Kinesins at a Glance Sharyn A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanical Design of Translocating Motor Proteins
Cell Biochem Biophys (2009) 54:11–22 DOI 10.1007/s12013-009-9049-4 REVIEW PAPER Mechanical Design of Translocating Motor Proteins Wonmuk Hwang Æ Matthew J. Lang Published online: 19 May 2009 Ó Humana Press Inc. 2009 Abstract Translocating motors generate force and move Introduction along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo Motor proteins form distinct classes in the protein universe transport, protein degradation, and muscle contraction. as they can convert chemical energy directly into mechan- Advances in single molecule manipulation experiments, ical work. Among them, translocating motors move along structural biology, and computational analysis are making biopolymer tracks, such as nucleic acids, polypeptides, or it possible to consider common mechanical design princi- quaternary biofilament structures like F-actin or microtu- ples of these diverse families of motors. Here, we propose a bule (Kolomeisky and Fisher proposed the term ‘‘translo- mechanical parts list that include track, energy conversion case’’ for these motors [41]. However, we prefer to use machinery, and moving parts. Energy is supplied not just ‘‘translocating motor,’’ since translocase refers to mem- by burning of a fuel molecule, but there are other sources brane-bound motors such as SecA, whose function is to or sinks of free energy, by binding and release of a fuel or translocate a protein across the membrane [24]). Movement products, or similarly between the motor and the track. is an essential part of their function. For example, RNA Dynamic conformational changes of the motor domain can polymerase (RNAP) walks along the DNA molecule and be regarded as controlling the flow of free energy to and transcribes the genetic code into RNA [25]. -
Kinesin-4 KIF21B Limits Microtubule Growth to Allow Rapid Centrosome
RESEARCH ARTICLE Kinesin-4 KIF21B limits microtubule growth to allow rapid centrosome polarization in T cells Peter Jan Hooikaas1†, Hugo GJ Damstra1†, Oane J Gros1, Wilhelmina E van Riel1‡, Maud Martin1§, Yesper TH Smits2, Jorg van Loosdregt2, Lukas C Kapitein1, Florian Berger1*, Anna Akhmanova1* 1Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands; 2Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands Abstract When a T cell and an antigen-presenting cell form an immunological synapse, rapid dynein-driven translocation of the centrosome toward the contact site leads to reorganization of microtubules and associated organelles. Currently, little is known about how the regulation of *For correspondence: microtubule dynamics contributes to this process. Here, we show that the knockout of KIF21B, a [email protected] (FB); kinesin-4 linked to autoimmune disorders, causes microtubule overgrowth and perturbs [email protected] (AA) centrosome translocation. KIF21B restricts microtubule length by inducing microtubule pausing typically followed by catastrophe. Catastrophe induction with vinblastine prevented microtubule †These authors contributed overgrowth and was sufficient to rescue centrosome polarization in KIF21B-knockout cells. equally to this work Biophysical simulations showed that a relatively small number of KIF21B molecules can restrict ‡ Present address: Netherlands mirotubule length and promote an imbalance -
Theory of Cytoskeletal Reorganization During Crosslinker-Mediated Mitotic Spindle Assembly
bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Theory of cytoskeletal reorganization during crosslinker-mediated mitotic spindle assembly A. R. Lamson, C. J. Edelmaier, M. A. Glaser, and M. D. Betterton Abstract Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which micro- tubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mech- anisms of this process include regulated filament polymerization, crosslinking, and motor-protein activity. Remarkably, using passive crosslinkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization due to dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive crosslink- ers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include crosslinker-binding kinetics and other stochastic effects. Our results show that rapid crosslinker reorganization to microtubule overlaps facilitates crosslinker-driven spindle assembly, a testable prediction for future experiments. Combin- ing these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization. 1 bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. -
Construction and Loss of Bacterial Flagellar Filaments
biomolecules Review Construction and Loss of Bacterial Flagellar Filaments Xiang-Yu Zhuang and Chien-Jung Lo * Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan City 32001, Taiwan; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 4 November 2020; Published: 9 November 2020 Abstract: The bacterial flagellar filament is an extracellular tubular protein structure that acts as a propeller for bacterial swimming motility. It is connected to the membrane-anchored rotary bacterial flagellar motor through a short hook. The bacterial flagellar filament consists of approximately 20,000 flagellins and can be several micrometers long. In this article, we reviewed the experimental works and models of flagellar filament construction and the recent findings of flagellar filament ejection during the cell cycle. The length-dependent decay of flagellar filament growth data supports the injection-diffusion model. The decay of flagellar growth rate is due to reduced transportation of long-distance diffusion and jamming. However, the filament is not a permeant structure. Several bacterial species actively abandon their flagella under starvation. Flagellum is disassembled when the rod is broken, resulting in an ejection of the filament with a partial rod and hook. The inner membrane component is then diffused on the membrane before further breakdown. These new findings open a new field of bacterial macro-molecule assembly, disassembly, and signal transduction. Keywords: self-assembly; injection-diffusion model; flagellar ejection 1. Introduction Since Antonie van Leeuwenhoek observed animalcules by using his single-lens microscope in the 18th century, we have entered a new era of microbiology. -
Review of Molecular Motors
REVIEWS CYTOSKELETAL MOTORS Moving into the cell: single-molecule studies of molecular motors in complex environments Claudia Veigel*‡ and Christoph F. Schmidt§ Abstract | Much has been learned in the past decades about molecular force generation. Single-molecule techniques, such as atomic force microscopy, single-molecule fluorescence microscopy and optical tweezers, have been key in resolving the mechanisms behind the power strokes, ‘processive’ steps and forces of cytoskeletal motors. However, it remains unclear how single force generators are integrated into composite mechanical machines in cells to generate complex functions such as mitosis, locomotion, intracellular transport or mechanical sensory transduction. Using dynamic single-molecule techniques to track, manipulate and probe cytoskeletal motor proteins will be crucial in providing new insights. Molecular motors are machines that convert free energy, data suggest that during the force-generating confor- mostly obtained from ATP hydrolysis, into mechanical mational change, known as the power stroke, the lever work. The cytoskeletal motor proteins of the myosin and arm of myosins8,11 rotates around its base at the catalytic kinesin families, which interact with actin filaments and domain11–17, which can cause the displacement of bound microtubules, respectively, are the best understood. Less cargo by several nanometres18 (FIG. 1B). In kinesins, the is known about the dynein family of cytoskeletal motors, switching of the neck linker (~13 amino acids connecting which interact with microtubules. Cytoskeletal motors the catalytic core to the cargo-binding stalk domain) from power diverse forms of motility, ranging from the move- an ‘undocked’ state to a state in which it is ‘docked’ to the ment of entire cells (as occurs in muscular contraction catalytic domain, is the equivalent of the myosin power or cell locomotion) to intracellular structural dynamics stroke10. -
A Standardized Kinesin Nomenclature • Lawrence Et Al
JCB: COMMENT A standardized kinesin nomenclature Carolyn J. Lawrence,1 R. Kelly Dawe,1,2 Karen R. Christie,3,4 Don W. Cleveland,3,5 Scott C. Dawson,3,6 Sharyn A. Endow,3,7 Lawrence S.B. Goldstein,3,8 Holly V. Goodson,3,9 Nobutaka Hirokawa,3,10 Jonathon Howard,3,11 Russell L. Malmberg,1,3 J. Richard McIntosh,3,12 Harukata Miki,3,10 Timothy J. Mitchison,3,13 Yasushi Okada,3,10 Anireddy S.N. Reddy,3,14 William M. Saxton,3,15 Manfred Schliwa,3,16 Jonathan M. Scholey,3,17 Ronald D. Vale,3,18 Claire E. Walczak,3,19 and Linda Wordeman3,20 1Department of Plant Biology, The University of Georgia, Athens, GA 30602 2Department of Genetics, The University of Georgia, Athens, GA 30602 3These authors contributed equally to this work and are listed alphabetically 4Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305 5Ludwig Institute for Cancer Research, 3080 CMM-East, 9500 Gilman Drive, La Jolla, CA 92093 6Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720 7Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 8Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, La Jolla, CA 92093 9Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46628 10Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 11Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany 12Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309 13Institute for Chemistry and Cell Biology, Harvard Medical School, Boston, MA 02115 Downloaded from 14Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523 15Department of Biology, Indiana University, Bloomington, IN 47405 16Adolf-Butenandt-Institut, Zellbiologie, University of Munich, Schillerstr. -
Cell Architecture: Putting the Building Blocks Together
COCEBI-1090; NO. OF PAGES 3 Available online at www.sciencedirect.com Cell architecture: putting the building blocks together Editorial overview Anna Akhmanova and Tim Stearns Current Opinion in Cell Biology 2012, 25:xx–yy 0955-0674/$ – see front matter, # 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ceb.2012.12.003 Anna Akhmanova Cell Biology, Faculty of Science, Utrecht In considering cell architecture it is important to realize that for cells, as for University, Padualaan 8, 3584 CH Utrecht, buildings, the underpinning for the external shape is provided by a complex The Netherlands internal superstructure. And for cells, this cytoskeletal underpinning must e-mail: [email protected] be highly dynamic to effect the changes in morphology and organization associated with division, growth and differentiation. Cytoskeletal elements Anna Akhmanova is Professor of Cell Biology at Utrecht University, the Netherlands, and a were some of the first components of intracellular structure described by member of EMBO. Her lab uses cell early microscopists in the late 19th century, but it was not until a century biological approaches, in vitro reconstitutions later that the remarkable complexity of the cytoskeleton, in both compo- and high-resolution microscopy to study sition and behavior, has been revealed. Advances in genomics and proteo- molecular mechanisms of microtubule mics have provided us with near-comprehensive lists of the molecular dynamics and vesicle trafficking and their players associated with the various cytoskeletal systems. The challenge contribution to mammalian development and human disease. now is to understand how these components work together, and this is one of the central themes of this issue of Current Opinion in Cell Biology. -
Tension on the Linker Gates the ATP-Dependent Release of Dynein from Microtubules
ARTICLE Received 4 Apr 2014 | Accepted 3 Jul 2014 | Published 11 Aug 2014 DOI: 10.1038/ncomms5587 Tension on the linker gates the ATP-dependent release of dynein from microtubules Frank B. Cleary1, Mark A. Dewitt1, Thomas Bilyard2, Zaw Min Htet2, Vladislav Belyy1, Danna D. Chan2, Amy Y. Chang2 & Ahmet Yildiz2 Cytoplasmic dynein is a dimeric motor that transports intracellular cargoes towards the minus end of microtubules (MTs). In contrast to other processive motors, stepping of the dynein motor domains (heads) is not precisely coordinated. Therefore, the mechanism of dynein processivity remains unclear. Here, by engineering the mechanical and catalytic properties of the motor, we show that dynein processivity minimally requires a single active head and a second inert MT-binding domain. Processivity arises from a high ratio of MT-bound to unbound time, and not from interhead communication. In addition, nucleotide-dependent microtubule release is gated by tension on the linker domain. Intramolecular tension sensing is observed in dynein’s stepping motion at high interhead separations. On the basis of these results, we propose a quantitative model for the stepping characteristics of dynein and its response to chemical and mechanical perturbation. 1 Biophysics Graduate Group, University of California, Berkeley, California 94720, USA. 2 Department of Physics, University of California, Berkeley, California 94720, USA. Correspondence and requests for materials should be addressed to A.Y. (email: [email protected]). NATURE COMMUNICATIONS | 5:4587 | DOI: 10.1038/ncomms5587 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5587 ytoplasmic dynein is responsible for nearly all microtubule dynein’s MT-binding domain (MTBD) is located at the end of a (MT) minus-end-directed transport in eukaryotes1.In coiled-coil stalk10. -
EMBO Facts & Figures
excellence in life sciences Reykjavik Helsinki Oslo Stockholm Tallinn EMBO facts & figures & EMBO facts Copenhagen Dublin Amsterdam Berlin Warsaw London Brussels Prague Luxembourg Paris Vienna Bratislava Budapest Bern Ljubljana Zagreb Rome Madrid Ankara Lisbon Athens Jerusalem EMBO facts & figures HIGHLIGHTS CONTACT EMBO & EMBC EMBO Long-Term Fellowships Five Advanced Fellows are selected (page ). Long-Term and Short-Term Fellowships are awarded. The Fellows’ EMBO Young Investigators Meeting is held in Heidelberg in June . EMBO Installation Grants New EMBO Members & EMBO elects new members (page ), selects Young EMBO Women in Science Young Investigators Investigators (page ) and eight Installation Grantees Gerlind Wallon EMBO Scientific Publications (page ). Programme Manager Bernd Pulverer S Maria Leptin Deputy Director Head A EMBO Science Policy Issues report on quotas in academia to assure gender balance. R EMBO Director + + A Conducts workshops on emerging biotechnologies and on H T cognitive genomics. Gives invited talks at US National Academy E IC of Sciences, International Summit on Human Genome Editing, I H 5 D MAN 201 O N Washington, DC.; World Congress on Research Integrity, Rio de A M Janeiro; International Scienti c Advisory Board for the Centre for Eilish Craddock IT 2 015 Mammalian Synthetic Biology, Edinburgh. Personal Assistant to EMBO Fellowships EMBO Scientific Publications EMBO Gold Medal Sarah Teichmann and Ido Amit receive the EMBO Gold the EMBO Director David del Álamo Thomas Lemberger Medal (page ). + Programme Manager Deputy Head EMBO Global Activities India and Singapore sign agreements to become EMBC Associate + + Member States. EMBO Courses & Workshops More than , participants from countries attend 6th scienti c events (page ); participants attend EMBO Laboratory Management Courses (page ); rst online course EMBO Courses & Workshops recorded in collaboration with iBiology. -
Single-Molecule Analysis of a Novel Kinesin Motor Protein
Single-Molecule Analysis of a Novel Kinesin Motor Protein Jeremy Meinke Advisor: Dr. Weihong Qiu Oregon State University, Department of Physics June 7, 2017 Abstract Kinesins are intracellular motor proteins that transform chemical energy into mechanical energy through ATP hydrolysis to move along microtubules. Kinesin roles can vary among transportation, regulation, and spindle alignment within most cells. Many kinesin have been found to move towards the plus end of microtubules at a steady velocity. For this experiment, we investigate BimC - a kinesin-5 as- sociated with mitotic spindle regulation - under high salt conditions. Using single molecule imaging with Total Internal Reflection Fluorescence Microscopy, we found BimC to be directed towards the minus end of microtubules at a high velocity of 597±214 nm/s (mean±S.D, n=124). BimC then joins the few other kinesin found so far to be minus-end-directed. However, preliminary results at low salt condi- tions suggest that BimC switches towards the plus end. BimC could very well be an early example of a kinesin motor protein that is directionally-dependent upon ionic strength. These results suggest multiple branches of further investigation into directionally-dependent kinesin proteins and what purposes they might have. Contents 1 Introduction 1 1.1 Kinesin Proteins . 1 1.2 Total Internal Reflection Fluorescence Microscopy . 3 1.3 Protein Motion Analysis . 3 2 Methods 5 2.1 Design, Expression, and Purification of BimC . 5 2.2 Single Molecule Imaging . 7 2.3 Analysis of Data/Results . 7 3 Results 9 3.1 Single Molecule Imaging of BimC . 9 3.2 Directionality of BimC in High Salt Conditions . -
3053.Full.Pdf
The Journal of Neuroscience, April 1995, 75(4): 3053-3064 The Activation of Protein Kinase A Pathway Selectively Inhibits Anterograde Axonal Transport of Vesicles but Not Mitochondria Transport or Retrograde Transport ~II viva Yasushi Okada, Reiko Sato-Yoshitake, and Nobutaka Hirokawa Department of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo, Hongo, Tokyo, 113, Japan To shed light on how axonal transport is regulated, we ex- is an especially well developed intracellular organelle transport amined the possible roles of protein kinase A (PKA) in viva system. Many studies have been focused on the mechanismof suggested by our previous work (Sato-Yoshitake et al., this transport, but little is known about its regulation. As a pu- 1992). Pharmacological probes or the purified catalytic tative mechanismfor the regulation, we have proposeda model subunit of PKA were applied to the permeabilized-reacti- from our recent studies (Hirokawa et al., 1990, 1991) that the vated model of crayfish walking leg giant axon, and the anterogrademotor kinesin is decommissionedat the axon ter- effect was monitored by the quantitative video-enhanced minal, and that the retrogrademotor cytoplasmic dynein is trans- light microscopy and the quantitative electron microscopy. ported, presumably in an inactive form, by the anterogradeor- Dibutyryl cyclic AMP caused concentration-dependent ganelle transport to the axon terminal, where it should be transient reduction in the number of anterogradely trans- activated to support the retrograde organelle transport. ported small vesicles, while the retrogradely transported Our present study was undertakento examine this regulation organelles and anterogradely transported mitochondria mechanism.One plausiblemechanism is through protein kinases showed no decrease. -
Motor-Driven Dynamics in Actin-Myosin Networks Loïc Le Goff, François Amblard, Eric Furst
Motor-Driven Dynamics in Actin-Myosin Networks Loïc Le Goff, François Amblard, Eric Furst To cite this version: Loïc Le Goff, François Amblard, Eric Furst. Motor-Driven Dynamics in Actin-Myosin Networks. Physical Review Letters, American Physical Society, 2001, 88 (1), pp.018101. 10.1103/phys- revlett.88.018101. hal-02415553 HAL Id: hal-02415553 https://hal.archives-ouvertes.fr/hal-02415553 Submitted on 19 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VOLUME 88, NUMBER 1PHYSICALREVIEWLETTERS7JANUARY 2002 Motor-Driven Dynamics in Actin-Myosin Networks Loïc Le Goff, François Amblard,* and Eric M. Furst† Institut Curie, Physico-Chimie Curie, UMR CNRS/IC 168, 26 rue d’Ulm, 75248 Paris Cedex 05, France (Received 29 May 2001; published 14 December 2001) The effect of myosin motor protein activity on the filamentous actin (F-actin) rheological response is studied using diffusing wave spectroscopy. Under conditions of saturating motor activity, we find an enhancement of longitudinal filament fluctuations corresponding to a scaling of the viscoelastic shear 7͞8 modulus Gd͑v͒ϳv . As the adenosine tri-phosphate reservoir sustaining motor activity is depleted, we find an abrupt transient to a passive, “rigor state” and a return to dissipation dominated by transverse filament modes.