Impact of Passenger Comfort Level on Design of Short Span Composite Steel I-Girder High Speed Railroad Bridges
Total Page:16
File Type:pdf, Size:1020Kb
IMPACT OF PASSENGER COMFORT LEVEL ON DESIGN OF SHORT SPAN COMPOSITE STEEL I-GIRDER HIGH SPEED RAILROAD BRIDGES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY TOLGA ŞENTÜRK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING DECEMBER 2009 Approval of the thesis: IMPACT OF PASSENGER COMFORT LEVEL ON DESIGN OF SHORT SPAN COMPOSITE STEEL I-GIRDER HIGH SPEED RAILROAD BRIDGES submitted by TOLGA ŞENTÜRK in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering Department, Middle East Technical University by, Prof. Dr. Canan Özgen _____________________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Güney Özcebe _____________________ Head of Department, Civil Engineering Asst. Prof. Dr. Alp Caner ___________________ Supervisor, Civil Engineering Dept., METU Examining Committee Members: Prof. Dr. Çetin Yılmaz _____________________ Civil Engineering Dept., METU Asst. Prof. Dr. Alp Caner _____________________ Civil Engineering Dept., METU Assoc. Prof. Dr. Uğurhan Akyüz _____________________ Civil Engineering Dept., METU Assoc. Prof. Dr. Ahmet Türer _____________________ Civil Engineering Dept., METU Altuğ Aksaray, MSc. _____________________ General Manager, SPM Engineering Inc. Date: 08.12.2009 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : TOLGA ŞENTÜRK Signature : iii ABSTRACT IMPACT OF PASSENGER COMFORT LEVEL ON DESIGN OF SHORT-SPAN COMPOSITE STEEL I-GIRDER HIGH SPEED RAILROAD BRIDGES Şentürk, Tolga M.Sc. Department of Civil Engineering Supervisor: Asst. Prof Dr. Alp Caner December 2009, 205 pages In globalizing world, increase in demand for high speed rail travel requires comfortable ride over bridges while maintaining an economical design. These bridges either have composite steel I-girders, prestressed precast I or box girder superstructures. The span lengths can reach up to 40 meters. If frequency of wheel load pass at a point on bridge matches with one the critical frequencies of the structure, excessive vibration can developed both at the train and the bridge even if the structure is structurally safe. Excessive vibration can discomfort the passengers. Focus of this study is given to identify certain thresholds for the rigidity of span to minimize the passenger discomfort at short-span composite steel I-girder high speed railroad bridges. In this context, various span lengths with different girder configurations have been analyzed under various train design speeds and ballast stiffness. Eigenvalue analyses are performed to determine critical frequencies of bridges. Moving force models are used to determine structural vibrations iv as recommended by high speed railroad bridge design specifications. It is well-known that stiffer structures can have significantly less vibration amplitudes than lighter ones providing a comfortable ride for high speed train passes. Keywords: Bridge, High-Speed Train, Train-Bridge Interaction, Vibration Effects, Passenger Comfort. v ÖZ HIZLI TRENLER İÇİN KISA AÇIKLI KOMPOZİT I-KİRİŞLİ ÇELİK KÖPRÜLERİN TASARIMINA YOLCU KONFOR DÜZEYİNİN ETKİSİ Şentürk, Tolga Yüksek Lisans, İnşaat Mühendisliği Bölümü Tez Yöneticisi: Y. Doç. Dr. Alp Caner Aralık 2009, 205 sayfa Küreselleşen dünyada yüksek hızlı demiryolu ulaşımına duyulan talep artışı, ekonomik tasarımın yanısıra demiryolu köprüleründen konforlu geçişi de gerektirmiştir. Bu demiryolu köprülerinin, kompozit çelik I kirişli veya ön germeli prekast I veya kutu kirişli üst yapıları vardır. Açıklık uzunlukları 40 metreye kadar ulaşabilir. Yapı, yapısal olarak güvenli olsa dahi eğer bir noktadan geçen tekerlek yükü frekansı yapı kritik frekansı ile örtüşürse, köprüde ve trende aşırı titeşim oluşabilir. Aşırı titreşim, yolcuları rahatsız edebilir. Bu çalışmanın odağı, kısa açıklı kompozit çelik I-kirişli yüksek hızlı demiryolu köprülerinde yolcu rahatsızlıklarını azaltmak için mutlak asgari açıklık rijitlikleri belirlemektir. Bu çalışmada, değişken açıklıklar, farklı kiriş konfigürasyonları ile çeşitli tren tasarım hızları ve balast rijitlikleri için analiz edilmiştir. Köprülerin kritik frekansları özdeğer analizleri ile belirlenmiştir. Yapısal titreşimlerin belirlenmesi için ise yüksek hızlı tren köprüleri tasarım şartnamelerinde de tavsiye edildiği üzere muharrik güç modelleri kullanılmıştır. Bilindiği üzere rijit yapılar, daha az rijit yapılara nazaran mühim derecede vi az titreşim derinliğine sahiptirler ki bu yüksek hızlı tren geçişinde konforlu geçişi sağlar. Anahtar Kelimeler: Köprü, Yüksek Hızlı Tren, Tren-Köprü Etkileşimi, Vibrasyon Etkisi, Yolcu Konforu. vii To my family viii ACKNOWLEDGEMENTS It is a great pleasure for me to complete my master thesis and have the opportunity to thank all who were always nearby me during the whole studies. First of all, I would like to thank my advisor Asst. Prof. Dr. Alp Caner, who directed me to the area of bridges and high-speed trains, for his expert guidance. Working with him has been a rewarding experience. I would especially like to thank my family for helping me throughout the years to finally become an engineer. Also, I would like to thank my colleagues, Eser and Mutlu, for all of the support that they have given me. ix TABLE OF CONTENTS ABSTRACT....................................................................................... iv ÖZ.................................................................................................. vi ACKNOWLEDGEMENTS..................................................................... ix TABLE OF CONTENTS....................................................................... x LIST OF TABLES.............................................................................. xiv LIST OF FIGURES............................................................................. xviii LIST OF SYMBOLS AND ABBREVIATIONS......................................... xxxiii CHAPTERS 1. INTRODUCTION........................................................................... 1 1.1. History................................................................................. 1 1.2. Objectives and Scope of the Study......................................... 4 2. LITERATURE REVIEW................................................................... 10 3. DESIGN CRITERIA & ANALYSIS PROCEDURE.................................. 18 3.1. Analysis Guidelines............................................................... 18 3.2. Dynamic Analysis Parameters................................................ 25 3.2.1. Structural Damping Ratio.............................................. 25 3.2.2. Train Analysis Speed.................................................... 28 3.2.3. Train Loading.............................................................. 31 x 3.3 Passenger Comfort Criteria..................................................... 35 3.3.1. Eurocode Passenger Comfort Criteria............................. 35 3.3.2. A.R.E.M.A Passenger Comfort Criteria............................ 37 3.4. Computational Analysis Methods............................................ 38 3.4.1. Non-Linear Force-Time Analysis.................................. 38 3.4.2. Eigenvalue Analysis...................................................... 40 4. CASE STUDY AND COMPUTER MODELING...................................... 41 4.1. Description of the Bridge....................................................... 41 4.2. Computer Modeling............................................................... 48 4.2.1. Static Load Model Multiplied By Dynamic Factors............ 53 4.2.2. Moving Force Model..................................................... 61 4.2.3. Moving Mass Model...................................................... 63 4.3. Dynamic Analysis Parameters................................................ 67 4.3.1. Structural Damping Ratio.............................................. 67 4.3.2. Train Analysis Speed.................................................... 69 4.3.3. Train Loading.............................................................. 71 5. ANALYSIS RESULTS...................................................................... 73 5.1. Introduction......................................................................... 73 5.2. Mid-Span Joint Acceleration Results....................................... 76 5.3. Mid-Span Joint Displacement Results..................................... 86 5.4. Mid-Span Deck Twist Results................................................. 94 5.5. Mid-Span Composite Section Stress Results............................ 103 xi 5.6. Eigenvalue Analysis Results................................................... 105 6. SUMMARY & CONCLUSION............................................................ 106 6.1. Summary............................................................................. 106 6.2. Discussion on Results............................................................ 106 6.2.1. Discussion on Results of Acceleration............................ 107 6.2.2. Discussion on Results of Displacement.......................... 121 6.2.3. Discussion on Results of Deck Twist.............................. 121 6.2.4. Discussion on Results of Stresses.................................