Amine Oxidase Copper-Containing 3 (AOC3) Inhibition: a Potential Novel

Total Page:16

File Type:pdf, Size:1020Kb

Amine Oxidase Copper-Containing 3 (AOC3) Inhibition: a Potential Novel Boyer et al. Int J Retin Vitr (2021) 7:30 https://doi.org/10.1186/s40942-021-00288-7 International Journal of Retina and Vitreous REVIEW Open Access Amine oxidase copper-containing 3 (AOC3) inhibition: a potential novel target for the management of diabetic retinopathy David S. Boyer1, Joerg F. Rippmann2, Michael S. Ehrlich3, Remko A. Bakker2, Victor Chong4 and Quan Dong Nguyen5* Abstract Background: Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of visual impairment in people aged 20–65 years and can go undetected until vision is irreversibly lost. There is a need for treatments for non-proliferative diabetic retinopathy (NPDR) which, in comparison with current intravitreal (IVT) injec- tions, ofer an improved risk–beneft ratio and are suitable for the treatment of early stages of disease, during which there is no major visual impairment. Efcacious systemic therapy for NPDR, including oral treatment, would be an important and convenient therapeutic approach for patients and physicians and would reduce treatment burden. In this article, we review the rationale for the investigation of amine oxidase copper-containing 3 (AOC3), also known as semicarbazide-sensitive amine oxidase and vascular adhesion protein 1 (VAP1), as a novel target for the early treat- ment of moderate to severe NPDR. AOC3 is a membrane-bound adhesion protein that facilitates the binding of leuko- cytes to the retinal endothelium. Adherent leukocytes reduce blood fow and in turn rupture blood vessels, leading to ischemia and edema. AOC3 inhibition reduces leukocyte recruitment and is predicted to decrease the production of reactive oxygen species, thereby correcting the underlying hypoxia, ischemia, and edema seen in DR, as well as improving vascular function. Conclusion: There is substantial unmet need for convenient, non-invasive treatments targeting moderately severe and severe NPDR to reduce progression and preserve vision. The existing pharmacotherapies (IVT corticosteroids and IVT anti-vascular endothelial growth factor-A) target infammation and angiogenesis, respectively. Unlike these treatments, AOC3 inhibition is predicted to address the underlying hypoxia and ischemia seen in DR. AOC3 inhibitors represent a promising therapeutic strategy for treating patients with DR and could ofer greater choice and reduce treatment burden, with the potential to improve patient compliance. Keywords: Amine oxidase copper-containing 3, Semicarbazide-sensitive amine oxidase, Vascular adhesion protein 1, Non-proliferative diabetic retinopathy Background eyes, but may be asymptomatic during its early stages [1, Diabetic retinopathy (DR) is a highly specifc neurovas- 2]. As the disease progresses, an individual’s vision may cular complication afecting patients with type 1 and type become blurred and their visual feld restricted [2]. Ulti- 2 diabetes mellitus (DM) [1]. DR frequently afects both mately, DR can progress to sight-threatening stages, the leading cause of new blindness among people of work- ing age in developed countries [1]. Both tissue injury and *Correspondence: [email protected] 5 Byers Eye Institute, Stanford University, Palo Alto, CA, USA vascular events contribute to vision loss in DR [1, 3], and Full list of author information is available at the end of the article © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Boyer et al. Int J Retin Vitr (2021) 7:30 Page 2 of 12 neurodegeneration due to diabetes itself is an early event NPDR and 36% with moderately severe NPDR in the in the pathogenesis of DR [4]. untreated control group developed vision-threatening Increased vascular permeability and/or capillary non- events, compared with 15% of patients with severe NPDR perfusion in DR leads to diabetic macular edema (DME) and 8–10% of patients with moderately severe NPDR in and macular ischemia, impairing the individual’s central the groups given intravitreal (IVT) treatment with the vision [3, 5]. However, while the pathophysiology of DME vascular endothelial growth factor A (VEGF-A) inhibi- and DR are highly interconnected, they may also develop tor afibercept [18]. Treatment delays in patients who independently [6]. Pre-retinal or vitreous hemorrhage received a sham control before crossing over to ranibi- stemming from angiogenesis is associated with damage zumab in the extension phase of the RISE and RIDE stud- to retinal neurons in the proliferative phase [3]. Moreo- ies also gained fewer ETDRS letters in best-corrected ver, vitreous contraction creates retinal distortion and visual acuity score at Month 36 compared with baseline tractional detachments, which can be severe and irre- versus those who received ranibizumab throughout the versible [1, 3]. studies [19]. Although the optimization of glycemic control, blood Direct ophthalmic treatment options for NPDR are pressure, and serum lipid control is recommended to limited to pan-retinal photocoagulation (PRP), IVT cor- slow the progression of DR and decrease the risk of vision ticosteroids, and IVT VEGF inhibitors. A Cochrane loss, many patients still develop proliferative diabetic database systematic review of four trials of PRP and one retinopathy (PDR) [1]. While blindness in DR is largely trial of selective photocoagulation of non‐perfusion areas preventable and moderate ocular abnormalities may concluded that laser photocoagulation is benefcial for even be reversible with systemic control (HbA1c) [7], PDR, but the authors noted the paucity of high-quality treatment for DR is not usually administered until vision evidence confrming this conclusion [20]. However, the loss becomes apparent. Unfortunately, in the USA, only recent Diabetic Retinopathy Clinical Research Network around 35–60% of patients with DM receive adequate (DRCR.net) Protocol S study showed that more patients DR screening [8, 9], and only 30–49% obtain appropriate with PDR treated with PRP had vitreous hemorrhages follow-up care [10]. International guidelines advise that compared with patients receiving ranibizumab [21]. non-proliferative diabetic retinopathy (NPDR) should Tere is some evidence to show that PRP may reduce vis- not be treated unless clinically signifcant macular edema ual acuity in severe NPDR [22], and a systematic review is present [11]. PDR is characterized by pathologic vit- and economic evaluation found insufcient evidence to reoretinal neovascularization, while NPDR comprises recommend PRP in this patient group [23]. PRP sessions hallmark features of intraretinal hemorrhages, microa- are uncomfortable and macular edema may develop or neurysms, lipid exudates, and capillary nonperfusion [12, worsen after treatment [23, 24]. In addition, patients who 13]. DR severity is frequently graded in clinical studies undergo PRP treatment may experience a constricted vis- using the Diabetic Retinopathy Severity Scale (DRSS); ual feld, reduced night vision, and macular or lens dam- DRSS is derived from the ETDRS (Early Treatment Dia- age [24]. betic Retinopathy Study) and classifes mild, moderate, IVT implants of corticosteroids are licensed for the moderately severe, and severe NPDR as levels 35, 43, 47, treatment of DME, but their use in DR remains limited as and 53, respectively [14, 15] (Table 1). it may be associated with an increase in intraocular pres- sure and cataract development or worsening [25–29]. Current treatment options for moderately severe Te VEGF inhibitors ranibizumab and afibercept and severe NPDR are approved by the US Food and Drug Administration While most patients with moderately severe or severe (FDA) for the treatment of DR [30], and bevacizumab is NPDR (DRSS level 47–53) do not receive treatment, widely used of-label for DME [25]. Brolucizumab, which these are not benign conditions and therapeutic inter- is FDA approved for neovascular age-related macular vention before the development of PDR, vitreous hem- degeneration [31], is also under investigation in PDR orrhage, or DME could reduce visual loss. Te early and DME [32, 33]. IVT VEGF inhibitor injections are detection of moderately severe to severe NPDR is espe- invasive, expensive, and can be inconvenient to patients cially important as the risk of vision loss increases with and their caregivers; at times, it may be necessary to disease progression. Te risk of developing early PDR treat each eye at a separate visit, thereby doubling treat- after 1 year is 26.3% and 50.2% in patients with DRSS lev- ment, travel, and recovery times, all of which contrib- els of 47 and 53, respectively [16]. Tus, regular screen- ute to patient, caregiver, and healthcare system burden ing can help to identify those patients at high risk of rapid [34, 35]. In addition, VEGF inhibitors do not improve progression who would beneft from treatment [1]. In the ischemia or infammation, do not provide neuroprotec- Phase 3 PANORAMA trial, 53% of patients with severe tion, and continued VEGF inhibitor treatment is required Boyer et al. Int J Retin Vitr (2021) 7:30 Page 3 of 12 to sustain any beneft to ischemia-related diabetic reti- approach for patients and physicians, and would reduce nal dysfunction [35–38]. Furthermore, not all patients the treatment burden for patients and their caregivers.
Recommended publications
  • Zinc-Α2-Glycoprotein Is an Inhibitor of Amine Oxidase
    1 Supplemental Fig. 1 and 2 of “ZINC-α2-GLYCOPROTEIN IS AN INHIBITOR OF AMINE 2 OXIDASE COPPER-CONTAINING 3”, Matthias Romauch 3 Plasma enhances AOC3 activity 4 Endogenous plasma amine oxidase activity has previously been described in both human and 5 mouse plasma [1–3]. This activity derives from membrane-bound AOC3 which has been 6 released by metalloprotease activity [4]. A pronounced increase in levels of cleaved AOC3 is 7 observed during diabetes, congestive heart failure and liver cirrhosis [5–7]. Incubating 8 recombinant AOC3 with IEX fractions lacking ZAG (Fig. 4, B) increased amine oxidase 9 activity, which might be due to plasma-derived AOC3 activity or other plasma components. 10 To test this hypothesis, the amine oxidase activity in plasma of wt, AOC3 k.o. and ZAG k.o. 11 mice was measured directly using radioactive benzylamine as substrate. The activity linearly 12 increased with measured plasma volume of wt and ZAG k.o. mice, and the activity could be 13 blocked by the highly selective AOC3 inhibitor LJP1586 (Supplemental Fig. 1, A and B). 14 However, AOC3 activity in AOC3 k.o. plasma does not increase with increasing plasma 15 volume and residual activity cannot be further significantly reduced by adding LJP1586 16 (Supplemental Fig. 1, C). This suggests that AOC3 is the main plasma enzyme responsible for 17 benzylamine deamination, but it does not exclude other amine oxidases that are not sensitive 18 to LJP1586 or that have a higher affinity for other substrates. One such category of enzymes 19 could be the lysyl oxidases, which are also members of the copper amine oxidase family.
    [Show full text]
  • Topical LOX Inhibitor  2 Compounds Phase 2 Ready in 2020
    Investor Presentation Gary Phillips CEO 26 July 2019 For personal use only 1 Forward looking statement This document contains forward-looking statements, including statements concerning Pharmaxis’ future financial position, plans, and the potential of its products and product candidates, which are based on information and assumptions available to Pharmaxis as of the date of this document. Actual results, performance or achievements could be significantly different from those expressed in, or implied by, these forward-looking statements. All statements, other than statements of historical facts, are forward-looking statements. These forward-looking statements are not guarantees or predictions of future results, levels of performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this document. For example, despite our efforts there is no certainty that we will be successful in partnering our LOXL2 program or any of the other products in our pipeline on commercially acceptable terms, in a timely fashion or at all. Except as required by law we undertake no obligation to update these forward-looking statements as a result of new information, future events or otherwise. For personal use only 2 A business model generating a valuable pipeline in fibrotic and inflammatory diseases • Anti fibrosis / oncology drug successfully cleared initial Clinical phase 1 study trials in high
    [Show full text]
  • Increased Vascular Adhesion Protein 1 (VAP-1) Levels Are Associated with Alternative M2 Macrophage Activation and Poor Prognosis for Human Gliomas
    diagnostics Article Increased Vascular Adhesion Protein 1 (VAP-1) Levels Are Associated with Alternative M2 Macrophage Activation and Poor Prognosis for Human Gliomas Shu-Jyuan Chang 1 , Hung-Pin Tu 2, Yen-Chang Clark Lai 3, Chi-Wen Luo 4,5, Takahide Nejo 6, 6 3,7,8, , 9,10, , Shota Tanaka , Chee-Yin Chai * y and Aij-Lie Kwan * y 1 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; [email protected] 2 Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; [email protected] 3 Department of Pathology, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan; [email protected] 4 Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan; [email protected] 5 Department of Surgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan 6 Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; [email protected] (T.N.); [email protected] (S.T.) 7 Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan 8 Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan 9 Department of Neurosurgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan 10 Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan * Correspondence: [email protected] (C.-Y.C.); [email protected] (A.-L.K.); Tel.: +88-6-7312-1101 (ext.
    [Show full text]
  • The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase
    Int. J. Mol. Sci. 2012, 13, 5375-5405; doi:10.3390/ijms13055375 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase Valerie J. Klema and Carrie M. Wilmot * Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-612-624-2406; Fax: +1-612-624-5121. Received: 6 April 2012; in revised form: 22 April 2012 / Accepted: 26 April 2012 / Published: 3 May 2012 Abstract: Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis.
    [Show full text]
  • Effects of an Anti-Inflammatory VAP-1/SSAO Inhibitor, PXS-4728A
    Schilter et al. Respiratory Research (2015) 16:42 DOI 10.1186/s12931-015-0200-z RESEARCH Open Access Effects of an anti-inflammatory VAP-1/SSAO inhibitor, PXS-4728A, on pulmonary neutrophil migration Heidi C Schilter1*†, Adam Collison2†, Remo C Russo3,4†, Jonathan S Foot1, Tin T Yow1, Angelica T Vieira4, Livia D Tavares4, Joerg Mattes2, Mauro M Teixeira4 and Wolfgang Jarolimek1,5 Abstract Background and purpose: The persistent influx of neutrophils into the lung and subsequent tissue damage are characteristics of COPD, cystic fibrosis and acute lung inflammation. VAP-1/SSAO is an endothelial bound adhesion molecule with amine oxidase activity that is reported to be involved in neutrophil egress from the microvasculature during inflammation. This study explored the role of VAP-1/SSAO in neutrophilic lung mediated diseases and examined the therapeutic potential of the selective inhibitor PXS-4728A. Methods: Mice treated with PXS-4728A underwent intra-vital microscopy visualization of the cremaster muscle upon CXCL1/KC stimulation. LPS inflammation, Klebsiella pneumoniae infection, cecal ligation and puncture as well as rhinovirus exacerbated asthma models were also assessed using PXS-4728A. Results: Selective VAP-1/SSAO inhibition by PXS-4728A diminished leukocyte rolling and adherence induced by CXCL1/KC. Inhibition of VAP-1/SSAO also dampened the migration of neutrophils to the lungs in response to LPS, Klebsiella pneumoniae lung infection and CLP induced sepsis; whilst still allowing for normal neutrophil defense function, resulting in increased survival. The functional effects of this inhibition were demonstrated in the RV exacerbated asthma model, with a reduction in cellular infiltrate correlating with a reduction in airways hyperractivity.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Termin Translat Trna Utr Mutat Protein Signal
    Drugs & Chemicals 1: Tumor Suppressor Protein p53 2: Heterogeneous-Nuclear Ribonucleo- (1029) proteins (14) activ apoptosi arf cell express function inactiv induc altern assai associ bind mdm2 mutat p53 p73 pathwai protein regul complex detect exon famili genom respons suppress suppressor tumor wild-typ interact intron isoform nuclear protein sensit site specif splice suggest variant 3: RNA, Transfer (110) 4: DNA Primers (1987) codon contain differ eukaryot gene initi amplifi analysi chain clone detect dna express mrna protein region ribosom rna fragment gene genotyp mutat pcr sequenc site speci suggest synthesi polymorph popul primer reaction region restrict sequenc speci termin translat trna utr 5: Saccharomyces cerevisiae Proteins 6: Apoptosis Regulatory Proteins (291) (733) activ apoptosi apoptosis-induc albican bud candida cerevisia complex encod apoptot bcl-2 caspas caspase-8 cell eukaryot fission function growth interact involv death fasl induc induct ligand methyl necrosi pathwai program sensit surviv trail mutant pomb protein requir saccharomyc strain suggest yeast 7: Plant Proteins (414) 8: Membrane Proteins (1608) access arabidopsi cultivar flower hybrid leaf leav apoptosi cell conserv domain express function gene human identifi inhibitor line maiz plant pollen rice root seed mammalian membran mice mous mutant seedl speci thaliana tomato transgen wheat mutat protein signal suggest transport 1 9: Tumor Suppressor Proteins (815) 10: 1-Phosphatidylinositol 3-Kinase activ arrest cell cycl cyclin damag delet dna (441) 3-kinas activ
    [Show full text]
  • Downloaded 18 July 2014 with a 1% False Discovery Rate (FDR)
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer Permalink https://escholarship.org/uc/item/0t47b9ws Author Spiciarich, David Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Professor Matthew B. Francis Professor Amy E. Herr Fall 2017 Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer © 2017 by David Spiciarich Abstract Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich Doctor of Philosophy in Chemistry University of California, Berkeley Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Changes in glycosylation have long been appreciated to be part of the cancer phenotype; sialylated glycans are found at elevated levels on many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to cell surface sialylation are not well characterized, specifically in bona fide human cancer. Metabolic and bioorthogonal labeling methods have previously enabled enrichment and identification of sialoglycoproteins from cultured cells and model organisms. The goal of this work was to develop technologies that can be used for detecting changes in glycoproteins in clinical models of human cancer.
    [Show full text]
  • Human AOC3 ELISA Kit (ARG81991)
    Product datasheet [email protected] ARG81991 Package: 96 wells Human AOC3 ELISA Kit Store at: 4°C Component Cat. No. Component Name Package Temp ARG81991-001 Antibody-coated 8 X 12 strips 4°C. Unused strips microplate should be sealed tightly in the air-tight pouch. ARG81991-002 Standard 2 X 50 ng/vial 4°C ARG81991-003 Standard/Sample 30 ml (Ready to use) 4°C diluent ARG81991-004 Antibody conjugate 1 vial (100 µl) 4°C concentrate (100X) ARG81991-005 Antibody diluent 12 ml (Ready to use) 4°C buffer ARG81991-006 HRP-Streptavidin 1 vial (100 µl) 4°C concentrate (100X) ARG81991-007 HRP-Streptavidin 12 ml (Ready to use) 4°C diluent buffer ARG81991-008 25X Wash buffer 20 ml 4°C ARG81991-009 TMB substrate 10 ml (Ready to use) 4°C (Protect from light) ARG81991-010 STOP solution 10 ml (Ready to use) 4°C ARG81991-011 Plate sealer 4 strips Room temperature Summary Product Description ARG81991 Human AOC3 ELISA Kit is an Enzyme Immunoassay kit for the quantification of Human AOC3 in serum, plasma (heparin, EDTA) and cell culture supernatants. Tested Reactivity Hu Tested Application ELISA Specificity There is no detectable cross-reactivity with other relevant proteins. Target Name AOC3 Conjugation HRP Conjugation Note Substrate: TMB and read at 450 nm. Sensitivity 0.39 ng/ml Sample Type Serum, plasma (heparin, EDTA) and cell culture supernatants. Standard Range 0.78 - 50 ng/ml Sample Volume 100 µl www.arigobio.com 1/3 Precision Intra-Assay CV: 5.8%; Inter-Assay CV: 6.6% Alternate Names HPAO; Semicarbazide-sensitive amine oxidase; VAP-1; Vascular adhesion protein 1; Copper amine oxidase; SSAO; Membrane primary amine oxidase; EC 1.4.3.21; VAP1 Application Instructions Assay Time ~ 5 hours Properties Form 96 well Storage instruction Store the kit at 2-8°C.
    [Show full text]
  • Mechanism–Based Inhibitors for Copper Amine Oxidases
    MECHANISM–BASED INHIBITORS FOR COPPER AMINE OXIDASES: SYNTHESIS, MECHANISM, AND ENZYMOLOGY By BO ZHONG Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Thesis Adviser: Dr. Lawrence M. Sayre, Dr Irene Lee Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________ candidate for the ________________________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Table of Contents ............................................................................................................... I List of Tables .................................................................................................................... V List of Figures .................................................................................................................. VI List of Schemes ................................................................................................................ XI Acknowledgements
    [Show full text]
  • Semicarbazide-Sensitive Amine Oxidase and Vascular Complications in Diabetes Mellitus
    ! " # $% &'((% ()*+,- .-. (,/'*,-.-, 0.1,'(, 00.1. 2332 Dissertation for the Degree of Doctor of Philosophy (Faculty of Medicine) in Medical Pharmacology presented at Uppsala University in 2002 ABSTRACT Nordquist, J. 2002. Semicarbazide-sensitive amine oxidase and vascular complications in diabetes mellitus. Biochemical and molecular aspects. Acta Universitatis Upsaliensis. Comprehensive summaries of Uppsala Dissertations from the Faculty of Medicine 1174. 51 pp. Uppsala ISBN 91-554-5375-9. Plasma activity of the enzyme semicarbazide-sensitive amine oxidase (SSAO; EC.1.4.3.6) has been reported to be high in disorders such as diabetes mellitus, chronic congestive heart failure and liver cirrhosis. Little is known of how the activity is regulated and, consequently, the cause for these findings is not well understood. Due to the early occurrence of increased enzyme activity in diabetes, in conjunction with the production of highly cytotoxic substances in SSAO-catalysed reactions, it has been speculated that there could be a causal relationship between high SSAO activity and vascular damage. Aminoacetone and methylamine are the best currently known endogenous substrates for human SSAO and the resulting aldehyde- products are methylglyoxal and formaldehyde, respectively. Both of these aldehydes have been shown to be implicated in the formation of advanced glycation end products (AGEs). This thesis is based on studies exploring the regulation of SSAO activity and its possible involvement in the development of vascular damage. The results further strengthen the connection between high SSAO activity and the occurrence of vascular damage, since type 2 diabetic patients with retinopathy were found to have higher plasma activities of SSAO and lower urinary concentrations of methylamine than patients with uncomplicated diabetes.
    [Show full text]
  • Oxidoreductase Activities in Normal Rat Liver, Tumor-Bearing Rat Liver, and Hepatoma HC-2521
    [CANCER RESEARCH 40, 4677-4681, December 1980] 0008-5472/80/0040-OOOOS02.00 Oxidoreductase Activities in Normal Rat Liver, Tumor-bearing Rat Liver, and Hepatoma HC-2521 Alexander S. Sun and Arthur I. Cederbaum Departments of Neoplastia Diseases [A. S. S.], and Biochemistry [A. I. C.], Mount Sinai School of Medicine City University of New York New York New York 10029 ABSTRACT mitochondria, microsomes, and other oxidases (2, 5, 7, 8, 10, 17, 27), the extent of oxygen toxicity in cells should depend Experiments were carried out to determine if the difference not only on the oxygen concentration in the environment but in rates of cell proliferation between normal and neoplastic also on the level of oxidative enzymes that convert the nontoxic cells may be related to altered levels of oxidative enzymes. oxygen to toxic oxygen radicals. If oxygen indeed contributes Assays were performed using homogenates from hepatocellu- to the control of cell proliferation in normal cells, differences in lar carcinoma HC-252, a rapidly growing and moderately well- these oxidase activities between rapidly proliferating "immor differentiated tumor; from normal liver; and from the liver of the tal" neoplastic cells and nonproliferating or slowly proliferating tumor-bearing ACI rat. Results of the mitochondrial enzymes normal cells may be expected. indicated that the activities of cytochrome oxidase and succi- The object of this report is to examine the activities of several nate dehydrogenase were 3-fold lower in tumor homogenates enzymes which are involved in pathways of oxygen utilization than in liver homogenates. Monoamine oxidase activity could in normal and neoplastic cells.
    [Show full text]