bioRxiv preprint doi: https://doi.org/10.1101/809251; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CLASP mediates microtubule repair by promoting tubulin incorporation into damaged lattices Amol Aher 1, Dipti Rai 1, Laura Schaedel 2, Jeremie Gaillard 2, Karin John 3, Laurent Blanchoin 2,4, Manuel Thery 2,4, and Anna Akhmanova 1# 1 Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands 2 Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, 38054 Grenoble, France 3 Univ. Grenoble-Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, 38000 Grenoble, France 4 Univ. Paris, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, CytoMorpho Lab, 75010 Paris, France #Corresponding author:
[email protected] Lead contact: Anna Akhmanova 1 bioRxiv preprint doi: https://doi.org/10.1101/809251; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Summary Microtubule network plays a key role in cell division, motility and intracellular trafficking. Microtubule lattices are generally regarded as stable structures that undergo turnover through dynamic instability of their ends [1].