Motor-Driven Dynamics in Actin-Myosin Networks Loïc Le Goff, François Amblard, Eric Furst

Total Page:16

File Type:pdf, Size:1020Kb

Motor-Driven Dynamics in Actin-Myosin Networks Loïc Le Goff, François Amblard, Eric Furst Motor-Driven Dynamics in Actin-Myosin Networks Loïc Le Goff, François Amblard, Eric Furst To cite this version: Loïc Le Goff, François Amblard, Eric Furst. Motor-Driven Dynamics in Actin-Myosin Networks. Physical Review Letters, American Physical Society, 2001, 88 (1), pp.018101. 10.1103/phys- revlett.88.018101. hal-02415553 HAL Id: hal-02415553 https://hal.archives-ouvertes.fr/hal-02415553 Submitted on 19 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VOLUME 88, NUMBER 1PHYSICALREVIEWLETTERS7JANUARY 2002 Motor-Driven Dynamics in Actin-Myosin Networks Loïc Le Goff, François Amblard,* and Eric M. Furst† Institut Curie, Physico-Chimie Curie, UMR CNRS/IC 168, 26 rue d’Ulm, 75248 Paris Cedex 05, France (Received 29 May 2001; published 14 December 2001) The effect of myosin motor protein activity on the filamentous actin (F-actin) rheological response is studied using diffusing wave spectroscopy. Under conditions of saturating motor activity, we find an enhancement of longitudinal filament fluctuations corresponding to a scaling of the viscoelastic shear 7͞8 modulus Gd͑v͒ϳv . As the adenosine tri-phosphate reservoir sustaining motor activity is depleted, we find an abrupt transient to a passive, “rigor state” and a return to dissipation dominated by transverse filament modes. Single-filament measurements of the apparent persistence length support the notion that motor activity leads to an increase in the effective temperature for tangential motion. DOI: 10.1103/PhysRevLett.88.018101 PACS numbers: 87.16.Ka, 83.60.Bc, 83.85.Ei, 87.15.La The globular protein actin plays an important role in cel- The actin-myosin cycle forms the basis of many cellular lular mechanics, motility, and morphology by polymeriz- motility mechanisms, including the contraction of skeletal ing into filaments of diameter d Ӎ 7 nm to form networks and smooth muscle. Motor activity may have profound and higher-order structures. Because of their high bend- effects on actin filaments and networks. Recently, it ing rigidity k, long persistence length Lp ෇ k͞kbT Ӎ was shown that double-headed myosin fluidizes actin 10 15 mm, and ease of visualization, actin filaments are solutions by an enhancement of the slow relaxation of also important models for semiflexible polymer physics. stress [12]. In addition, theoretical work suggests that Significant advances have been made in the understanding motor activity introduces an active temperature Tact of actin rheology and its consequences for polymer theory, for tangential motion of filaments, which may enhance cellular organization, intracellular transport, and cell sig- longitudinal modes [13]. Similar effects of activity have naling [1– 5]. To date, however, rheological and dynamical been reported for the dynamics of biological membranes studies of F-actin have relied on probing passive reconsti- [14], the two-dimensional analog of semiflexible fila- tuted systems through either mechanical rheometry, light ments [15]. scattering, or microrheological techniques [3,6,7]. In this Letter, we report the rheology of F-actin using In frequency regimes governed by single polymer re- tracer particle microrheology with diffusing wave spec- laxation, the linear viscoelastic storage G0͑v͒ and loss troscopy (DWS) [16] in the presence of single-headed 3͞4 G00͑v͒ shear moduli scale as G0͑v͒ϳG00͑v͒ϳv ,a myosin motor protein. We measure the linear viscoelas- direct consequence of the dominant stress relaxation by ticity of “active” F-actin solutions on time scales that end-to-end response upon affine deformation of the poly- probe the relaxation of individual filaments from motor- mer [8,9]. This is accounted for by summing up transverse driven modes. In addition, our experiments address a modes after assuming the incompressibility of the filament; number of other important issues of actomyosin. For ex- however, if one could perturb the filament locally, the ef- ample, it is suggested that filament mechanics are altered fects of finite propagation velocity of tension should give by motor activity [17]. Such changes should modify the rise to a longitudinal response that scales as v7͞8 [4]. Such spectrum of fluctuations of the filaments, and could be would be the case when pulling one end of the filament, identified through changes in the measured viscoelastic- or following the motion of a reticulation point between ity. In addition, we discuss the implications of our work cross-linked filaments. for the myosin power-stroke time scale and mechanism. The mechanochemical activity of myosin molecular We will first summarize our experimental methods. motors offers a unique opportunity to perturb F-actin Next, we present the dependence of the actomyosin filaments from their equilibrium thermal fluctuations both viscoelastic response on ATP consumption, and examine locally and anisotropically to study the resulting rheologi- the scaling behavior during motor activity. We conclude cal response and relaxation mechanisms. In a reaction by deriving an expression for the active temperature and that consumes one adenosine tri-phosphate (ATP) per discussing the time scale and mechanism of the myosin cycle, myosin binds to actin, produces a force through power stroke. a mechanical “power stroke” by rotating a lever-arm Protein preparation and characterization.—Actin is domain parallel to the filament axis, then unbinds [10]. purified from chicken skeletal muscle acetone powder The actomyosin cycle proceeds perpetually as long using the method of Pardee and Spudich [18] (actin purity as ATP is present. In the absence of ATP, myosin greater than 99% based on SDS-PAGE). Monomeric remains attached to filaments with a low dissociation actin (G-actin) is stored at 270 ±C in G-buffer [5 mM Kd ෇ 500 nM in what is known as the rigor state [11]. Tris-HCl pH 7.8, 5 mM ATP, 100 mM CaCl2, 1 mM 018101-1 0031-9007͞02͞88(1)͞018101(4)$15.00 © 2001 The American Physical Society 018101-1 VOLUME 88, NUMBER 1PHYSICALREVIEWLETTERS7JANUARY 2002 dithiothreitol (DTT), 0.01% NaN3]. Prior to experiments, During DWS measurements at high S1 concentration, we thaw the actin rapidly until completely melted and we observe two dynamical regimes: an active steady dialyze against 100 volumes of fresh G-buffer overnight state associated with ATP hydrolysis by actin-myosin at 4 ±C. Sample-to-sample variation in the micro- and a final steady state due to myosin rigor (Fig. 1). rheological response of the actin when subjected to one At 5 mM S1, myosin activity during the active steady freeze-thaw cycle is minimal provided a sufficient amount state dramatically alters the scaling behavior of the of DTT is present [19]. Myosin subfragment 1 (S1) is a modulus, shown in Fig. 1 by the rotation downward single-headed motor consisting of the motor, converter, in Gd ͑v͒ and the corresponding shift upward in d͑v͒ and lever-arm domains. To characterize the kinetics relative to the actin-only sample. By contrast, the rigor and rate of mechanochemical events in our system, we state is marked by a nearly identical response for d͑v͒ measure ATP hydrolysis by the same F-actin (13 mM) and when compared to actin alone, indicating a dominance of myosin S1 (6.75 mM) in high-ATP (14.5 mM) F-buffer passive dissipation by the semiflexible filaments. More- by absorbance at 650 nm of molybdenum blue. over, there is a uniform increase in Gd͑v͒ by a factor of 2 Microrheology.—The mean-squared displacement over actin only that can be accounted for from the increase ͗Dr2͑t͒͘ of particles embedded in an F-actin sample of the filament hydrodynamic radius to 40 nm due to the is measured by DWS using a transmission geometry attachment of rigor myosin, since there is no difference 1 2 and plane-wave Ar laser source [20]. From ͗Dr ͑t͒͘, in Lp (Fig. 2). we calculate the shear modulus amplitude Gd͑v͒ and The onset time of the transient from the active steady phase angle d͑v͒ of the F-actin [16]. Note that Gd͑v͒ state to the rigor state is consistent with the depletion represents the total resistance to deformation, while rate of the ATP reservoir by myosin activity. Our d͑v͒ characterizes whether the resistance is in-phase direct measurement of ATP hydrolysis gives a consump- (viscous) or out-of-phase (elastic) with the rate of strain tion rate of 6 mM͞s for 6.7 mM S1, in agreement with [21]. They are related to the storage and loss moduli by id͑v͒ G0͑v͒ 1 iG00͑v͒ ෇ Gd͑v͒e . Within a small cor- rection G ͑v͒ϳ͗Dr2͑t͒͘21 and d͑v͒ϳ͓d lnG ͞ d t෇2p͞v d (a) d lnt͔t෇2p͞v, which essentially gives the scaling of Gd͑v͒ 10 0 0 with respect to v [22]. Particles (0.98 mm carboxylated polystyrene, Bangs rigor Laboratories) are washed to exchange surfactant and 10 0 (Pa) impurities. We incubate tracer particles for 2 hours in d G the G-actin solution to protein coat the bead surfaces by nonspecific adsorption. Immediately prior to polymerizing 10 active the actin, myosin S1 is added to a final concentration between 0.01 and 10 mM and Mg2ATP to 14.3 mM. Each 1.6 sample is polymerized in glass cuvettes (L ෇ 0.5 cm) by (b) raising the KCl concentration to 50 mM and MgCl2 to 1 mM. 1.4 active Single-filament microscopy.—A 5 mM solution of F-actin fluorescently labeled and stabilized with (rad) 1.2 rhodamine-phalloidin in F-buffer (25 mM imidazole, δ rigor / passive 2 mM MgCl2, 0.5 mM ATP, 50 mM KCl, 0.5 mM DTT, 0.01% NaN3) is diluted 500-fold with F-buffer 1.0 and 0.05 mg͞ml glucose oxidase, 0.01 mg͞ml catalase, 2.3 mg͞ml glucose, and 2% b-mercaptoethanol added 3 4 5 6 to reduce photobleaching.
Recommended publications
  • Mechanical Design of Translocating Motor Proteins
    Cell Biochem Biophys (2009) 54:11–22 DOI 10.1007/s12013-009-9049-4 REVIEW PAPER Mechanical Design of Translocating Motor Proteins Wonmuk Hwang Æ Matthew J. Lang Published online: 19 May 2009 Ó Humana Press Inc. 2009 Abstract Translocating motors generate force and move Introduction along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo Motor proteins form distinct classes in the protein universe transport, protein degradation, and muscle contraction. as they can convert chemical energy directly into mechan- Advances in single molecule manipulation experiments, ical work. Among them, translocating motors move along structural biology, and computational analysis are making biopolymer tracks, such as nucleic acids, polypeptides, or it possible to consider common mechanical design princi- quaternary biofilament structures like F-actin or microtu- ples of these diverse families of motors. Here, we propose a bule (Kolomeisky and Fisher proposed the term ‘‘translo- mechanical parts list that include track, energy conversion case’’ for these motors [41]. However, we prefer to use machinery, and moving parts. Energy is supplied not just ‘‘translocating motor,’’ since translocase refers to mem- by burning of a fuel molecule, but there are other sources brane-bound motors such as SecA, whose function is to or sinks of free energy, by binding and release of a fuel or translocate a protein across the membrane [24]). Movement products, or similarly between the motor and the track. is an essential part of their function. For example, RNA Dynamic conformational changes of the motor domain can polymerase (RNAP) walks along the DNA molecule and be regarded as controlling the flow of free energy to and transcribes the genetic code into RNA [25].
    [Show full text]
  • Theory of Cytoskeletal Reorganization During Crosslinker-Mediated Mitotic Spindle Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Theory of cytoskeletal reorganization during crosslinker-mediated mitotic spindle assembly A. R. Lamson, C. J. Edelmaier, M. A. Glaser, and M. D. Betterton Abstract Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which micro- tubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mech- anisms of this process include regulated filament polymerization, crosslinking, and motor-protein activity. Remarkably, using passive crosslinkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization due to dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive crosslink- ers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include crosslinker-binding kinetics and other stochastic effects. Our results show that rapid crosslinker reorganization to microtubule overlaps facilitates crosslinker-driven spindle assembly, a testable prediction for future experiments. Combin- ing these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization. 1 bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Construction and Loss of Bacterial Flagellar Filaments
    biomolecules Review Construction and Loss of Bacterial Flagellar Filaments Xiang-Yu Zhuang and Chien-Jung Lo * Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan City 32001, Taiwan; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 4 November 2020; Published: 9 November 2020 Abstract: The bacterial flagellar filament is an extracellular tubular protein structure that acts as a propeller for bacterial swimming motility. It is connected to the membrane-anchored rotary bacterial flagellar motor through a short hook. The bacterial flagellar filament consists of approximately 20,000 flagellins and can be several micrometers long. In this article, we reviewed the experimental works and models of flagellar filament construction and the recent findings of flagellar filament ejection during the cell cycle. The length-dependent decay of flagellar filament growth data supports the injection-diffusion model. The decay of flagellar growth rate is due to reduced transportation of long-distance diffusion and jamming. However, the filament is not a permeant structure. Several bacterial species actively abandon their flagella under starvation. Flagellum is disassembled when the rod is broken, resulting in an ejection of the filament with a partial rod and hook. The inner membrane component is then diffused on the membrane before further breakdown. These new findings open a new field of bacterial macro-molecule assembly, disassembly, and signal transduction. Keywords: self-assembly; injection-diffusion model; flagellar ejection 1. Introduction Since Antonie van Leeuwenhoek observed animalcules by using his single-lens microscope in the 18th century, we have entered a new era of microbiology.
    [Show full text]
  • Review of Molecular Motors
    REVIEWS CYTOSKELETAL MOTORS Moving into the cell: single-molecule studies of molecular motors in complex environments Claudia Veigel*‡ and Christoph F. Schmidt§ Abstract | Much has been learned in the past decades about molecular force generation. Single-molecule techniques, such as atomic force microscopy, single-molecule fluorescence microscopy and optical tweezers, have been key in resolving the mechanisms behind the power strokes, ‘processive’ steps and forces of cytoskeletal motors. However, it remains unclear how single force generators are integrated into composite mechanical machines in cells to generate complex functions such as mitosis, locomotion, intracellular transport or mechanical sensory transduction. Using dynamic single-molecule techniques to track, manipulate and probe cytoskeletal motor proteins will be crucial in providing new insights. Molecular motors are machines that convert free energy, data suggest that during the force-generating confor- mostly obtained from ATP hydrolysis, into mechanical mational change, known as the power stroke, the lever work. The cytoskeletal motor proteins of the myosin and arm of myosins8,11 rotates around its base at the catalytic kinesin families, which interact with actin filaments and domain11–17, which can cause the displacement of bound microtubules, respectively, are the best understood. Less cargo by several nanometres18 (FIG. 1B). In kinesins, the is known about the dynein family of cytoskeletal motors, switching of the neck linker (~13 amino acids connecting which interact with microtubules. Cytoskeletal motors the catalytic core to the cargo-binding stalk domain) from power diverse forms of motility, ranging from the move- an ‘undocked’ state to a state in which it is ‘docked’ to the ment of entire cells (as occurs in muscular contraction catalytic domain, is the equivalent of the myosin power or cell locomotion) to intracellular structural dynamics stroke10.
    [Show full text]
  • A Standardized Kinesin Nomenclature • Lawrence Et Al
    JCB: COMMENT A standardized kinesin nomenclature Carolyn J. Lawrence,1 R. Kelly Dawe,1,2 Karen R. Christie,3,4 Don W. Cleveland,3,5 Scott C. Dawson,3,6 Sharyn A. Endow,3,7 Lawrence S.B. Goldstein,3,8 Holly V. Goodson,3,9 Nobutaka Hirokawa,3,10 Jonathon Howard,3,11 Russell L. Malmberg,1,3 J. Richard McIntosh,3,12 Harukata Miki,3,10 Timothy J. Mitchison,3,13 Yasushi Okada,3,10 Anireddy S.N. Reddy,3,14 William M. Saxton,3,15 Manfred Schliwa,3,16 Jonathan M. Scholey,3,17 Ronald D. Vale,3,18 Claire E. Walczak,3,19 and Linda Wordeman3,20 1Department of Plant Biology, The University of Georgia, Athens, GA 30602 2Department of Genetics, The University of Georgia, Athens, GA 30602 3These authors contributed equally to this work and are listed alphabetically 4Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305 5Ludwig Institute for Cancer Research, 3080 CMM-East, 9500 Gilman Drive, La Jolla, CA 92093 6Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720 7Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 8Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, La Jolla, CA 92093 9Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46628 10Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 11Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany 12Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309 13Institute for Chemistry and Cell Biology, Harvard Medical School, Boston, MA 02115 Downloaded from 14Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523 15Department of Biology, Indiana University, Bloomington, IN 47405 16Adolf-Butenandt-Institut, Zellbiologie, University of Munich, Schillerstr.
    [Show full text]
  • Tension on the Linker Gates the ATP-Dependent Release of Dynein from Microtubules
    ARTICLE Received 4 Apr 2014 | Accepted 3 Jul 2014 | Published 11 Aug 2014 DOI: 10.1038/ncomms5587 Tension on the linker gates the ATP-dependent release of dynein from microtubules Frank B. Cleary1, Mark A. Dewitt1, Thomas Bilyard2, Zaw Min Htet2, Vladislav Belyy1, Danna D. Chan2, Amy Y. Chang2 & Ahmet Yildiz2 Cytoplasmic dynein is a dimeric motor that transports intracellular cargoes towards the minus end of microtubules (MTs). In contrast to other processive motors, stepping of the dynein motor domains (heads) is not precisely coordinated. Therefore, the mechanism of dynein processivity remains unclear. Here, by engineering the mechanical and catalytic properties of the motor, we show that dynein processivity minimally requires a single active head and a second inert MT-binding domain. Processivity arises from a high ratio of MT-bound to unbound time, and not from interhead communication. In addition, nucleotide-dependent microtubule release is gated by tension on the linker domain. Intramolecular tension sensing is observed in dynein’s stepping motion at high interhead separations. On the basis of these results, we propose a quantitative model for the stepping characteristics of dynein and its response to chemical and mechanical perturbation. 1 Biophysics Graduate Group, University of California, Berkeley, California 94720, USA. 2 Department of Physics, University of California, Berkeley, California 94720, USA. Correspondence and requests for materials should be addressed to A.Y. (email: [email protected]). NATURE COMMUNICATIONS | 5:4587 | DOI: 10.1038/ncomms5587 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5587 ytoplasmic dynein is responsible for nearly all microtubule dynein’s MT-binding domain (MTBD) is located at the end of a (MT) minus-end-directed transport in eukaryotes1.In coiled-coil stalk10.
    [Show full text]
  • Single-Molecule Analysis of a Novel Kinesin Motor Protein
    Single-Molecule Analysis of a Novel Kinesin Motor Protein Jeremy Meinke Advisor: Dr. Weihong Qiu Oregon State University, Department of Physics June 7, 2017 Abstract Kinesins are intracellular motor proteins that transform chemical energy into mechanical energy through ATP hydrolysis to move along microtubules. Kinesin roles can vary among transportation, regulation, and spindle alignment within most cells. Many kinesin have been found to move towards the plus end of microtubules at a steady velocity. For this experiment, we investigate BimC - a kinesin-5 as- sociated with mitotic spindle regulation - under high salt conditions. Using single molecule imaging with Total Internal Reflection Fluorescence Microscopy, we found BimC to be directed towards the minus end of microtubules at a high velocity of 597±214 nm/s (mean±S.D, n=124). BimC then joins the few other kinesin found so far to be minus-end-directed. However, preliminary results at low salt condi- tions suggest that BimC switches towards the plus end. BimC could very well be an early example of a kinesin motor protein that is directionally-dependent upon ionic strength. These results suggest multiple branches of further investigation into directionally-dependent kinesin proteins and what purposes they might have. Contents 1 Introduction 1 1.1 Kinesin Proteins . 1 1.2 Total Internal Reflection Fluorescence Microscopy . 3 1.3 Protein Motion Analysis . 3 2 Methods 5 2.1 Design, Expression, and Purification of BimC . 5 2.2 Single Molecule Imaging . 7 2.3 Analysis of Data/Results . 7 3 Results 9 3.1 Single Molecule Imaging of BimC . 9 3.2 Directionality of BimC in High Salt Conditions .
    [Show full text]
  • 3053.Full.Pdf
    The Journal of Neuroscience, April 1995, 75(4): 3053-3064 The Activation of Protein Kinase A Pathway Selectively Inhibits Anterograde Axonal Transport of Vesicles but Not Mitochondria Transport or Retrograde Transport ~II viva Yasushi Okada, Reiko Sato-Yoshitake, and Nobutaka Hirokawa Department of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo, Hongo, Tokyo, 113, Japan To shed light on how axonal transport is regulated, we ex- is an especially well developed intracellular organelle transport amined the possible roles of protein kinase A (PKA) in viva system. Many studies have been focused on the mechanismof suggested by our previous work (Sato-Yoshitake et al., this transport, but little is known about its regulation. As a pu- 1992). Pharmacological probes or the purified catalytic tative mechanismfor the regulation, we have proposeda model subunit of PKA were applied to the permeabilized-reacti- from our recent studies (Hirokawa et al., 1990, 1991) that the vated model of crayfish walking leg giant axon, and the anterogrademotor kinesin is decommissionedat the axon ter- effect was monitored by the quantitative video-enhanced minal, and that the retrogrademotor cytoplasmic dynein is trans- light microscopy and the quantitative electron microscopy. ported, presumably in an inactive form, by the anterogradeor- Dibutyryl cyclic AMP caused concentration-dependent ganelle transport to the axon terminal, where it should be transient reduction in the number of anterogradely trans- activated to support the retrograde organelle transport. ported small vesicles, while the retrogradely transported Our present study was undertakento examine this regulation organelles and anterogradely transported mitochondria mechanism.One plausiblemechanism is through protein kinases showed no decrease.
    [Show full text]
  • Theoretical Aspects of Motor Protein Induced Filament Depolymerisation
    Institut f¨ur Theoretische Physik Fakult¨at Mathematik und Naturwissenschaft Technische Universit¨at Dresden Theoretical aspects of motor protein induced filament depolymerisation Dissertation Zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) angefertigt am Max Planck Institut f¨ur Physik komplexer Systeme Dresden vorgelegt von Gernot A. Klein Dresden, 2005 Contents 1 Introduction 1 2 The cytoskeleton and motor proteins 5 2.1 Cytoskeletalfilaments . ... 5 2.1.1 Structure and organisation of actin and intermediate filaments . 6 2.1.2 Assembly and structure of microtubules . ..... 8 2.2 Cytoskeletal motor proteins . ..... 10 2.2.1 Myosinanddynein............................. 11 2.2.2 Kinesin ................................... 12 2.3 Microtubuledynamicsandstructures. ....... 14 2.3.1 Force generation by polymerising filaments . ...... 14 2.3.2 Dynamic instability of growing microtubules . ....... 16 2.3.3 Reorganisation of microtubules during mitosis . ......... 17 2.4 Microtubule-depolymerising motor proteins . .......... 18 2.4.1 Properties of kinesin-13 motors . 19 2.4.2 Mechanism of microtubule depolymerisation . ....... 20 2.4.3 Cellularfunctions. .. .. .. .. .. .. .. .. 22 2.5 Theoretical description of motor proteins . ......... 23 2.5.1 Phenomenological approach . 23 2.5.2 Isothermalratchetmodels . 25 2.5.3 Stochastic models on discrete lattices . ....... 26 3 General description of motor induced filament depolymerisation 29 3.1 Filament depolymerisation . ..... 29 i ii Contents 3.1.1 Dynamics of motor densities . 30 3.1.2 Motor induced filament depolymerisation . ..... 31 3.1.3 Processivesubunitremoval . 32 3.2 Steady-statesolutions . 32 3.2.1 Density profiles of motor proteins . 33 3.2.2 Stabilityofsolutions . 34 3.3 Dynamic accumulation of motor proteins . ....... 36 3.3.1 Mechanisms of motor accumulation at filament ends .
    [Show full text]
  • Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells
    cells Review Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells Jungmin Kim 1 and Jae-Ho Cheong 1,2,3,4,5,* 1 Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] 2 Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea 3 Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea 4 Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea 5 Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Korea * Correspondence: [email protected]; Tel.: +82-2-2228-2094; Fax: +82-2-313-8289 Received: 17 June 2020; Accepted: 11 July 2020; Published: 14 July 2020 Abstract: Despite the promise of cancer medicine, major challenges currently confronting the treatment of cancer patients include chemoresistance and recurrence. The existence of subpopulations of cancer cells, known as cancer stem cells (CSCs), contributes to the failure of cancer therapies and is associated with poor clinical outcomes. Of note, one of the recently characterized features of CSCs is augmented mitochondrial function. The cytoskeleton network is essential in regulating mitochondrial morphology and rearrangement, which are inextricably linked to its functions, such as oxidative phosphorylation (OXPHOS). The interaction between the cytoskeleton and mitochondria can enable CSCs to adapt to challenging conditions, such as a lack of energy sources, and to maintain their stemness. Cytoskeleton-mediated mitochondrial trafficking and relocating to the high energy requirement region are crucial steps in epithelial-to-mesenchymal transition (EMT).
    [Show full text]
  • An Introduction to Molecular Motors
    An Introduction to Molecular Motors Barry Grant http://mccammon.ucsd.edu/~bgrant/ Cellular Motility is Essential for Life Fertilization Axonal Transport Muscle Contraction Just three families of motor proteins power eukaryotic cellular movement myosin kinesin dynein Cytoskeletal Transport Systems At the molecular level cytoskeletal transport systems consist of four basic components. Motor Track myosin, kinesin microfilaments and dynein and microtubules Cargo Fuel organelles, vesicles, ATP and chromosomes, etc. GTP Microtubules and microfilaments are highly organized within cells and together with motor proteins provide a framework for the redistribution and organization of cellular components. Cargo Track Motor Why Study Cytoskeletal Motor Proteins? Relevance to biology: •Motor systems intersect with almost every facet of cell biology. Relevance to medicine: •Transport defects can cause disease. • Inhibition or enhancement of motor protein activity has therapeutic benefits. Relevance to engineering: •Understanding the design principles of molecular motors will inform efforts to construct efficient nanoscale machines. Motors Are Efficient Nanoscale Machines Kinesin Automobile Size 10-8 m 1m 4 x 10-3 m/hr 105 m/hr Speed 4 x 105 lengths/hr 105 lengths/hr Efficiency ~70% ~10% Non-cytoskeletal motors DNA motors: Helicases, Polymerases Rotary motors: Bacterial Flagellum, F1-F0-ATPase Getting in Scale This Fibroblast is about 100 μM in diameter. A single microtubule is 25nm in diameter. You can also see microfilaments and intermediate filaments. Cytoskeleton Microtubules Protofilament Tubulin Heterodimer α β Key Concept: Directionality Microtubule Microfilament Tubulin Actin Track Polarity •Due to ordered arrangement of asymmetric constituent proteins that polymerize in a head-to-tail manner. •Polymerization occurs preferentially at the + end.
    [Show full text]
  • Ligand Sensing Enhances Bacterial Flagellar Motor Output Via Stator
    RESEARCH ARTICLE Ligand sensing enhances bacterial flagellar motor output via stator recruitment Farha Naaz†, Megha Agrawal†, Soumyadeep Chakraborty, Mahesh S Tirumkudulu*, KV Venkatesh* Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India Abstract It is well known that flagellated bacteria, such as Escherichia coli, sense chemicals in their environment by a chemoreceptor and relay the signals via a well-characterized signaling pathway to the flagellar motor. It is widely accepted that the signals change the rotation bias of the motor without influencing the motor speed. Here, we present results to the contrary and show that the bacteria is also capable of modulating motor speed on merely sensing a ligand. Step changes in concentration of non-metabolizable ligand cause temporary recruitment of stator units leading to a momentary increase in motor speeds. For metabolizable ligand, the combined effect of sensing and metabolism leads to higher motor speeds for longer durations. Experiments performed with mutant strains delineate the role of metabolism and sensing in the modulation of motor speed and show how speed changes along with changes in bias can significantly enhance response to changes in its environment. *For correspondence: [email protected] (MST); Introduction [email protected] (KVV) It is well known that bacteria can execute a net directed migration in response to external chemical †These authors contributed cues, a phenomenon termed chemotaxis (Adler, 1966; Berg, 1975). One of the most commonly equally to this work studied bacteria for understanding chemotaxis is Escherichia coli (Wadhams and Armitage, 2004). On sensing a ligand, these bacteria transmit the signal from the environment via a well-characterized Competing interests: The signaling pathway to reversible flagellar motors that drive extended helical appendages called fla- authors declare that no gella thereby achieving locomotion (Adler, 1969; Berg, 2004).
    [Show full text]