima infected with Enteromyxum scophthalmi: histopathology of turbot enteromyxosis R. Bermúdez1,*, A. P. Losada2, S. Vázquez2, M. J. Redondo3, P. Álvarez-Pellitero3, M. I. Quiroga2 1Departamento de Anatomía y Producción Animal and 2Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain 3Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas, 12595 Ribera de Cabanes, Castellón, Spain ABSTRACT: In the last decade, a new parasite that causes severe losses has been detected in farmed turbot Psetta maxima (L.), in north-western Spain. The parasite was classified as a myxosporean and named Enteromyxum scophthalmi. The aim of this study was to characterize the main histological changes that occur in E. scophthalmi-infected turbot. The parasite provoked catarrhal enteritis, and the intensity of the lesions was correlated with the progression of the infection and with the develop- ment of the parasite. Infected fish were classified into 3 groups, according to the lesional degree they showed (slight, moderate and severe infections). In fish with slight infections, early parasitic stages were observed populating the epithelial lining of the digestive tract, without eliciting an evident host response. As the disease progressed, catarrhal enteritis was observed, the digestive epithelium showed a typical scalloped shape and the number of both goblet and rodlet cells was increased. Fish with severe infections suffered desquamation of the epithelium, with the subsequent release of par- asitic forms to the lumen. -
Common Diseases of Wild and Cultured Fishes in Alaska
COMMON DISEASES OF WILD AND CULTURED FISHES IN ALASKA Theodore Meyers, Tamara Burton, Collette Bentz and Norman Starkey July 2008 Alaska Department of Fish and Game Fish Pathology Laboratories The Alaska Department of Fish and Game printed this publication at a cost of $12.03 in Anchorage, Alaska, USA. 3 About This Booklet This booklet is a product of the Ichthyophonus Diagnostics, Educational and Outreach Program which was initiated and funded by the Yukon River Panel’s Restoration and Enhancement fund and facilitated by the Yukon River Drainage Fisheries Association in conjunction with the Alaska Department of Fish and Game. The original impetus driving the production of this booklet was from a concern that Yukon River fishers were discarding Canadian-origin Chinook salmon believed to be infected by Ichthyophonus. It was decided to develop an educational program that included the creation of a booklet containing photographs and descriptions of frequently encountered parasites within Yukon River fish. This booklet is to serve as a brief illustrated guide that lists many of the common parasitic, infectious, and noninfectious diseases of wild and cultured fish encountered in Alaska. The content is directed towards lay users, as well as fish culturists at aquaculture facilities and field biologists and is not a comprehensive treatise nor should it be considered a scientific document. Interested users of this guide are directed to the listed fish disease references for additional information. Information contained within this booklet is published from the laboratory records of the Alaska Department of Fish and Game, Fish Pathology Section that has regulatory oversight of finfish health in the State of Alaska.