Nature of Hydrogen Interactions with Ni(II) Complexes Containing Cyclic

Total Page:16

File Type:pdf, Size:1020Kb

Nature of Hydrogen Interactions with Ni(II) Complexes Containing Cyclic Nature of hydrogen interactions with Ni(II) SPECIAL FEATURE complexes containing cyclic phosphine ligands with pendant nitrogen bases Aaron D. Wilson*, R. K. Shoemaker*, A. Miedaner†, J. T. Muckerman‡, Daniel L. DuBois§, and M. Rakowski DuBois*¶ *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309; §Division of Chemical Sciences, Pacific Northwest National Laboratory, Richland, WA 99352; †National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401; and ‡Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973 Edited by John E. Bercaw, California Institute of Technology, Pasadena, CA, and approved January 8, 2007 (received for review October 9, 2006) Studies of the role of proton relays in molecular catalysts for the electrocatalytic production and oxidation of H2 have been carried out. The electrochemical production of hydrogen from protonated Ph Ph DMF solutions catalyzed by [Ni(P2 N2 )2(CH3CN)](BF4)2, 3a (where Ph Ph P2 N2 is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane), permits a limiting value of the H2 production rate to be determined. ؊1 The turnover frequency of 350 s establishes that the rate of H2 production for the mononuclear nickel catalyst 3a is comparable to those observed for Ni-Fe hydrogenase enzymes. In the electrochem- Fig. 1. Structural features of the active site of Fe-only hydrogenases and the Cy Bz proposed activation of hydrogen. ical oxidation of hydrogen catalyzed by [Ni(P2 N2 )2](BF4)2,3b (where Cy is cyclohexyl and Bz is benzyl), the initial step is the ؊1 atm at 25°C). The 190 ؍ reversible addition of hydrogen to 3b (Keq catalysts for this reaction. (i) The heterolytic cleavage of H2 hydrogen addition product exists as three nearly isoenergetic isomers CHEMISTRY should be at or near equilibrium to avoid high-energy interme- 4A–4C, which have been identified by a combination of one- and diates. This implies the hydride (HϪ) acceptor ability of the two-dimensional 1H, 31P, and 15N NMR spectroscopies as Ni(0) com- metal and the proton (Hϩ) acceptor ability of the base must be plexes with a protonated amine in each cyclic ligand. The nature of energetically matched to provide enough energy to drive the the isomers, together with calculations, suggests a mode of hydrogen heterolytic cleavage of H , but this reaction should not be activation that involves a symmetrical interaction of a nickel dihy- 2 strongly exergonic. (ii) A pendant base should be incorporated drogen ligand with two amine bases in the diphosphine ligands. Single deprotonation of 4 by an external base results in a rearrange- into the second coordination sphere of the catalyst to serve as a Cy Bz proton relay to shuttle protons from the central metal to the ment to [HNi(P2 N2 )2](BF4), 5, and this reaction is reversed by the addition of a proton to the nickel hydride complex. The small energy exterior of the catalyst molecule. This can minimize reorgani- differences associated with significantly different distributions in zation energies associated with the approach of an external base electron density and protons within these molecules may contribute for proton transfer. (iii) The nitrogen atom of the proton relay to their high catalytic activity. should be precisely positioned to assist the heterolytic cleavage of H2 as shown in Fig. 1. catalysis ͉ hydrogen oxidation ͉ hydrogen production In previous studies we have attempted to sequentially incor- porate each of these features into synthetic molecular catalysts for H oxidation and production (21, 22). This resulted in the he catalytic interconversion of H with two protons and two 2 2 synthesis of nickel complexes with the general structure shown electrons plays an important role in the metabolism of T 3 various bacteria and algae, and it is important to the future for (Fig. 2). Depending on the substituents on nitrogen and phosphorus, these complexes are very active catalysts for either development of hydrogen-based fuel cells and solar hydrogen Ph Ph H2 production {3a, [Ni(P2 N2 )2(CH3CN)](BF4)2,Rϭ RЈϭ production technologies. Recent structural studies of Fe-only Cy Bz phenyl} or H2 oxidation {3b, [Ni(P2 N2 )2](BF4)2,Rϭ cyclo- and Ni-Fe hydrogenase enzymes have demonstrated that com- Јϭ plexes of these relatively inexpensive and common metals can hexyl, R benzyl} (22). These nickel-based synthetic catalysts display high activities for this reaction (1–8). This has led to the allow a more detailed understanding of the relationship between hope that replacement of platinum in fuel cells for the hydrogen structure and activity to be developed for this simple but oxidation reaction could be achieved with simple synthetic important redox reaction. catalysts based on iron or nickel, and many synthetic dinuclear In this article, we examine additional aspects of both the iron complexes, developed as structural models for the enzyme catalytic hydrogen evolution reaction and the hydrogen oxida- active site, have been studied to explore their fundamental tion cycle. In our previous report, our study of the rate of properties and catalytic potential (9–20). Structural features of the Fe-only hydrogenase catalytic site are depicted in structure Author contributions: D.L.D. and M.R.D. designed research; A.D.W. and J.T.M. performed 1 of Fig. 1, and a dihydrogen molecule is shown in the putative research; R.K.S. and A.M. contributed new reagents/analytic tools; A.D.W., R.K.S., J.T.M., binding site on the distal iron atom. It has also been proposed D.L.D., and M.R.D. analyzed data; and A.D.W., D.L.D., and M.R.D. wrote the paper. that the central atom of the three atom backbone of the The authors declare no conflict of interest. dithiolate bridge is a N atom, and that this amine plays a central This article is a PNAS Direct Submission. role in the heterolytic cleavage reaction (1). In this process ¶To whom correspondence should be addressed at: Department of Chemistry and Bio- dihydrogen is split to form a hydride ligand coordinated to iron chemistry, University of Colorado, 215 UCB, Boulder, CO 80309. E-mail: mary.rakowski- and a proton coordinated to the amine as shown in structure 2. [email protected]. The structural features of the hydrogenase active site and its This article contains supporting information online at www.pnas.org/cgi/content/full/ proposed mechanism of operation suggest that the following 0608928104/DC1. considerations should be important in designing molecular © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0608928104 PNAS ͉ April 24, 2007 ͉ vol. 104 ͉ no. 17 ͉ 6951–6956 Downloaded by guest on September 23, 2021 Fig. 2. Structure 3. hydrogen production was limited by the instability of the catalyst at high concentrations of triflic acid. We now report kinetic Fig. 3. Cyclic voltammograms of a 3.2 ϫ 10Ϫ4 M solution of Ph Ph ϩ studies of the catalytic reaction carried out in the presence of a [Ni(P 2N 2)2(CH3CN)](BF4)2, 3a, with increasing concentrations of H - milder acid in which the catalyst displays long-term stability. DMF(OTF)/DMF (1:1) in acetonitrile. Conditions were as follows: scan rate of 50 mV/s, acetonitrile solvent, 0.3 M NEt4BF4 as supporting electrolyte, glassy These studies permit a limiting value of the H2 production rate to be determined and establish that the rate of H production for carbon working electrode. Inset shows values of ic/ip vs. the concentration of 2 the buffer Hϩ-DMF(OTF)/DMF in acetonitrile. the mononuclear nickel catalyst 3a is comparable to those observed for Ni-Fe hydrogenase enzymes. To obtain further insights into possible structures of the doubly protonated and ratio vs. acid concentration is shown in the inset of Fig. 3. It can doubly reduced intermediate formed during the catalytic pro- be seen that as the acid concentration increases, the catalytic duction of H2 by 3a, we examine the initial step in the catalytic current initially increases and then becomes independent of acid oxidation of hydrogen and report our characterization of the concentration. The linear region observed at low acid concen- isomeric products formed upon the addition of hydrogen to 3b. trations indicates a second order process in acid, and the acid The structures illustrate a novel pathway for hydrogen oxidation/ independent region indicates saturation with acid and a rate- production facilitated by multiple pendant bases positioned near limiting step such as H2 elimination or an intramolecular proton a redox-active metal center. Our results suggest that both the transfer. As described previously (22), the ic/ip ratio can be used positioning and the number of pendant bases may be important to calculate a turnover frequency (24–27). For the acid inde- Ϫ for achieving high catalytic rates for H2 oxidation and production pendent region of the plot, a limiting value of 350 s 1 has been for these nickel complexes. determined for this system at 22°C. Results Cy Bz Characterization of H2⅐[Ni(P 2N 2)2](BF4)2. The preceding studies Rate of Electrocatalytic Hydrogen Formation. In previous studies we are consistent with H2 elimination from the catalyst as the have shown that 3a catalyzes H2 production from triflic acid, rate-determining step in the production of H2, but intermediates CF3SO3H, in acetonitrile solutions (22). However, at triflic acid before hydrogen elimination were not directly observable by concentrations above Ϸ0.1 M, the complex is unstable. Disso- spectroscopic methods. To obtain more information on the ciation of the protonated diphosphine ligands is a likely mode of nature of the intermediate steps, we turned to the study of decomposition under these strongly acidic conditions.
Recommended publications
  • Calcium Hydride, Grade S
    TECHNICAL DATA SHEET Date of Issue: 2016/09/02 Calcium Hydride, Grade S CAS-No. 7789-78-8 EC-No. 232-189-2 Molecular Formula CaH₂ Product Number 455150 APPLICATION Calcium hydride is used primarily as a source of hydrogen, as a drying agent for liquids and gases, and as a reducing agent for metal oxides. SPECIFICATION Ca total min. 92 % H min. 980 ml/g CaH2 Mg max. 0.8 % N max. 0.2 % Al max. 0.01 % Cl max. 0.5 % Fe max. 0.01 % METHOD OF ANALYSIS Calcium complexometric, impurities by spectral analysis and special analytical procedures. Gas volumetric determination of hydrogen. Produces with water approx. 1,010 ml hydrogen per gram. PHYSICAL PROPERTIES Appearance powder Color gray white The information presented herein is believed to be accurate and reliable, but is presented without guarantee or responsibility on the part of Albemarle Corporation and its subsidiaries and affiliates. It is the responsibility of the user to comply with all applicable laws and regulations and to provide for a safe workplace. The user should consider any health or safety hazards or information contained herein only as a guide, and should take those precautions which are necessary or prudent to instruct employees and to develop work practice procedures in order to promote a safe work environment. Further, nothing contained herein shall be taken as an inducement or recommendation to manufacture or use any of the herein materials or processes in violation of existing or future patent. Technical data sheets may change frequently. You can download the latest version from our website www.albemarle-lithium.com.
    [Show full text]
  • Hydrogen Storage for Aircraft Applications Overview
    20b L /'57 G~7 NASAl CR-2002-211867 foo736 3 V Hydrogen Storage for Aircraft Applications Overview Anthony J. Colozza Analex Corporation, Brook Park, Ohio September 2002 I The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the Lead Center for technical, or historical information from NASA's scientific and technical information. The NASA programs, projects, and missions, NASA STI Program Office provides access to the often concerned with subjects having NASA STI Database, the largest collection of substantial public interest. aeronautical and space science STI in the world. The Program Office is also NASA's institutional • TECHNICAL TRANSLATION. English­ mechanism for disseminating the results of its language translations of foreign scientific research and development activities. These results and technical material pertinent to NASA's are published by NASA in the NASA STI Report mlSSlOn. Series, which includes the following report types: Specialized services that complement the STI • TECHNICAL PUBLICATION. Reports of Program Office's diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive data results . even providing videos. or theoretical analysis.
    [Show full text]
  • No. It's Livermorium!
    in your element Uuh? No. It’s livermorium! Alpha decay into flerovium? It must be Lv, saysKat Day, as she tells us how little we know about element 116. t the end of last year, the International behaviour in polonium, which we’d expect to Union of Pure and Applied Chemistry have very similar chemistry. The most stable A(IUPAC) announced the verification class of polonium compounds are polonides, of the discoveries of four new chemical for example Na2Po (ref. 8), so in theory elements, 113, 115, 117 and 118, thus Na2Lv and its analogues should be attainable, completing period 7 of the periodic table1. though they are yet to be synthesized. Though now named2 (no doubt after having Experiments carried out in 2011 showed 3 213 212m read the Sceptical Chymist blog post ), that the hydrides BiH3 and PoH2 were 9 we shall wait until the public consultation surprisingly thermally stable . LvH2 would period is over before In Your Element visits be expected to be less stable than the much these ephemeral entities. lighter polonium hydride, but its chemical In the meantime, what do we know of investigation might be possible in the gas their close neighbour, element 116? Well, after phase, if a sufficiently stable isotope can a false start4, the element was first legitimately be found. reported in 2000 by a collaborative team Despite the considerable challenges posed following experiments at the Joint Institute for by the short-lived nature of livermorium, EMMA SOFIA KARLSSON, STOCKHOLM, SWEDEN STOCKHOLM, KARLSSON, EMMA SOFIA Nuclear Research (JINR) in Dubna, Russia.
    [Show full text]
  • Titanium-Based Hydrides for Ammonia Synthesis
    Titanium-based hydrides for ammonia synthesis Yoji Kobayashi,* Naoya Masuda, Ya Tang, Toki Kageyama, Yoshinori Uchida, Hiroki Yamashita, Hiroshi Kageyama Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan *Corresponding author: [email protected] Abstract: We hereby show that with the presence of hydride, titanium can serve as an active catalytic material. Previously, metals such as Ru, Fe, and Co were thought to be active, and activity for Ti was not demonstrated due to excessively strong Ti-N bonds. In the presence of hydride, titanium compounds such as TiH2 and BaTiO2.5H0.5 show a sustainable catalytic activity for NH3 synthesis under Haber-Bosch conditions, almost on par with supported Ru-based catalysts. We will also present results on TiH2 and BaTiO2.5H0.5 as a catalytic support and discuss the possible roles for hydride in these Ti-based catalytic materials. Keywords: Ammonia synthesis, hydride, Mars van Krevelen. 1. Introduction N2 activation and conversion to NH3 has been studied intensively. With metal complexes, hydride complexes form a distinct class where strong reducing agents such as KC8 or Na/Hg are not necessary to activate N2; among these, numerous Ti complexes require only H2 gas at ambient conditions to form hydrides. One common aspect of catalysis for NH3 synthesis in both homogeneous and heterogeneous states is the importance of multiple metal centers; as for titanium, Shima et al recently demonstrated a polynuclear 1 Ti hydride complex with reactivity for a mixture of N2/H2, yielding an imido-hydride complex cluster. While this is an extraordinary example of imido group formation from N2 and H2 gas, no NH3 is formed.
    [Show full text]
  • Chapter 9 Hydrogen
    Chapter 9 Hydrogen Diborane, B2 H6• is the simplest member of a large class of compounds, the electron-deficient boron hydrid Like all boron hydrides, it has a positive standard free energy of formation, and so cannot be prepared direct from boron and hydrogen. The bridge B-H bonds are longer and weaker than the tenninal B-H bonds (13: vs. 1.19 A). 89.1 Reactions of hydrogen compounds? (a) Ca(s) + H2Cg) ~ CaH2Cs). This is the reaction of an active s-me: with hydrogen, which is the way that saline metal hydrides are prepared. (b) NH3(g) + BF)(g) ~ H)N-BF)(g). This is the reaction of a Lewis base and a Lewis acid. The product I Lewis acid-base complex. (c) LiOH(s) + H2(g) ~ NR. Although dihydrogen can behave as an oxidant (e.g., with Li to form LiH) or reductant (e.g., with O2 to form H20), it does not behave as a Br0nsted or Lewis acid or base. It does not r with strong bases, like LiOH, or with strong acids. 89.2 A procedure for making Et3MeSn? A possible procedure is as follows: ~ 2Et)SnH + 2Na 2Na+Et3Sn- + H2 Ja'Et3Sn- + CH3Br ~ Et3MeSn + NaBr 9.1 Where does Hydrogen fit in the periodic chart? (a) Hydrogen in group 1? Hydrogen has one vale electron like the group 1 metals and is stable as W, especially in aqueous media. The other group 1 m have one valence electron and are quite stable as ~ cations in solution and in the solid state as simple 1 salts.
    [Show full text]
  • Metal Hydride Materials for Solid Hydrogen Storage: a Reviewଁ
    International Journal of Hydrogen Energy 32 (2007) 1121–1140 www.elsevier.com/locate/ijhydene Review Metal hydride materials for solid hydrogen storage: A reviewଁ Billur Sakintunaa,∗, Farida Lamari-Darkrimb, Michael Hirscherc aGKSS Research Centre, Institute for Materials Research, Max-Planck-Str. 1, Geesthacht D-21502, Germany bLIMHP-CNRS (UPR 1311), Université Paris 13, Avenue J. B. Clément, 93430 Villetaneuse, France cMax-Planck-Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany Received 31 July 2006; received in revised form 21 November 2006; accepted 21 November 2006 Available online 16 January 2007 Abstract Hydrogen is an ideal energy carrier which is considered for future transport, such as automotive applications. In this context storage of hydrogen is one of the key challenges in developing hydrogen economy. The relatively advanced storage methods such as high-pressure gas or liquid cannot fulfill future storage goals. Chemical or physically combined storage of hydrogen in other materials has potential advantages over other storage methods. Intensive research has been done on metal hydrides recently for improvement of hydrogenation properties. The present review reports recent developments of metal hydrides on properties including hydrogen-storage capacity, kinetics, cyclic behavior, toxicity, pressure and thermal response. A group of Mg-based hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity up to 7.6 wt% for on-board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system and as well as by ball-milling that introduces defects with improved surface properties.
    [Show full text]
  • Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
    energies Review Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage Kasper T. Møller 1 ID , Drew Sheppard 1,2, Dorthe B. Ravnsbæk 3 ID , Craig E. Buckley 2, Etsuo Akiba 4,5,6, Hai-Wen Li 1,4,5,7,* and Torben R. Jensen 1,* 1 Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark; [email protected] (K.T.M.); [email protected] (D.S.) 2 Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; [email protected] 3 Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; [email protected] 4 International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan; [email protected] 5 WPI International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan 6 Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan 7 Kyushu University Platform of Inter/Transdisciplinary Energy Research, Fukuoka 819-0395, Japan * Correspondence: [email protected] (H.-W.L.); [email protected] (T.R.J.) Academic Editor: Haolin Tang Received: 18 September 2017; Accepted: 12 October 2017; Published: 18 October 2017 Abstract: Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • On Distribution of Superconductivity in Metal Hydrides Dmitrii V
    Dedicated to the 150th anniversary of Mendeleev’s periodic law On Distribution of Superconductivity in Metal Hydrides Dmitrii V. Semenok,1, * Ivan A. Kruglov,2, 3 Igor A. Savkin,4 Alexander G. Kvashnin,1, 2, * and Artem R. Oganov 1, 2, 5 1 Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia 2 Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia 3 Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia 4 Research Computer Center of Lomonosov Moscow State University, Moscow, Russia 5 International Center for Materials Discovery, Northwestern Polytechnical University, Xi’an 710072, China Corresponding authors *Alexander G. Kvashnin: [email protected] *Dmitrii V. Semenok: [email protected] ABSTRACT. Using the data on the superconducting critical temperature (TC) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum TC based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their TC. Results of the study of actinides and lanthanides show that they form highly symmetric superhydrides XH7-XH9. However, actinide hydrides do not exhibit high-temperature superconductivity (except Th-H system) and might not be considered as promising materials for experimental studies, as well as all dm-elements with m > 4, including hydrides of the noble elements.
    [Show full text]
  • Hydride Bed Activation
    Hydride Bed Activation Zack Trotter Paul Foster Summer Schaufler REVIEWED AND DETERMINED TO BE UNCLASSIFIED. Tritium Engineering THIS REVIEW DOES NOT CONSTITUTE CLEARANCE FOR PUBLIC RELEASE. DERIVATIVE CLASSIFIER: S. J. Mazurek, SRTE DA Mgr. (NAME/PERSONAL IDENTIFIER AND POSITION TITLE) October 2018 DATE: 10/08/2018 Purpose • New hydride material contained in hydride beds needs to be activated prior to use in the facility. • Activation is accomplished by exposing the hydride material to hydrogen isotopes to improve the rate of absorption and capacity of the hydride bed and to remove impurities from the material. 2 History • All hydride beds that have been installed in the facility have been activated. • The same basic cart set-up has been in use since 2003. • Improvements have been made with each activation evolution. • 2017 Activation Improvements include: – Use of protium for first two hydrogen flushes (vs deuterium) – Rail system upgrades to accommodate both types of hydride beds used in the facility – Reduced size of exhaust hoses for improved heating – Elimination of ice bath for cooling – Improved leveling technique – Improved insulation – Improved procedure and simplified data collection tables 3 2017 Preparations – Basic Equipment • Heaters – Watlow Star heaters used to heat nitrogen flowing through bed jacket • Heated nitrogen used to desorb activation gas off the bed • Thermocouples – Used to determine when bed fully desorbed • Connected to nitrogen inlet and outlet as well as process outlet • Mass flow controller – Rumor that
    [Show full text]
  • Hydrogen in Zirconium Alloys: a Review
    Journal of Nuclear Materials 518 (2019) 440e460 Contents lists available at ScienceDirect Journal of Nuclear Materials journal homepage: www.elsevier.com/locate/jnucmat Hydrogen in zirconium alloys: A review * Arthur T. Motta a, , Laurent Capolungo b, Long-Qing Chen c, Mahmut Nedim Cinbiz d, Mark R. Daymond e, Donald A. Koss c, Evrard Lacroix a, Giovanni Pastore f, Pierre-Clement A. Simon a, Michael R. Tonks g, Brian D. Wirth h, Mohammed A. Zikry i a Department of Mechanical and Nuclear Engineering, 138 Reber Bldg, Penn State University, University Park, PA, 16802, USA b Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA c Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802-5006, USA d Reactor and Nuclear Systems Division, Nuclear Fuel Materials Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA e Dept. of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada f Idaho National Laboratory, Fuel Modeling and Simulation Department, Idaho Falls, ID, 83415, USA g Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA h Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, 37996-1410, USA i Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695-7910, USA article info abstract Article history: Hydrogen absorbed into zirconium alloy nuclear fuel cladding as a result of the waterside corrosion Received 4 January 2019 reaction can affect the properties of nuclear fuel, principally through the precipitation of brittle hydride Received in revised form particles.
    [Show full text]
  • Class 556 Organic Compounds -- Part of the Class 532-570 Series 556 - 1
    CLASS 556 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES 556 - 1 18 ...Plural phosphori bonded This Class 556 is considered to be an directly to the same carbon or integral part of Class 260 (see the Class attached to each other by an 260 schedule for the position of this acyclic chain which chain Class in schedule hierarchy). This Class consists of carbons or of retains all pertinent definitions and carbons and chalcogens class lines of Class 260. 19 ...Carbon bonded directly to the phosphorus 20 ....Plural carbons bonded directly to the phosphorus ORGANIC COMPOUNDS (CLASS 532, 21 .....Exactly three carbons bonded SUBCLASS 1) directly to the phosphorus 1 .HEAVY METAL CONTAINING (e.g., (e.g., triphenylphosphines, Ga, In or T1, etc.) etc.) 2 ..With preservative or stabilizer 22 ......And carbon bonded directly 3 ...Compound preserved or to the heavy metal stabilized contains lead 23 ......Hydrogen or halogen bonded bonded directly to carbon directly to the heavy metal 4 ....Halogen containing 24 ...Exactly four chalcogens bonded preservative or stabilizer directly to the phosphorus 5 ....Chalcogen containing (e.g., phosphates, orthophosphates, etc.) preservative or stabilizer ....At least two of the 6 ...Nitrogen containing 25 chalcogens are sulfur (e.g., preservative or stabilizer zinc dihydrocarbyl 7 ..Boron containing dithiophosphates, etc.) 8 ...Hydrogen bonded directly to 26 ....Nitrogen or -C(=X)­ the boron containing, wherein X is 9 ..Silicon containing chalcogen 10 ...Silicon and heavy metal bonded 27 ..Aluminum containing
    [Show full text]