Spatial Distribution of Epibionts on Olive Ridley Sea Turtles at Playa Ostional, Costa Rica

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Distribution of Epibionts on Olive Ridley Sea Turtles at Playa Ostional, Costa Rica bioRxiv preprint doi: https://doi.org/10.1101/669523; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 1 Full Title: Spatial distribution of epibionts on olive ridley sea turtles at Playa Ostional, Costa Rica 2 3 Nathan J. Robinson1,2,*, Emily Lazo-Wasem3, Brett O. Butler4, Eric A. Lazo-Wasem5, John D. Zardus6, 4 Theodora Pinou7 5 6 1The Leatherback Trust, Goldring-Gund Marine Biology Station, Playa Grande, Guanacaste, Costa 7 Rica 8 2Cape Eleuthera Institute, The Cape Eleuthera Island School, Cape Eleuthera, Eleuthera, The 9 Bahamas 10 3Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, U.S.A 11 4Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, Universidad Nacional Autónoma de 12 México, A.P. 70¬–399, Ciudad de México CP 04510, México 13 5Division of Invertebrate Zoology, Peabody Museum of Natural History, Yale University, New Haven, 14 Connecticut, U.S.A 15 6Department of Biology, The Citadel, Charleston, South Carolina, U.S.A 16 7Department of Biological and Environmental Sciences, Western Connecticut State University, 17 Danbury, Connecticut, U.S.A 18 *Corresponding author: [email protected] 19 20 Short title: Spatial distribution of epibionts on sea turtles bioRxiv preprint doi: https://doi.org/10.1101/669523; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 2 21 ABSTRACT 22 There is a wealth of published information on the epibiont communities of sea turtles, yet many of 23 these studies have exclusively sampled epibionts found only on the carapace. Considering that 24 epibionts may be found on almost all body-surfaces and that it is highly plausible to expect different 25 regions of the body to host distinct epibiont taxa, there is a need for quantitative comparative 26 studies to investigate spatial variation in the epibiont communities of turtles. To achieve this, we 27 measured how total epibiont abundance and biomass on olive ridley turtles Lepidochelys olivacea 28 varies among four body-areas of the hosts (n = 30). We show that epibiont loads on olive ridleys are 29 higher, both in terms of number and biomass, on the skin than they are on the carapace or plastron. 30 This contrasts with previous findings for other hard-shelled sea turtles, where epibionts are usually 31 more abundant on the carapace. Moreover, the arguably most ubiquitous epibiont taxon for other 32 hard-shelled sea turtles, the barnacle Chelonibia spp., only occurs in relatively low numbers on olive 33 ridleys, while the barnacles Stomatolepas elegans and Platylepas hexastylos are far more abundant. 34 We postulate that these differences between the epibiont communities of different sea turtle taxa 35 could indicate that the carapaces of olive ridley turtles provide a more challenging substratum for 36 epibionts than do the hard shells of other sea turtles. In addition, we conclude that it is important to 37 conduct full body surveys when attempting to produce a holistic qualitative or quantitative 38 characterization of the epibiont communities of sea turtles. 39 40 KEYWORDS 41 Epibiosis, Lepidochelys olivacea, East Tropical Pacific, arribada, barnacles, turtle-scape, settlement 42 substratum, site selection 43 44 INTRODUCTION 45 In the marine environment, almost any non-toxic, non-protected surface will eventually be colonized 46 by an array of microorganisms, plants, algae, or animals [1,2]. This is true for non-living substrata, bioRxiv preprint doi: https://doi.org/10.1101/669523; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 3 47 such as rocks, sand grains, or the shells of dead molluscs, as well as the bodies of living marine 48 animals. Those organisms that live on the surfaces of other organisms are referred to as epibionts 49 [3], a grouping of diverse taxa with a wide-range of life-histories, physiological tolerances, and 50 mechanisms for attaching to their host [4]. It is therefore not surprising to discover that epibiont 51 communities vary among different host species [5,6], populations [7], and even between different 52 body-areas on a single host [8,9]. Understanding the factors driving spatial variation in the 53 distribution of epibionts, be it on the scale of an ocean or a host’s body, can shed light the habitat 54 requirements of these varied associates. In turn, this information can be used to understand habitat 55 preferences or behaviour of the host [e.g. 10,11] and even epibiont-related disease transmission 56 [e.g. 12]. 57 58 Sea turtles arguably host the most abundant and diverse epibiont communities of all large marine 59 megafauna. In an effort to characterize these epibiont communities, researchers have generated 60 hundreds of species-lists reporting the presence of epibiont taxa for sea turtle populations around 61 the world [13]. As these datasets have grown, there is now an impetus to synthesise these data and 62 elucidate epibiont community spatial patterns globally and make quantitative assessments of 63 epibiont loads [14]. Yet to help draw robust conclusions about geographic differences in epibiont 64 communities, it would be beneficial to understand spatial patterns in epibiosis at a finer-scale – the 65 scale of a turtle’s body. Indeed, it is highly likely that epibionts are non-uniformly distributed over a 66 turtle host for several reasons. For example, the physical properties of certain body-parts, such as 67 the carapace, differ from those of the plastron or skin [15], which likely affects attachment or 68 settlement of different epibiont species. Different locations on the host’s body may also present 69 different opportunity for feeding. For example, some epibiont species feed preferentially on certain 70 tissues and thus will be found predominantly in those areas [16] whereas filter feeders might prefer 71 to be in areas where water flow over the host is optimal [17]. Either of these factors, as well as bioRxiv preprint doi: https://doi.org/10.1101/669523; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 4 72 attachment mode, crypsis, mating habits, and others, could lead to distinct variation in the 73 distribution of epibionts on sea turtles. 74 75 While it may be clear that epibiont distribution is likely to vary over the host’s body, many studies on 76 sea turtle epibiosis have either not provided any quantitative assessment of where on the host the 77 epibionts were found [e.g. 7,18], and/or have simply sampled epibionts from a single location on the 78 animal, commonly the carapace [e.g. 19,20]. Tellingly, even some of the most seminal studies 79 investigating the distribution patterns of epibionts on the loggerhead turtle Caretta caretta and 80 green turtle Chelonia mydas hosts have focused exclusively on the carapace [8,21]. There are only 81 two studies of which the authors are aware that have compared the abundance of epibionts from 82 over the entire body: Devin and Sadeghi (2010) [22] and Razaghian et al. (2019) [23]. Interestingly, 83 both studies, which focused on hawksbill turtles Eretmochelys imbricata nesting in Iran, identified 84 that epibiotic barnacles were actually more common on the plastron than the carapace. If this is true 85 for all sea turtle species, then this finding could have important implications for epibiont sampling. 86 Specifically, if epibionts are not uniformly distributed on the hosts’ body then the actual biodiversity 87 of epibionts might be underestimated if only sampled from a single region of the body. 88 89 To better understand spatial variation in epibiont communities on sea turtle hosts, we made a 90 quantitative assessment of the abundance and biomass of several epibiotic taxa from different 91 regions of the body of olive ridley sea turtles Lepidochelys olivacea. This species was chosen because 92 several studies have focused on characterizing the epibiont communities of this species in recent 93 years [e.g. 6,11,18,24] yet no previous studies have specifically looked at epibiont distributions for 94 this host species. Our null prediction was that there would be no variation in the abundance or total 95 biomass of the various epibiont taxa among the different body-areas. 96 97 METHODS bioRxiv preprint doi: https://doi.org/10.1101/669523; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 5 98 Study Site 99 Olive ridley turtles were sampled from Playa Ostional, which is located on the Pacific coast of the 100 Nicoya Peninsula in northwest Costa Rica (9° 59’ N, 85° 42’ W). We selected this site as it is one of a 101 few beaches worldwide that has mass-nesting assemblages or “arribadas” of olive ridley turtles , 102 thus making it feasible to sample large numbers of turtles relatively easily.
Recommended publications
  • Issue Number 118 October 2007 ISSN 0839-7708 in THIS
    Issue Number 118 October 2007 Green turtle hatchling from Turkey with extra carapacial scutes (see pp. 6-8). Photo by O. Türkozan IN THIS ISSUE: Editorial: Conservation Conflicts, Conflicts of Interest, and Conflict Resolution: What Hopes for Marine Turtle Conservation?..........................................................................................L.M. Campbell Articles: From Hendrickson (1958) to Monroe & Limpus (1979) and Beyond: An Evaluation of the Turtle Barnacle Tubicinella cheloniae.........................................................A. Ross & M.G. Frick Nest relocation as a conservation strategy: looking from a different perspective...................O. Türkozan & C. Yılmaz Linking Micronesia and Southeast Asia: Palau Sea Turtle Satellite Tracking and Flipper Tag Returns......S. Klain et al. Morphometrics of the Green Turtle at the Atol das Rocas Marine Biological Reserve, Brazil...........A. Grossman et al. Notes: Epibionts of Olive Ridley Turtles Nesting at Playa Ceuta, Sinaloa, México...............................L. Angulo-Lozano et al. Self-Grooming by Loggerhead Turtles in Georgia, USA..........................................................M.G. Frick & G. McFall IUCN-MTSG Quarterly Report Announcements News & Legal Briefs Recent Publications Marine Turtle Newsletter No. 118, 2007 - Page 1 ISSN 0839-7708 Editors: Managing Editor: Lisa M. Campbell Matthew H. Godfrey Michael S. Coyne Nicholas School of the Environment NC Sea Turtle Project A321 LSRC, Box 90328 and Earth Sciences, Duke University NC Wildlife Resources Commission Nicholas School of the Environment 135 Duke Marine Lab Road 1507 Ann St. and Earth Sciences, Duke University Beaufort, NC 28516 USA Beaufort, NC 28516 USA Durham, NC 27708-0328 USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Fax: +1 252-504-7648 Fax: +1 919 684-8741 Founding Editor: Nicholas Mrosovsky University of Toronto, Canada Editorial Board: Brendan J.
    [Show full text]
  • Using Growth Rates to Estimate Age of the Sea Turtle Barnacle Chelonibia Testudinaria
    Mar Biol (2017) 164:222 DOI 10.1007/s00227-017-3251-5 SHORT NOTE Using growth rates to estimate age of the sea turtle barnacle Chelonibia testudinaria Sophie A. Doell1 · Rod M. Connolly1 · Colin J. Limpus2 · Ryan M. Pearson1 · Jason P. van de Merwe1 Received: 4 May 2017 / Accepted: 20 October 2017 © Springer-Verlag GmbH Germany 2017 Abstract Epibionts can serve as valuable ecological indi- may live for up to 2 years, means that these barnacles may cators, providing information about the behaviour or health serve as interesting ecological indicators over this period. of the host. The use of epibionts as indicators is, however, In turn, this information may be used to better understand often limited by a lack of knowledge about the basic ecology the movement and habitat use of their sea turtle hosts, ulti- of these ‘hitchhikers’. This study investigated the growth mately improving conservation and management of these rates of a turtle barnacle, Chelonibia testudinaria, under threatened animals. natural conditions, and then used the resulting growth curve to estimate the barnacle’s age. Repeat morphomet- ric measurements (length and basal area) on 78 barnacles Introduction were taken, as host loggerhead turtles (Caretta caretta) laid successive clutches at Mon Repos, Australia, during the Sea turtles are known to host diverse communities of plants 2015/16 nesting season. Barnacles when frst encountered and invertebrate animals (Caine 1986; Kitsos et al. 2005; ranged in size from 3.7 to 62.9 mm, and were recaptured Robinson et al. 2017). Past analyses of the size, abundance, between 12 and 56 days later.
    [Show full text]
  • Redalyc.Distribution Patterns of the Barnacle, Chelonibia Testudinaria
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Nájera-Hillman, Eduardo; Bass, Julie B.; Buckham, Shannon Distribution patterns of the barnacle, Chelonibia testudinaria, on juvenile green turtles (Chelonia mydas) in Bahia Magdalena, Mexico Revista Mexicana de Biodiversidad, vol. 83, núm. 4, diciembre, 2012, pp. 1171-1179 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42525092012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 83: 1171-1179, 2012 DOI: 10.7550/rmb.27444 Distribution patterns of the barnacle, Chelonibia testudinaria, on juvenile green turtles (Chelonia mydas) in Bahia Magdalena, Mexico Patrones de distribución del balano, Chelonibia testudinaria, en tortugas verdes (Chelonia mydas) juveniles en bahía Magdalena, México Eduardo Nájera-Hillman1 , Julie B. Bass2,3 and Shannon Buckham2,4 1COSTASALVAjE A.C. Las Dunas #160-203. Fracc. Playa Ensenada. 22880 Ensenada, Baja California, México. 2Center for Coastal Studies-The School for Field Studies. 23740 Puerto San Carlos, Baja California Sur, México. 3Wellesley College, 21 Wellesley College Rd., Wellesley, MA 02481 USA. 4Whitman College, 345 Boyer Ave. Walla Walla, WA 99362 USA. [email protected] Abstract. The barnacle, Chelonibia testudinaria, is an obligate commensal of sea turtles that may show population variability according to the physical characteristics of the environment and properties of turtle hosts; therefore, we characterized the distributional patterns and the potential effects on health of C.
    [Show full text]
  • A Checklist of Turtle and Whale Barnacles
    Journal of the Marine Biological Association of the United Kingdom, 2013, 93(1), 143–182. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S0025315412000847 A checklist of turtle and whale barnacles (Cirripedia: Thoracica: Coronuloidea) ryota hayashi1,2 1International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan, 2Marine Biology and Ecology Research Program, Extremobiosphere Research Center, Japan Agency for Marine–Earth Science and Technology A checklist of published records of coronuloid barnacles (Cirripedia: Thoracica: Coronuloidea) attached to marine vertebrates is presented, with 44 species (including 15 fossil species) belonging to 14 genera (including 3 fossil genera) and 3 families recorded. Also included is information on their geographical distribution and the hosts with which they occur. Keywords: checklist, turtle barnacles, whale barnacles, Chelonibiidae, Emersoniidae, Coronulidae, Platylepadidae, host and distribution Submitted 10 May 2012; accepted 16 May 2012; first published online 10 August 2012 INTRODUCTION Superorder THORACICA Darwin, 1854 Order SESSILIA Lamarck, 1818 In this paper, a checklist of barnacles of the superfamily Suborder BALANOMORPHA Pilsbry, 1916 Coronuloidea occurring on marine animals is presented. Superfamily CORONULOIDEA Newman & Ross, 1976 The systematic arrangement used herein follows Newman Family CHELONIBIIDAE Pilsbry, 1916 (1996) rather than Ross & Frick (2011) for reasons taken up in Hayashi (2012) in some detail. The present author Genus Chelonibia Leach, 1817 deems the subfamilies of the Cheonibiidae (Chelonibiinae, Chelonibia caretta (Spengler, 1790) Emersoniinae and Protochelonibiinae) proposed by Harzhauser et al. (2011), as well as those included of Ross & Lepas caretta Spengler, 1790: 185, plate 6, figure 5.
    [Show full text]
  • Checklist of the Australian Cirripedia
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Jones, D. S., J. T. Anderson and D. T. Anderson, 1990. Checklist of the Australian Cirripedia. Technical Reports of the Australian Museum 3: 1–38. [24 August 1990]. doi:10.3853/j.1031-8062.3.1990.76 ISSN 1031-8062 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ISSN 1031-8062 ISBN 0 7305 7fJ3S 7 Checklist of the Australian Cirripedia D.S. Jones. J.T. Anderson & D.l: Anderson Technical Reports of the AustTalfan Museum Number 3 Technical Reports of the Australian Museum (1990) No. 3 ISSN 1031-8062 Checklist of the Australian Cirripedia D.S. JONES', J.T. ANDERSON*& D.T. AND ER SON^ 'Department of Aquatic Invertebrates. Western Australian Museum, Francis Street. Perth. WA 6000, Australia 2School of Biological Sciences, University of Sydney, Sydney. NSW 2006, Australia ABSTRACT. The occurrence and distribution of thoracican and acrothoracican barnacles in Australian waters are listed for the first time since Darwin (1854). The list comprises 204 species. Depth data and museum collection data (for Australian museums) are given for each species. Geographical occurrence is also listed by area and depth (littoral, neuston, sublittoral or deep). Australian contributions to the biology of Australian cimpedes are summarised in an appendix. All listings are indexed by genus and species. JONES. D.S.. J.T. ANDERSON & D.T. ANDERSON,1990. Checklist of the Australian Cirripedia.
    [Show full text]
  • Distribution Patterns of the Barnacle, Chelonibia Testudinaria, on Juvenile Green Turtles (Chelonia Mydas) in Bahia Magdalena, Mexico
    Revista Mexicana de Biodiversidad 83: 1171-1179, 2012 DOI: 10.7550/rmb.27444 Distribution patterns of the barnacle, Chelonibia testudinaria, on juvenile green turtles (Chelonia mydas) in Bahia Magdalena, Mexico Patrones de distribución del balano, Chelonibia testudinaria, en tortugas verdes (Chelonia mydas) juveniles en bahía Magdalena, México Eduardo Nájera-Hillman1 , Julie B. Bass2,3 and Shannon Buckham2,4 1COSTASALVAjE A.C. Las Dunas #160-203. Fracc. Playa Ensenada. 22880 Ensenada, Baja California, México. 2Center for Coastal Studies-The School for Field Studies. 23740 Puerto San Carlos, Baja California Sur, México. 3Wellesley College, 21 Wellesley College Rd., Wellesley, MA 02481 USA. 4Whitman College, 345 Boyer Ave. Walla Walla, WA 99362 USA. [email protected] Abstract. The barnacle, Chelonibia testudinaria, is an obligate commensal of sea turtles that may show population variability according to the physical characteristics of the environment and properties of turtle hosts; therefore, we characterized the distributional patterns and the potential effects on health of C. testudinaria on juvenile green turtles in Bahia Magdalena, Mexico. Barnacle attachment position, abundance, and size-class structure were described, while the relationship between barnacle abundance and turtle health condition and size was explored through generalized linear models. Juvenile green turtles of Bahía Magdalena offered an appropriate habitat for C. testudinaria as their frequency of occurrence was high and their abundance was similar to that found in other green turtle populations. Barnacles showed an aggregated distribution that may be facilitating their reproduction during the warm summer months. Barnacle abundance is unaffected by turtle size or seasonality, while their attachment position appears to be influenced by water flow over the turtle carapace and by plastron abrasion by the turtle against the sea floor.
    [Show full text]
  • Synopsis of the Biological Data on the Loggerhead Sea Turtle Caretta Caretta (Linnaeus 1758)
    OF THE BI sTt1cAL HE LOGGERHEAD SEA TURTLE CAC-Err' CARETTA(LINNAEUS 1758) Fish and Wildlife Service U.S. Department of the Interior Biological Report This publication series of the Fish and Wildlife Service comprises reports on the results of research, developments in technology, and ecological surveys and inventories of effects of land-use changes on fishery and wildlife resources. They may include proceedings of workshops, technical conferences, or symposia; and interpretive bibliographies. They also include resource and wetland inventory maps. Copies of this publication may be obtained from the Publications Unit, U.S. Fish and Wildlife Service, Washington, DC 20240, or may be purchased from the National Technical Information Ser- vice (NTIS), 5285 Port Royal Road, Springfield, VA 22161. Library of Congress Cataloging-in-Publication Data Dodd, C. Kenneth. Synopsis of the biological data on the loggerhead sea turtle. (Biological report; 88(14) (May 1988)) Supt. of Docs. no. : I 49.89/2:88(14) Bibliography: p. 1. Loggerhead turtle. I. U.S. Fish and Wildlife Service. II. Title. III. Series: Biological Report (Washington, D.C.) ; 88-14. QL666.C536D63 1988 597.92 88-600121 This report may be cit,-;c1 as follows: Dodd, C. Kenneth, Jr. 1988. Synopsis of the biological data on the Loggerhead Sea Turtle Caretta caretta (Linnaeus 1758). U.S. Fish Wildl. Serv., Biol. Rep. 88(14). 110 pp. Biological Report 88(14) May 1988 Synopsis of the Biological Dataon the Loggerhead Sea Turtle Caretta caretta(Linnaeus 1758) by C. Kenneth Dodd, Jr. U.S. Fish and Wildlife Service National Ecology Research Center 412 N.E.
    [Show full text]
  • Jumping from Turtles to Whales: a Pliocene Fossil Record Depicts an Ancient Dispersal of Chelonibia on Mysticetes
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 122(2): 35-44. July 2016 JUMPING FROM TURTLES TO WHALES: A PLIOCENE FOSSIL RECORD DEPICTS AN ANCIENT DISPERSAL OF CHELONIBIA ON MYSTICETES ALBERTO COLLARETA1,2,*, MARK BOSSELAERS3,4 & GIOVANNI BIANUCCI2 1*Corresponding author. Dottorato Regionale in Scienze della Terra Pegaso, via Santa Maria 53, 56126 Pisa, Italy. E-mail: [email protected] 2Dipartimento di Scienze della Terra, Università di Pisa, via Santa Maria 53, 56126 Pisa, Italy. E-mail: [email protected]; [email protected] 3Koninklijk Belgisch Instituut voor Natuurwetenschappen, Operationele Directie Aarde en Geschiedenis van het Leven, Vautierstraat 29, Brussel, Belgium. E-mail: [email protected] 4Koninklijk Zeeuwsch Genootschap der Wetenschappen, P.O. Box 378, 4330 AJ Middelburg, The Netherlands. E-mail: [email protected] To cite this article: Collareta A., Bosselaers M. & Bianucci G. (2016) - Jumping from turtles to whales: a Pliocene fossil record depicts an ancient dispersal of Chelonibia on mysticetes. Riv. It. Paleont. Strat. 122(2): 35-44. Key words: Chelonibiidae, turtle barnacles, Coronulidae, whale barnacles, baleen whales, Balaenidae, evolution, symbiosis, taphonomy. Abstract. The barnacles included in the superfamily Coronuloidea are epizoic symbionts of various marine verte- brates (including cetaceans, sirenians, and sea turtles) and other crustaceans (crabs and horseshoe crabs). Among Coronuloidea, the so-called turtle barnacles (Chelonibiidae) are known from Paleogene times, whereas the whale barnacles (Coronulidae) likely appeared in the late Pliocene (Piacenzian). Although a derivation from the turtle barnacles (and especially from the genus Chelonibia) has been proposed, the evolutionary origin of Coronulidae re- mains to date obscure.
    [Show full text]
  • John P. Wares Publications
    John P. Wares wareslab.genetics.uga.edu University of Georgia – Department of Genetics & Odum School of Ecology Education B.S. in Zoology with Honors University of Oklahoma, 1995 Ph.D. in Zoology and Genetics Duke University, 2000 Postdoctoral Training University of New Mexico PI: Tom Turner, 2000-2002 University of California, Davis PI: Rick Grosberg, 2002-2004 Academic Positions Assistant Professor University of Georgia, 2005-2011 Associate Professor University of Georgia, 2011-present Visiting Lecturer UW - Friday Harbor Labs, summer 2016 Publications (n=84) ξ equal authorship *student 2016 Ewers-Saucedo*, C., R. Hanel, J. P. Wares, and D. Brandis. 2016. Phylogenetic and mechanistic insights into the evolution of male copulatory organs in Shame-Faced Crabs (Decapoda: Eubrachyura: Calappidae) De Haan, 1833. J. Crustacean Biol. in press. Ewers-Saucedo*, C., J. M. Pringle, H. H. Sepúlveda, J. E. Byers, S. A. Navarrete, and J. P. Wares. 2016. The oceanic concordance of phylogeography and biogeography: A case study in Notochthamalus. Ecology & Evolution, DOI: 10.1002/ece3.2205 Ewers-Saucedo*, C., J. Zardus, and J. P. Wares. 2016. Microsatellite loci discovery from next-generation sequencing data and loci characterization in the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1798). PeerJ 4:e2019 https://doi.org/10.7717/ peerj.2019 Wares, J. P. and L. Schiebelhut*. 2016. What doesn’t kill them makes them stronger: An association between elongation factor 1-α overdominance in the sea star Pisaster ochraceus and "sea star wasting disease”. PeerJ 4:e1876 DOI:10.7717/peer1876 Ewers-Saucedo*, C., N. B. Hope, and J. P. Wares. 2016. The unexpected mating system of the androdioecious barnacle Chelonibia testudinaria (Linnaeus, 1758).
    [Show full text]
  • <I>Chelonibia Testudinaria</I>
    Bull Mar Sci. 90(2):581–597. 2014 research paper http://dx.doi.org/10.5343/bms.2013.1033 Substratum fidelity and early growth in Chelonibia testudinaria, a turtle barnacle especially common on debilitated loggerhead (Caretta caretta) sea turtles 1 Department of Biology, College Kelly Sloan 1 * of Charleston, Charleston, South John D Zardus 2 Carolina 29424. Martin L Jones 3 2 The Citadel, Department of Biology, 171 Moultrie Street, Charleston, South Carolina 29409. ABSTRACT.—The barnacle, Chelonibia testudinaria 3 College of Charleston, (Linnaeus, 1758), is reported to associate with nearly Department of Mathematics, every species of sea turtle and is particularly common 66 George Street, Charleston, on loggerheads, Caretta caretta (Linnaeus, 1758), with South Carolina 29424. symptoms of Debilitated Turtle Syndrome (DTS). Here, we * Corresponding author email: test recruitment rates of C. testudinaria on various natural <[email protected]>. and artificial substrata, including carapace from healthy and Present address: Sanibel-Captiva debilitated loggerheads. In addition, the sizes of individual Conservation Foundation 3333 barnacles were followed through time to estimate early Sanibel-Captiva Road, Sanibel, Florida 33957. growth rates and to provide attachment duration estimates. Floating racks holding replicate panels of four treatments (DTS turtle carapace scutes, healthy turtle carapace scutes, Plexiglas®, and slate tile) were placed at four independent sites in Charleston County, South Carolina. Panels were monitored for 34–54 d. Our findings indicate that C. testudinaria larvae recruit and grow at significantly higher rates along the open shore vs protected areas, but do not recruit differentially to the four substratum types. Individual barnacle growth was highly variable within and between sites and substratum types; the mean growth rate was 4.28 mm d−1 (95% CI: 3.42–5.14 mm d−1).
    [Show full text]
  • Deconstructing an Assemblage of “Turtle” Barnacles: Species Assignments and Fickle Fidelity in Chelonibia
    Mar Biol (2014) 161:45–59 DOI 10.1007/s00227-013-2312-7 ORIGINAL PAPER Deconstructing an assemblage of “turtle” barnacles: species assignments and fickle fidelity in Chelonibia John D. Zardus · David T. Lake · Michael G. Frick · Paul D. Rawson Received: 3 May 2013 / Accepted: 8 August 2013 / Published online: 24 August 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract Barnacles in the genus Chelonibia are com- is genetically distinct—leading to the conclusion that the mensal with a variety of motile marine animals including three former taxa are morphotypes of the same species and sea turtles, crustaceans, and sirenians. We conducted a should be synonymized under C. testudinaria. Phyloge- worldwide molecular phylogenetic survey of Chelonibia netic analysis resulted in three geographic clades (Atlan- collected from nearly all known hosts to assess species tic, Indian Ocean/western Pacific, and eastern Pacific) with relationships, host-fidelity, and phylogeographic structure. haplotype parsimony networks revealing no shared hap- Using DNA sequences from a protein-coding mitochon- lotypes among geographic regions. Analysis of molecular drial gene (COI), a mitochondrial rRNA gene (12S), and variance detected significant differences among sequences one nuclear rRNA gene (28S), we found that of four spe- by region (p < 0.005); conversely, there were no signifi- cies, three (C. testudinaria, C. patula, and C. manati) are cant differences among sequences when grouped by host or genetically indistinguishable. In addition, we show each taxonomic designation. Average pairwise genetic distances utilizes a rare androdioecious mode of reproduction involv- were lower between the eastern Pacific and Atlantic clades ing complemental males. In contrast, the fourth species (C.
    [Show full text]
  • Sessile Barnacles (Cirripedia) from the Pakistan Coast
    Sessile barnacles (Cirripedia) from the Pakistan coast Item Type article Authors Rizvi, S.H. Niaz; Moazzam, M. Download date 01/10/2021 11:09:34 Link to Item http://hdl.handle.net/1834/34321 Pakistan Journal of Marine Sciences, Vol. 15(1), 91-118, 2006. SESSILE BARNACLES (CIRRIPEDIA) FROM THE PAKISTAN COAST S.H~ Niaz Rizvi and M. Moazzarn National Institute of Oceanography, Karachi, Pakistan (SHNR) and Marine Fisheries Department, Government of Pakistan, Karachi, Pakistan (MM) ABSTRACT: The taxonomy of sessile cirripeds from the Pakistan coast is described. Out of the 15 species, seven are reported for the first time from the area. Specific taxonomic characters of all the species are described and their previous records from adjacent areas are discussed. KEY WORDS: Sessile barnacles, Cirripedia, Pakistan coast. INTRODUCTION The cirriped fauna of the Pakistan coast is not well known. Annandale (1906a, 1906b, 1906c, 1910) was probably the first to have shown the presence of barnacles in his collection from Pakistan. Stubbings (1936, 1940) mentioned some barnacles in his collection from the Arabian Sea. Moazzam and Rizvi (1978, 1982) described pedunculate barnacles from Pakistan, while rhizocephalan cirripeds are described by Moazzam and Moazzam (2004). Hassan (1963) described the distribution of Balanus amphitrite amphitrite along the Pakistan coast. Javed and Mustaquim (1992) and Mustaquim and Javed (1993) reported the occurrence of Chelonibia patula and Chelonibia testidunaria and Kazmi (2001) recorded Conopea calceola from the Pakistan coast. Barnacles have also been reported in a number of papers on the ecology and distribution of marine animals; noteworthy among them are Murray (1880), Haq et al (1978), Ahmed et al (1978) and Javed and Mustaquim (1995).
    [Show full text]