PHARMACOGENOMICS Know Your GPCR Mutations (And Target Them Right)

Total Page:16

File Type:pdf, Size:1020Kb

PHARMACOGENOMICS Know Your GPCR Mutations (And Target Them Right) RESEARCH HIGHLIGHTS Nature Reviews Drug Discovery | Published online 1 Feb 2018; doi:10.1038/nrd.2018.13 mangsaab/iStock/Getty Images Plus PHARMACOGENOMICS Know your GPCR mutations (and target them right) Natural human genetic variations may within known functional sites, such MOR. Given the huge number of cause patients to respond differently as ligand binding, effector binding or drugs targeting the MOR that are to the same medication. Therefore, post-translational modification sites. prescribed, if even a small fraction understanding genetic variation in To explore the functional are ineffective or cause adverse drug targets can maximize efficacy implications of such mutations, the reactions, the economic burden and reduce side effects. In a new study, authors then experimentally analysed may be considerable. a team led by M. Madan Babu the impact of three MVs near the However, “as it stands, no receptor present a comprehensive analysis of ligand-binding pocket of the μ-opioid variants are included in the labelling G protein-coupled receptor (GPCR) receptor (MOR) on G protein activa- information of any GPCR drug genetic variants and find that GPCRs tion by the endogenous agonist endo- target by any regulatory agency,” says targeted by marketed drugs show morphine 1, morphine (full agonist), Alexander Hauser, first author of this genetic variation within functional buprenorphine (partial agonist) and study. “This is likely going to change regions such as drug-binding sites. naloxone (antagonist). Whereas one with increased sequencing efforts, GPCRs mediate the therapeutic variant (M153V) resulted in partial bigger cohorts and better character- effects of more than 30% of FDA- LoF and reduced the response to both ization of the variants”. Along with approved drugs. To assess how much full agonists and the partial agonist, the study, the authors also present an Looking variability is found among human another variant (K235N3) showed online resource of GPCR genetic across 108 GPCRs that are targeted by marketed increased efficacy and potency of variants (gpcrdb.org), which they GPCRs, the drugs, the authors investigated buprenorphine compared with the plan to update with new genome authors found data from the exome aggregation wild-type receptor. Another variant, data sets as well as orthogonal data consortium (ExAC), which contains V302I, showed gain-of-function types. “There is still a lot to under- over 14,000 information on missense variations effects with increased potencies of stand before we can fully embark on variants, with (MVs), loss-of-function variations full agonists and increased efficacy personalized medicine for GPCR- any individual (LoFs), and deletions and dupli- of the partial agonist. This variant targeted drugs. However, we think cations (copy number variations; maintained G protein signalling when the time is right to make a start”, receptor CNVs) from 60,000 individuals. treated with the antagonist naloxone. concludes M. Madan Babu. having an Looking across 108 GPCRs, the This finding indicates that naloxone, M. Teresa Villanueva average of authors found more than 14,000 which is used to treat opioid over- variants, with any individual receptor dose, may exhibit poor efficacy in ORIGINAL ARTICLE Hauser, A. S. et al. 4 common Pharmacogenomics of GPCR drug targets. Cell having an average of 4 common and patients with this variant receptor. 172, 41–54 (2017) and 128 rare 128 rare variations. They analysed The authors also considered the FURTHER READING Hauser, A. S. et al. Trends in variations each of the MVs and found that 2,036 possible economic impact of the GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017) mutations in the 108 receptors fall observed genetic variability in the NATURE REVIEWS | DRUG DISCOVERY www.nature.com/nrd ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. .
Recommended publications
  • Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
    Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications,
    [Show full text]
  • An Update on ABCB1 Pharmacogenetics
    The Pharmacogenomics Journal (2011) 11, 315–325 & 2011 Macmillan Publishers Limited. All rights reserved 1470-269X/11 www.nature.com/tpj REVIEW An update on ABCB1 pharmacogenetics: insights from a 3D model into the location and evolutionary conservation of residues corresponding to SNPs associated with drug pharmacokinetics SJ Wolf1,6, M Bachtiar1,6, The human ABCB1 protein, (P-glycoprotein or MDR1) is a membrane-bound 1 2 3 glycoprotein that harnesses the energy of ATP hydrolysis to drive the J Wang , TS Sim , SS Chong unidirectional transport of substrates from the cytoplasm to the extracellular 1,4,5 and CGL Lee space. As a large range of therapeutic agents are known substrates of ABCB1 protein, its role in the onset of multidrug resistance has been the focus of 1Department of Biochemistry, Yong Loo Lin School of Medicine, National University of much research. This role has been of particular interest in the field of Singapore, Singapore, Singapore; 2Department pharmacogenomics where genetic variation within the ABCB1 gene, of Microbiology, Yong Loo Lin School of Medicine, particularly in the form of single nucleotide polymorphisms (SNPs), is National University of Singapore, Singapore, believed to contribute to inter-individual variation in ABCB1 function and Singapore; 3Department of Pediatrics, Yong Loo Lin School of Medicine, National University of drug response. In this review we provide an update on the influence of Singapore, Singapore, Singapore; 4Division of coding region SNPs within the ABCB1 gene on drug pharmacokinetics. By Medical Sciences, National Cancer Centre, utilizing the crystal structure of the mouse ABCB1 homolog (Abcb1a), which Singapore, Singapore and 5Duke-NUS Graduate is 87% homologous to the human sequence, we accompany this discussion Medical School, Singapore, Singapore with a graphical representation of residue location for amino acids Correspondence: corresponding to human ABCB1 coding region SNPs.
    [Show full text]
  • Principle of Pharmacodynamics
    Principle of pharmacodynamics Dr. M. Emamghoreishi Full Professor Department of Pharmacology Medical School Shiraz University of Medical Sciences Email:[email protected] Reference: Basic & Clinical Pharmacology: Bertrum G. Katzung and Anthony J. Treveror, 13th edition, 2015, chapter 20, p. 336-351 Learning Objectives: At the end of sessions, students should be able to: 1. Define pharmacology and explain its importance for a clinician. 2. Define ―drug receptor‖. 3. Explain the nature of drug receptors. 4. Describe other sites of drug actions. 5. Explain the drug-receptor interaction. 6. Define the terms ―affinity‖, ―intrinsic activity‖ and ―Kd‖. 7. Explain the terms ―agonist‖ and ―antagonist‖ and their different types. 8. Explain chemical and physiological antagonists. 9. Explain the differences in drug responsiveness. 10. Explain tolerance, tachyphylaxis, and overshoot. 11. Define different dose-response curves. 12. Explain the information that can be obtained from a graded dose-response curve. 13. Describe the potency and efficacy of drugs. 14. Explain shift of dose-response curves in the presence of competitive and irreversible antagonists and its importance in clinical application of antagonists. 15. Explain the information that can be obtained from a quantal dose-response curve. 16. Define the terms ED50, TD50, LD50, therapeutic index and certain safety factor. What is Pharmacology?It is defined as the study of drugs (substances used to prevent, diagnose, and treat disease). Pharmacology is the science that deals with the interactions betweena drug and the bodyor living systems. The interactions between a drug and the body are conveniently divided into two classes. The actions of the drug on the body are termed pharmacodynamicprocesses.These properties determine the group in which the drug is classified, and they play the major role in deciding whether that group is appropriate therapy for a particular symptom or disease.
    [Show full text]
  • Pharmacodynamics Drug Receptor Interactions Part-2
    Pharmacodynamics: (Drug Receptor Interactions, Part 2) ………………………………………………………………………………………………………………………………………………………………………………………………………………… VPT: Unit I; Lecture-22 (Dated 03.12.2020) Dr. Nirbhay Kumar Asstt. Professor & Head Deptt. of Veterinary Pharmacology & Toxicology Bihar Veterinary College, Bihar Animal Sciences University, Patna Drug Receptor Interactions Agonist It is a drug that possesses affinity for a particular receptor and causes a change in the receptor that result in an observable effect. Full agonist: Produces a maximal response by occupying all or a fraction of receptors. (Affinity=1, Efficacy=1) Partial agonist: Produces less than a maximal response even when the drug occupies all of the receptors. (Affinity=1, Efficacy= 0 to 1) Inverse agonist: Activates a receptor to produce an effect in the opposite direction to that of the well recognized agonist. (Affinity=1, Efficacy= –1 to 0). Source: Rang & Dale’s Pharmacology, Elsevier Source: Good & Gilman’s The Pharmacological Basis of Therapeutics, 13th Edn. Antagonist An antagonist is a drug that blocks the response produced by an agonist. Antagonists interact with the receptor or other components of the effector mechanism, but antagonists are devoid of intrinsic activity (Affinity=1, Efficacy=0). Antagonist contd… Competitive Antagonism: It is completely reversible; an increase in the concentration of the agonist in the bio-phase will overcome the effect of the antagonist. Example: Atropine (Antimuscarinic agent) Diphenhydramine (H1 receptor blocker) Non-competitive antagonism: The agonist has no influence upon the degree of antagonism or its reversibility. Example: Platelet inhibiting action of aspirin (The thromboxane synthase enzyme of platelets is irreversibly inhibited by aspirin, a process that is reversed only by production of new platelets).
    [Show full text]
  • Measuring Ligand Efficacy at the Mu- Opioid Receptor Using A
    RESEARCH ARTICLE Measuring ligand efficacy at the mu- opioid receptor using a conformational biosensor Kathryn E Livingston1,2, Jacob P Mahoney1,2, Aashish Manglik3, Roger K Sunahara4, John R Traynor1,2* 1Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States; 2Edward F Domino Research Center, University of Michigan, Ann Arbor, United States; 3Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, United States; 4Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, United States Abstract The intrinsic efficacy of orthosteric ligands acting at G-protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here, we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (m-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to m- OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of m-OR. We further show that positive allosteric modulators of m-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell- free, signal transduction-independent and is generally applicable to GPCRs. DOI: https://doi.org/10.7554/eLife.32499.001 *For correspondence: [email protected] Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • The Ethical, Legal and Social Implications of Pharmacogenomics in Developing Countries
    The Ethical, Legal and Social Implications of Pharmacogenomics in Developing Countries Report of an International Group of Experts Human Genetics Chronic Diseases and Health Promotion WHO Library CataloguinginPublication Data The ethical, legal and social implications of pharmacogenomics in developing countries : report of an international group of experts. "Preparation of this report was undertaken by Human Genetics, headed by Victor Boulyjenkov. Cathy Schapper (Monash University) had principal responsibility for researching, writing and editing the report ..."Acknowledgements. 1.Pharmacogenetics ethics. 2.Pharmacogenetics legislation. 3.Ethics, Pharmacy. 4.Patient rights. 5.Socioeconomic factors. 6.Legislation, Drug. 7.Developing countries. I.Boulyjenkov, Victor. II.Schapper, Cathy. III.World Health Organization. ISBN 978 92 4 159546 9 (NLM classification: QV 38) © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.
    [Show full text]
  • Pharmacogenomics to Predict Tumor Therapy Response: a Focus on ATP-Binding Cassette Transporters and Cytochromes P450
    Journal of Personalized Medicine Review Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450 Viktor Hlaváˇc 1,2,* , Petr Holý 1,2,3 and Pavel Souˇcek 1,2 1 Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; [email protected] (P.H.); [email protected] (P.S.) 2 Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic 3 Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-267082681; Fax: +420-267311236 Received: 31 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: Pharmacogenomics is an evolving tool of precision medicine. Recently,due to the introduction of next-generation sequencing and projects generating “Big Data”, a plethora of new genetic variants in pharmacogenes have been discovered. Cancer resistance is a major complication often preventing successful anticancer treatments. Pharmacogenomics of both somatic mutations in tumor cells and germline variants may help optimize targeted treatments and improve the response to conventional oncological therapy. In addition, integrative approaches combining copy number variations and long noncoding RNA profiling with germline and somatic variations seem to be a promising approach as well. In pharmacology, expression and enzyme activity are traditionally the more studied aspects of ATP-binding cassette transporters and cytochromes P450. In this review, we briefly introduce the field of pharmacogenomics and the advancements driven by next-generation sequencing and outline the possible roles of genetic variation in the two large pharmacogene superfamilies.
    [Show full text]
  • Response Vs. Log [L] - Full Agonist
    DavidsonX – D001x – Medicinal Chemistry Chapter 5 – Receptors Part 2 – Ligands Video Clip – Ligand Types Ligands can have different effects on a receptor. Each type of ligand can be readily classified according to its behavior. A type of ligand is the full agonist. The term agonist refers to a compound that binds a receptor and elicits a response (E). Full agonists elicit the same level of full response (E = Emax = 100%) as the endogenous ligand of the receptor. Graphically, a receptor-ligand interaction is plotted as response (E/Emax) vs. log [L]. The relationship is sigmoidal. A full agonist approaches full response (E/Emax = 1.0) as log [L] reaches relatively high levels. response vs. log [L] - full agonist 1 0.9 0.8 0.7 x a 0.6 m E 0.5 / E 0.4 0.3 0.2 0.1 0 log [L] Two ligands can achieve a full response without being equivalent. Ligands can differ with respect to the concentration required to trigger a response. A ligand that affects a response at a lower concentration has a higher potency. Potencies are measured as the effective ligand concentration required to reach a 50% response – EC50 or, in these graphs, log [EC50]. A more potent ligand has a lower EC50 value. full agonist comparison 1 0.9 full agonist 1 0.8 (more potent) full agonist 2 0.7 (less potent) x a 0.6 log EC m 50 E 0.5 / E 0.4 0.3 log EC 0.2 50 0.1 0 log [L] Partial agonists also cause a response, but they cannot reach the same, 100% response level of the endogenous ligand.
    [Show full text]
  • Pharmacogenomics: the Promise of Personalized Medicine for CNS Disorders
    Neuropsychopharmacology REVIEWS (2009) 34, 159–172 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $30.00 REVIEW ............................................................................................................................................................... www.neuropsychopharmacology.org 159 Pharmacogenomics: The Promise of Personalized Medicine for CNS Disorders Jose de Leon*,1,2,3,4 1 2 Mental Health Research Center, Eastern State Hospital, University of Kentucky, Lexington, KY, USA; College of Medicine, 3 4 University of Kentucky, Lexington, KY, USA; College of Pharmacy, University of Kentucky, Lexington, KY, USA; Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, Medical School, University of Granada, Granada, Spain This review focuses first on the concept of pharmacogenomics and its related concepts (biomarkers and personalized prescription). Next, the first generation of five DNA pharmacogenomic tests used in the clinical practice of psychiatry is briefly reviewed. Then the possible involvement of these pharmacogenomic tests in the exploration of early clinical proof of mechanism is described by using two of the tests and one example from the pharmaceutical industry (iloperidone clinical trials). The initial attempts to use other microarray tests (measuring RNA expression) as peripheral biomarkers for CNS disorders are briefly described. Then the challenge of taking pharmacogenomic tests (compared to drugs) into clinical practice is explained by focusing on regulatory
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Volume C, Module 2 Opioids: Basics of Addiction; Treatment with Agonists, Partial Agonists, and Antagonists
    VolumeVolume C,C, ModuleModule 22 Opioids:Opioids: BasicsBasics ofof Addiction;Addiction; TreatmentTreatment withwith Agonists,Agonists, PartialPartial Agonists,Agonists, andand AntagonistsAntagonists Treatnet Training Volume C: Module 2 – Updated 18 October 2007 ModuleModule 2:2: TrainingTraining goalsgoals ToTo describedescribe the:the: ¾ KeyKey componentscomponents ofof opiateopiate addictionaddiction andand itsits medicalmedical // psychiatricpsychiatric consequencesconsequences ¾ BenefitsBenefits andand limitationslimitations ofof methadonemethadone asas aa pharmacotherapypharmacotherapy forfor opiateopiate dependencedependence ¾ BenefitsBenefits andand limitationslimitations ofof buprenorphinebuprenorphine asas aa pharmacotherapypharmacotherapy forfor opiateopiate dependencedependence ¾ BenefitsBenefits andand limitationslimitations ofof narcoticnarcotic antagonistsantagonists forfor overdoseoverdose (naloxone)(naloxone) andand relapserelapse preventionprevention (naltrexone)(naltrexone) forfor opiateopiate dependencedependence ModuleModule 2:2: WorkshopsWorkshops WorkshopWorkshop 1:1: Opiates:Opiates: WhatWhat theythey are,are, problemsproblems associatedassociated withwith theirtheir use,use, andand medicalmedical treatmenttreatment implicationsimplications WorkshopWorkshop 2:2: OpiateOpiate addictionaddiction treatmenttreatment withwith methadonemethadone WorkshopWorkshop 3:3: OpiateOpiate addictionaddiction treatmenttreatment withwith buprenorphinebuprenorphine WorkshopWorkshop 4:4: OpiateOpiate AntagonistAntagonist Treatment:Treatment:
    [Show full text]
  • Pharmacogenomics—Is There a Role in Antibiotic Therapy?
    Pharmacogenomics—a role in antibiotic therapy? DB Davison et al 14 sist over long periods of time, and they there are inborn cohesive forces 1 Pinker S. How the Mind Works. WW Nor- cannot grow except by recruitment. which cause the different individ- ton & Company: New York, London, 1997, pp 1–528. In short, populations differ from uals within a population to coop- 2 Wynne Edwards WC. Evolution through each other because many of their erate sufficiently for the popu- group selection. Blackwell: Oxford, 1986. members tend to carry different lation to function as one 3 Wilson DS. Proc Nat Acad Sci USA 1975; 72: mutants; furthermore, it is the non- evolutionary unit. 143–146. 4 Wilson DS. Science 1997; 276: 1816–1817. uniformity of the individual members (2) As a second requirement, there 5 Wilson DS, Sober E. J Theor Biol 1989; 136: of a population which helps a popu- must be effective evolutionary dif- 337–356. lation to function as an effective ferences between individuals 6 Rice SH. J Theor Biol 1995; 177: 237–245. entity, and thereby to allow evolution- which at the same time make 7 Crognier E. Ann Hum Biol 2000; 27: 221– 237. ary competition. The situation is anal- every population different from 8 Michod RE, Roze D. Heredity 2001; 86:1–7. ogous to that of a complex organism other populations. The existence 9 Hamilton WD. J Theor Biol 1964; 7:1–52. which has different cells, but they col- of mutations assures the occur- 10 Maynard Smith J. Evolutionary Genetics (2nd laborate and form a living unit.
    [Show full text]