Role and Advantageousness of Ketamine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effect of Morphine-Lidocaine-Ketamine
THE EFFECT OF MORPHINE-LIDOCAINE-KETAMINE- DEXMEDETOMIDINE CO-INFUSION ON MINIMUM ALVEOLAR CONCENTRATION OF ISOFLURANE IN DOGS Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Graduate School of The Ohio State University By Lisa Michelle Sams, D.V.M. Graduate Program in Comparative and Veterinary Medicine The Ohio State University 2011 Thesis Committee: Dr. Phillip Lerche, Advisor Dr. Richard M. Bednarski Dr. John A.E. Hubbell Copyright by Lisa Michelle Sams 2011 ABSTRACT The purpose of this study was to determine the effects of an infusion of dexmedetomidine, a co-infusion of morphine-lidocaine-ketamine (MLK), and a co- infusion of dexmedetomidine-morphine-lidocaine-ketamine (alpha-MLK) on minimum alveolar concentration (MAC) of isoflurane in dogs. The MAC of an inhalant anesthetic required to prohibit purposeful movement is a measure of anesthetic potency (Eger et al 1965). Isoflurane is the most commonly used inhalant anesthetic in veterinary practice (Lozano et al 2009), but has potent vasodilatory effects and causes a dose-dependent decrease in mean arterial pressure in anesthetized dogs (Steffey and Howland 1977). Additional drugs are used during anesthesia to decrease the inhalant anesthetic requirement, a concept referred to as balanced anesthesia. Each of the drugs we infused has a different central nervous system receptor mechanism of action. Co-infusion of MLK, as well as the infusion of each drug separately, has been shown to reduce MAC in isoflurane-anesthetized dogs (Muir et al 2003). Dexmedetomidine, an alpha-2 agonist, has been shown to reduce isoflurane MAC in dogs (Pascoe et al 2006). -
Adverse Reactions to Hallucinogenic Drugs. 1Rnstttutton National Test
DOCUMENT RESUME ED 034 696 SE 007 743 AUTROP Meyer, Roger E. , Fd. TITLE Adverse Reactions to Hallucinogenic Drugs. 1rNSTTTUTTON National Test. of Mental Health (DHEW), Bethesda, Md. PUB DATP Sep 67 NOTE 118p.; Conference held at the National Institute of Mental Health, Chevy Chase, Maryland, September 29, 1967 AVATLABLE FROM Superintendent of Documents, Government Printing Office, Washington, D. C. 20402 ($1.25). FDPS PRICE FDPS Price MFc0.50 HC Not Available from EDRS. DESCPTPTOPS Conference Reports, *Drug Abuse, Health Education, *Lysergic Acid Diethylamide, *Medical Research, *Mental Health IDENTIFIEPS Hallucinogenic Drugs ABSTPACT This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different methods of therapy. Data are also presented on the psychological and physiolcgical effects of L.S.D. given as a treatment under controlled medical conditions. Possible genetic effects of L.S.D. and other drugs are discussed on the basis of data from laboratory animals and humans. Also discussed are needs for futher research. The necessity to aviod scare techniques in disseminating information about drugs is emphasized. An aprentlix includes seven background papers reprinted from professional journals, and a bibliography of current articles on the possible genetic effects of drugs. (EB) National Clearinghouse for Mental Health Information VA-w. Alb alb !bAm I.S. MOMS Of NAM MON tMAN IONE Of NMI 105 NUNN NU IN WINES UAWAS RCM NIN 01 NUN N ONMININI 01011110 0. -
ADHD: Substance Abuse
1/13/2012 Overview of Mental Health Medications for Children and Adolescents Module 6 Medications and Drugs of Abuse 1 1967 Now Alcohol Alcohol Marijuana Marijuana Cocaine Cocaine Methamphetamine Crank LSD LSD Rohypnol/GHB Quaaludes Inhalants Glue Ecstasy Designer drugs Prescription drugs 2 ADHD: Substance Abuse Children with untreated ADHD are twice as likely to develop substance abuse by age 18-20 than those who were treated Treatment with stimulants in adolescents with ADHD and comorbid substance abuse improves the ADHD and does not worsen the substance abuse disorder 3 1 1/13/2012 Drug Lingo Resources www.noslang.com www.teenchatterdecoder.com 4 2001 2003 2004 2008 Cocaine 967.6 kg 379.6 1308.1 1016.1 kg kg kg Heroin 15.8 kg 60 kg 39.3 kg 3.3 kg Meth 77.4 kg 88 kg 83.9 kg 65 kg Meth Labs 51 226 261 78 Ecstasy Tablets 52951 8393 5 Cocaine Bulk cocaine transported into state – crack made locally Primary sources – Texas and California Heroin Sources of supply – Chicago, New York and Southwest Purity in GA ranges between 52-65% Greater Hispanic involvement www.dea.gov 6 2 1/13/2012 Drug Use in Georgia Methamphetamine Atlanta, Dalton, Gainesville showing increases as well as southwest and eastern counties Increased availability of ICE in Atlanta area Club drugs MDMA, GHB and ketamine readily available (gyms, college campuses and associated ‘hang outs’ LSD usually around school settings – imported from West Coast by US postal service or express mail Emerging trend – ‘candy tripping’ – combining LSD and MDMA -
Ketamine Homogeneous Enzyme Immunoassay (HEIA™)
Ketamine Homogeneous Enzyme Immunoassay (HEIA™) Exclusively from Immunalysis Formula: C13H16CINO Semi-Quantitative or Qualitative Testing Systematic Name: (RS)- 2- (2- chlorophenyl)- 2- (methylamino)cyclohexanone Accurate and reliable Brand Names: Ketanest®, Ketaset®, Ketalar® Ready to use About Ketamine: Ketamine is an anesthetic agent used in the United States since 1972 for veterinary and pediatric medicine. It is also used in the treatment of depression and postoperative pain management. However, in recent years it has gained popularity as a street drug used at clubs and raves due to its hallucinogenic effects. Administration: Oral; intravenous; intramuscular; insufflation Elimination: Ketamine metabolizes by N-demethylation to Norketamine and further dehydrogenates to Dehydronorketamine. After 72 hours of a single dose, 2.3% of Ketamine is unchanged, 1.6% is Norketamine, 16.2% is Dehydronorketamine, and 80% is hydroxylated derivatives of Ketamine.1,2 Abuse Potential: An overdose can cause unconsciousness and dangerously slowed breathing. 1) R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, Fourth Edition, p. 412-414. 2) K. Moore, J.Skerov, B.Levine, and A.Jacobs, Urine Concentrations of Ketamine and Norketamine Following Illegal Consumption, J.Anal, Toxicol. 25: 583-588 (2001). Ketanest® is a registered trademark of Pfizer, Inc., Ketaset® is a trademark of ZOETIS W LLC., Ketalar® is a trademark of PAR STERILE PRODUCTS, LLC. Tel 909.482.0840 | Toll Free 888.664.8378 | Fax 909.482.0850 ISO13485:2003 www.immunalysis.com CERTIFIED -
Appendix D: Important Facts About Alcohol and Drugs
APPENDICES APPENDIX D. IMPORTANT FACTS ABOUT ALCOHOL AND DRUGS Appendix D outlines important facts about the following substances: $ Alcohol $ Cocaine $ GHB (gamma-hydroxybutyric acid) $ Heroin $ Inhalants $ Ketamine $ LSD (lysergic acid diethylamide) $ Marijuana (Cannabis) $ MDMA (Ecstasy) $ Mescaline (Peyote) $ Methamphetamine $ Over-the-counter Cough/Cold Medicines (Dextromethorphan or DXM) $ PCP (Phencyclidine) $ Prescription Opioids $ Prescription Sedatives (Tranquilizers, Depressants) $ Prescription Stimulants $ Psilocybin $ Rohypnol® (Flunitrazepam) $ Salvia $ Steroids (Anabolic) $ Synthetic Cannabinoids (“K2”/”Spice”) $ Synthetic Cathinones (“Bath Salts”) PAGE | 53 Sources cited in this Appendix are: $ Drug Enforcement Administration’s Drug Facts Sheets1 $ Inhalant Addiction Treatment’s Dangers of Mixing Inhalants with Alcohol and Other Drugs2 $ National Institute on Alcohol Abuse and Alcoholism’s (NIAAA’s) Alcohol’s Effects on the Body3 $ National Institute on Drug Abuse’s (NIDA’s) Commonly Abused Drugs4 $ NIDA’s Treatment for Alcohol Problems: Finding and Getting Help5 $ National Institutes of Health (NIH) National Library of Medicine’s Alcohol Withdrawal6 $ Rohypnol® Abuse Treatment FAQs7 $ Substance Abuse and Mental Health Services Administration’s (SAMHSA’s) Keeping Youth Drug Free8 $ SAMHSA’s Center for Behavioral Health Statistics and Quality’s (CBHSQ’s) Results from the 2015 National Survey on Drug Use and Health: Detailed Tables9 The substances that are considered controlled substances under the Controlled Substances Act (CSA) are divided into five schedules. An updated and complete list of the schedules is published annually in Title 21 Code of Federal Regulations (C.F.R.) §§ 1308.11 through 1308.15.10 Substances are placed in their respective schedules based on whether they have a currently accepted medical use in treatment in the United States, their relative abuse potential, and likelihood of causing dependence when abused. -
A Molecular Phylogeny of the Solanaceae
TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae. -
How to Anesthetize Donkeys for Surgical Procedures in the Field
DRUGS AND ANESTHESIA How to Anesthetize Donkeys for Surgical Procedures in the Field Lori A. Bidwell, DVM, Diplomate ACVA Author’s address: Ross University School of Veterinary Medicine, PO Box 334, St. Kitts, West Indies; e-mail: [email protected]. © 2010 AAEP. 1. Introduction ing a local block where a catheter will be placed and Donkeys are an important part of the work force in making a small skin incision with a surgical blade much of the world. Practitioners working with before placing an intravenous catheter is recom- donkeys in the United States and those participat- mended. Intubation is more difficult because of ing in equitarian initiatives abroad should under- caudal angulation of the larynx, a pharyngeal diver- stand the difference between donkeys and horses in ticulum, excess pharyngeal mucosa, and long paired relation to anesthesia. Although it is tempting to laryngeal saccules. Additionally, nasal intubation 1 treat a donkey like a horse, there are important is complicated by narrow nasal passages. Drug differences in relation to handling and drug doses. metabolism is elevated in donkeys compared with Additionally, it is important to understand alterna- horses, resulting in the use of higher doses and more 2–6 tive anesthetic protocols because a practitioner may frequent dosing intervals. The only known ex- be limited to minimal or alternative drugs when ception to this is the administration of guaifenesin, working in a developing country. which seems to require lower dosing because respi- ratory arrest is easy to achieve when using doses 7 2. Behavior and Physiology appropriate for a horse. A tame donkey can be easy to handle but a feral or minimally handled donkey can be frustrating. -
ARK™ Ketamine Assay Package Insert
The ARK Ketamine Assay provides only a preliminary analytical test result. A more specific alternative chemical method must be used in order to obtain a confirmed positive analytical result. Gas Chromatography/Mass Spectrometry (GC/MS) or Liquid Chromatography/tandem Mass Spectrometry (LC-MS/MS) is the preferred confirmatory method. Clinical consideration and professional judgment should be exercised with any drug test result, particularly when the For Criminal Justice and Forensic Use Only preliminary test result is positive. 3 SUMMARY AND EXPLANATION OF THE TEST Ketamine ((+/-)-2-(2-chlorophenyl)-2-(methylamino)cyclohexanone) is a synthetic, non- RK™ Ketamine Assay barbiturate and rapid-acting general anesthetic that is indicated for use in both human and A veterinary surgical procedures.1,2 This ARK Diagnostics, Inc. package insert for the ARK Ketamine Assay must be read prior to use. Package insert instructions must be followed accordingly. The assay provides a simple Ketamine is a Schedule III substance under the United States Controlled Substances Act for and rapid analytical screening procedure for detecting ketamine in urine. Reliability of the its potential for abuse and risk of dependence. Ketamine is structurally and pharmacologically assay results cannot be guaranteed if there are any deviations from the instructions in this similar to phencyclidine (PCP), but is less potent, has a faster onset and shorter duration of package insert. action relative to PCP. Ketamine produces a variety of symptoms including, but not limited to anxiety, dysphoria, disorientation, insomnia, flashbacks, hallucinations, and psychotic episodes.1,3 CUSTOMER SERVICE Following administration in humans, ketamine is N-demethylated by liver microsomal ARK Diagnostics, Inc. -
3.2.1.2 Lean Pre-Mixed Combustion 3.2.1.2-1 Introduction
3.2.1.2 Lean Pre-Mixed Combustion 3.2.1.2-1 Introduction Gas turbine designers are continually challenged to improve cycle effi ciency while maintaining or reducing emissions. This challenge is made more diffi cult by the fact that these are often confl icting goals. The path to improved effi ciency is higher working fl uid temperatures, but higher temperatures promote NOx formation and at 2,800 F the threshold for thermal NOx formation is reached. Furthermore, reducing available oxygen to reduce NOx can result in higher carbon monoxide (CO) and unburned hydrocarbon emissions due to incomplete combustion. Moreover, increasing fi ring temperatures above 2,350 F represents a signifi cant materials science challenge.1 To achieve lower pollutant emission rates, a variety of pre-formation and post- formation control technologies have been utilized either individually or in combination, including: • Wet controls (water or steam injection) • Dry combustion controls (lean combustion, reduced residence time, lean premixed combustion, and two-stage rich/lean combustion) • Selective catalytic reduction • SCONOX catalytic absorption • Catalytic combustion (e.g. Xonontm ) • Rich Quench Lean Combustors • CO oxidation catalysts This section of the Handbook focuses on Lean Premixed (LPM) combustion, a pre-formation control strategy that has become the standard technique employed by gas turbine original equipment manufacturers (OEM), particularly for natural gas applications. OEMs have developed processes that use air as a diluent to reduce combustion fl ame temperatures and reduce NOx by premixing fuel and air before they enter the combustor. This lean premixed combustion process is referred to by a variety of trade names including General Electric’s and Siemens-Westinghouse’s Dry Low NOx (DLN) processes, Rolls-Royce’s Dry Low Emissions (DLE) process and Solar Turbines’ SoLo NOx process. -
Dextromethorphan and Memantine After Ketamine Analgesia: a Randomized Control Trial
Drug Design, Development and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Dextromethorphan and memantine after ketamine analgesia: a randomized control trial This article was published in the following Dove Press journal: Drug Design, Development and Therapy Elodie Martin,1 Marc Sorel,2 Purpose: Intravenous ketamine is often prescribed in severe neuropathic pain. Oral N- 3 Véronique Morel, Fabienne methyl-D-aspartate receptor (NMDAR) antagonists might prolong pain relief, reducing the 4 4 Marcaillou, Pascale Picard, frequency of ketamine infusions and hospital admissions. This clinical trial aimed at asses- Noémie Delage,4 Florence sing whether oral dextromethorphan or memantine might prolong pain relief after intrave- Tiberghien,5 Marie-Christine 6 6 nous ketamine. Crosmary, Mitra Najjar, Renato Colamarino,6 Christelle Créach,7,8 Patients and methods: A multicenter randomized controlled clinical trial included 60 Béatrice Lietar,7 Géraldine Brumauld patients after ketamine infusion for refractory neuropathic pain. Dextromethorphan (90 mg/ de Montgazon,9 Anne Margot- day), memantine (20 mg/day) or placebo was given for 12 weeks (n=20 each) after ketamine 10 11,12 Duclot, Marie-Anne Loriot, infusion. The primary endpoint was pain intensity at one month. Secondary endpoints 11,12 13 Céline Narjoz, Céline Lambert, included pain, sleep, anxiety, depression, cognitive function and quality of life evaluations 13 1,3 Bruno Pereira, Gisèle Pickering up to 12 weeks. 1Université Clermont Auvergne, Pharmacologie Results: At 1 month, dextromethorphan maintained ketamine pain relief (Numeric Pain Fondamentale Et Clinique de la Douleur, Neuro- Dol, Inserm 1107, F-63000 Clermont-Ferrand, Scale: 4.01±1.87 to 4.05±2.61, p=0.53) and diminished pain paroxysms (p=0.03) while pain France; 2Centre D’evaluation et de Traitement de intensity increased significantly with memantine and placebo (p=0.04). -
FSU ETD Template
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2018 Sex Differences in the Effects of Low- Dose Ketamine in Rats: A Behavioral, Pharmacokinetic and Pharmacodynamic Analysis Samantha K. Saland Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF MEDICINE SEX DIFFERENCES IN THE EFFECTS OF LOW-DOSE KETAMINE IN RATS: A BEHAVIORAL, PHARMACOKINETIC AND PHARMACODYNAMIC ANALYSIS By SAMANTHA K. SALAND A Dissertation submitted to the Department of Biomedical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2018 Samantha Saland defended this dissertation on April 18, 2018. The members of the supervisory committee were: Mohamed Kabbaj Professor Directing Dissertation Thomas Keller University Representative James Olcese Committee Member Branko Stefanovic Committee Member Zuoxin Wang Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii I dedicate this work to my loving husband and to my parents—without their endless encouragement and unconditional support throughout the years, this would not have been possible. iii ACKNOWLEDGEMENTS I would like to acknowledge all those in the Department of Biomedical Sciences here at Florida State University who have made it possible for me to succeed, not only through financial and research support, but by providing an environment of opportunity, understanding and encouragement time and again during my time in the graduate program. I would also like to express my gratitude to my committee members for their continued guidance and support throughout all these years—thank you for challenging me and expanding my continuous search for knowledge. -
State of Texas Drug Use Patterns and Trends, 2019
State of Texas Drug Use Patterns and Trends, 2019 Jane Carlisle Maxwell, Ph.D. Addiction Research Institute Highlights • Methamphetamine is the top drug threat reported by the three DEA Field Divisions that cover Texas. • Methamphetamine and cocaine problems continue to increase, with no FDA-approved Medication Assisted Treatment (MAT) available • The Texas Prescription Monitoring Program (PMP) and overdose prevention programs have led to decreases in the number of other opiate, synthetic narcotic, and benzodiazepine drugs prescribed. The Texas PMP was moved from the state law enforcement agency to the pharmacy board in 2016. • Heroin indicators are mixed. Since fentanyl cannot be easily mixed with gummy black tar heroin, the combination has not resulted in the number of deaths with heroin and fentanyl as in the Northeast. Fentanyl remains a concern about deaths involving other drugs, including speedballs. The number of tramadol pills identified in toxicological laboratories continue to rise. • In the past, cannabis indicators had involved monitoring the quantity and quality of the drug imported from Mexico. Now, cannabis indicators focus on effects of CBD oils, edibles, and other products brought in from states where they are legal. • The State’s response to the opioid epidemic has resulted in additional outreach and training to prevent overdoses, but changes in use patterns will require monitoring. Of the drugs used in Medication Assisted Treatment in Texas, the amount of methadone dosage per 100,000 used has dropped while the amount of buprenorphine has increased, although there is increased need for MAT. 1 Introduction Texas in 2018 has 254 counties and a population of 28,304,596, with 42% White, 39% Hispanic, and 13% Black.