Abbreviations ANOVA Analysis of Variance AUC Area Under Curve
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera: Calyptratae)
Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment. -
Variation in the Intensity and Prevalence of Macroparasites in Migratory Caribou: a Quasi-Circumpolar Study
Canadian Journal of Zoology Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study Journal: Canadian Journal of Zoology Manuscript ID cjz-2015-0190.R2 Manuscript Type: Article Date Submitted by the Author: 21-Mar-2016 Complete List of Authors: Simard, Alice-Anne; Université Laval, Département de biologie et Centre d'études nordiques Kutz, Susan; University of Calgary Ducrocq, Julie;Draft Calgary University, Faculty of Veterinary Medicine Beckmen, Kimberlee; Alaska Department of Fish and Game, Division of Wildlife Conservation Brodeur, Vincent; Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune du Nord-du-Québec Campbell, Mitch; Government of Nunavut, Department of Environment Croft, Bruno; Government of the Northwest Territories, Environment and Natural Resources Cuyler, Christine; Greenland Institute of Natural Resources, Davison, Tracy; Government of the Northwest Territories in Inuvik, Department of ENR Elkin, Brett; Government of the Northwest Territories, Environment and Natural Resources Giroux, Tina; Athabasca Denesuline Né Né Land Corporation Kelly, Allicia; Government of the Northwest Territories, Environment and Natural Resources Russell, Don; Environnement Canada Taillon, Joëlle; Université Laval, Département de biologie et Centre d'études nordiques Veitch, Alasdair; Government of the Northwest Territories, Environment and Natural Resources Côté, Steeve D.; Université Laval, Département de Biologie and Centre of Northern Studies COMPARATIVE < Discipline, parasite, caribou, Rangifer tarandus, helminth, Keyword: arthropod, monitoring https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 46 Canadian Journal of Zoology 1 Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study Alice-Anne Simard, Susan Kutz, Julie Ducrocq, Kimberlee Beckmen, Vincent Brodeur, Mitch Campbell, Bruno Croft, Christine Cuyler, Tracy Davison, Brett Elkin, Tina Giroux, Allicia Kelly, Don Russell, Joëlle Taillon, Alasdair Veitch, Steeve D. -
Hypoderma Tarandi, Case Series from Norway, 2011 to 2016
Surveillance and outbreak report Human myiasis caused by the reindeer warble fly, Hypoderma tarandi, case series from Norway, 2011 to 2016 J Landehag ¹ , A Skogen ¹ , K Åsbakk ² , B Kan ³ 1. Department of Paediatrics, Finnmark Hospital Trust, Hammerfest, Norway 2. UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway 3. Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Correspondence: Kjetil Åsbakk ([email protected]) Citation style for this article: Landehag J, Skogen A, Åsbakk K, Kan B. Human myiasis caused by the reindeer warble fly, Hypoderma tarandi, case series from Norway, 2011 to 2016. Euro Surveill. 2017;22(29):pii=30576. DOI: http://dx.doi.org/10.2807/1560-7917.ES.2017.22.29.30576 Article submitted on 01 September 2016 / accepted on 14 December 2016 / published on 20 July 2017 Hypoderma tarandi causes myiasis in reindeer and northern hemisphere regions (Alaska, Canada, Nordic caribou (Rangifer tarandus spp.) in most northern countries in Europe including Greenland (self-govern- hemisphere regions where these animals live. We ing territory of Denmark) and Russia) where these ani- report a series of 39 human myiasis cases caused by mals live [5]. H. tarandi in Norway from 2011 to 2016. Thirty-two were residents of Finnmark, the northernmost county Most of the 24 human cases of myiasis caused by H. of Norway, one a visitor to Finnmark, and six lived in tarandi reported in Norway and other countries in the other counties of Norway where reindeer live. Clinical literature from 1982 to 2016 [6-17] developed oph- manifestations involved migratory dermal swellings thalmomyiasis interna (OMI), a condition where the of the face and head, enlargement of regional lymph larva has invaded the eye globe, often leading to vis- nodes, and periorbital oedema, with or without eosin- ual impairment. -
The Timing and Departure Rate of Larvae of the Warble Fly Hypoderma
The timing and departure rate of larvae of the warble fly Hypoderma (= Oedemagena) tarandi (L.) and the nose bot fly Cephenemyia trompe (Modeer) (Diptera: Oestridae) from reindeer Arne C. Nilssen & Rolf E. Haugerud Zoology Department, Tromsø Museum, N-9006 Tromsø, Norway Abstract: The emergence of larvae of the reindeer warble fly Hypoderma (= Oedemagena) tarandi (L.) (n = 2205) from 4, 9, 3, 6 and 5 Norwegian semi-domestic reindeer yearlings (Rangifer tarandus tarandus (L.)) was registered in 1988, 1989, 1990, 1991 and 1992, respectively. Larvae of the reindeer nose bot fly Cephenemyia trompe (Moder) (n = 261) were recor• ded during the years 1990, 1991 and 1992 from the same reindeer. A collection cape technique (only H. tarandi) and a grating technique (both species) were used. In both species, dropping started around 20 Apr and ended 20 June. Peak emergence occurred from 10 May - 10 June, and was usually bimodal. The temperature during the larvae departure period had a slight effect (significant only in 1991) on the dropping rate of H. tarandi larvae, and temperature during infection in the preceding summer is therefore supposed to explain the uneven dropping rate. This appeared to be due to the occurrence of successive periods of infection caused by separate periods of weather that were favourable for mass attacks by the flies. As a result, the temporal pattern of maturation of larvae was divided into distinct pulses. Departure time of the larvae in relation to spring migration of the reindeer influences infection levels. Applied possibilities for biological control by separating the reindeer from the dropping sites are discussed. -
Reindeer Warble Fly Larvae Found in Red Deer Nilssen, A. C.1
Reindeer warble fly larvae found in red deer Reinens gorm-larver funnet i hjort Nilssen, A. C.1 & Gjershaug, J. O.2. 1. Zoology Department, Tromsø Museum, N-9000 Tromsø, Norway. 2. Sognli Forsøksgård, N-7320 Fannrem, Norway. Abstract: Seven third instar larvae of the reindeer warble fly (Hypoderma (=Oedemagena) tarandi) were found in a 2-3 year old male red deer {Cervus elaphus) shot on 14 November 1985 at Todalen, western Norway. This it, the first report of H. tarandi from red deer. In reindeer third instar larvae are found from February to June, and the unusual date of this record indicates a delayed development of the larvae due to abnormal host reactions. Warble fly larvae, probably H. tarandi, are also reported from moose {Alces al• ces) in northern Norway. Key words: Oedemagena tarandi, Hypoderma tarandi, Cervus elaphus, Rangifer tarandus, Alces alces, reindeer, caribou, red deer, moose, exotic host, unsuitable host, reindeer warble fly, Norway. Rangifer, 8 (1): 35-37 Introduction and first and second instar larvae also from The warble fly Hypoderma tarandi is endopa- musk ox {Ovibos moschatus) in Canada (Jan- rasitic in reindeer and caribou {Rangifer ta• sen 1970, Alendal and Helle 1983). Nordkvist randus), occurring in most of the holarctic (in Skjenneberg and Slagsvold 1968) reported distribution of the host (Zumpt 1965). The H. tarandi from roe deer {Capreolus capreo• adult females attach eggs to leg and body lus), and this appears to be the only record of hairs. After hatching the larvae penetrate the H. tarandi in a cervid other than reindeer. skin, migrate intermuscularly and complete Here we report H. -
Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet?
Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet? JOHN D. SPETH Department of Anthropology, 101 West Hall, 1085 South University Avenue, University of Michigan, Ann Arbor, MI 48109-1107, USA; [email protected] submitted: 21 February 2017; revised 2 April 2017; accepted 4 April 2017 ABSTRACT This paper begins by exploring the role of fermented and deliberately rotted (putrefied) meat, fish, and fat in the diet of modern hunters and gatherers throughout the arctic and subarctic. These practices partially ‘pre-digest’ the high protein and fat content typical of northern forager diets without the need for cooking, and hence without the need for fire or scarce fuel. Because of the peculiar properties of many bacteria, including various lactic acid bacteria (LAB) which rapidly colonize decomposing meat and fish, these foods can be preserved free of pathogens for weeks or even months and remain safe to eat. In addition, aerobic bacteria in the early stages of putrefaction deplete the supply of oxygen in the tissues, creating an anaerobic environment that retards the production of po- tentially toxic byproducts of lipid autoxidation (rancidity). Moreover, LAB produce B-vitamins, and the anaerobic environment favors the preservation of vitamin C, a critical but scarce micronutrient in heavily meat-based north- ern diets. If such foods are cooked, vitamin C may be depleted or lost entirely, increasing the threat of scurvy. Psy- chological studies indicate that the widespread revulsion shown by many Euroamericans to the sight and smell of putrefied meat is not a universal hard-wired response, but a culturally learned reaction that does not emerge in young children until the age of about five or later, too late to protect the infant from pathogens during the highly vulnerable immediate-post-weaning period. -
Parasites of Caribou (2): Fly Larvae Infestations
Publication AP010 July 27, 2004 Wildlife Diseases FACTSHEET Parasites of Caribou (2): Fly Larvae Infestations Introduction All wild animals carry diseases. In some cases these might be of concern if they can spread to humans or domestic animals. In other cases they might be of interest if they impact on the health of our wild herds, or simply because the signs of the disease have been noticed and you want to know more. This factsheet is one of a series produced on the common diseases of caribou and covers the larval form of two different flies commonly seen in this province. Neither of these are a cause of public health Figure 2: Warble fly larvae emerging from back concern. Fly Larvae Infestations Warbles are the larvae of the warble fly (Hypoderma tarandi) which lays its eggs on the hair of Warbles and throat bots are common names for the caribou’s legs and lower body in mid-summer. the larvae of two types of flies that can be found in the Once the eggs hatch, the larvae (maggots) penetrate carcasses of caribou in this province. Many people the skin of the caribou and start a long migration who hunt these animals may be familiar with their towards the animal’s back. appearance. Hunters may see signs of these migrating larvae Warbles in the fall when skinning out an animal. At this early part of the larvae’s life, they are about the size of a small grain of rice and are almost transparent. They may be seen on the surface of the muscles or under the skin. -
By Hypoderma Tarandi, Northern
INTERNATIONAL POLAR YEAR DISPATCHES by Hypoderma spp. is not known. Eyebrows and eyelashes Human have been suggested as possible targets for oviposition (3). Oviposition on human scalp hair has been achieved experi- Ophthalmomyiasis mentally and could be the preferential site in humans (3). An alternative explanation is transfer of the larvae directly Interna Caused from the guard hairs of the caribou to the human eye or skin through close contact with animal pelts. The parasite does by Hypoderma not appear to complete its life cycle in humans (1,2). tarandi, Northern We present the fi rst, to our knowledge, 2 published cases of ophthalmomyiasis interna caused by H. tarandi in Canada Canada. Furthermore, we present the fi rst published use of Hypoderma spp. serologic testing to assist in the diagnosis Philippe R.S. Lagacé-Wiens,* Ravi Dookeran,* of myiasis in humans. Stuart Skinner,* Richard Leicht,* Douglas D. Colwell,† and Terry D. Galloway* The Cases and Literature Review Human myiasis caused by bot fl ies of nonhuman ani- The fi rst patient was a 41-year-old woman from Rankin mals is rare but may be increasing. The treatment of choice Inlet, Nunavut, Canada, who noticed fl oaters (objects in the is laser photocoagulation or vitrectomy with larva removal fi eld of vision that originate in the vitreous) in her right eye and intraocular steroids. Ophthalmomyiasis caused by Hy- in August 2006. Initial funduscopic examination showed poderma spp. should be recognized as a potentially revers- posterior vitreous detachment. Two weeks later, her vision ible cause of vision loss. was more impaired; repeat funduscopy showed panuveitis. -
Article.Pdf (560.7Kb)
Failure of two consecutive annual treatments with ivermectin to eradicate the reindeer parasites (Hypoderma tarandi, Cephenemyia trompe and Linguatula arctica) from an island in northern Norway Arne C. Nilssen1, Willy Hemmingsen2 & Rolf E. Haugerud3 1 Tromsø Museum, University of Tromsø, N-9037 Tromsø, Norway ([email protected]). 2 Institute of Biology, University of Tromsø, N-9037 Tromsø, Norway. 3 NOR, c/o Department of Arctic Veterinary Medicine, N-9292 Tromsø, Norway. Abstract: The highly efficient endectocide ivermectin is used to reduce the burden of parasites in many semidomestic reindeer herds in northern Fennoscandia. In the autumn of 1995 and 1996 all reindeer on the island of Silda (42 km2) were treated with ivermectin in an attempt to eradicate the warble fly (Hypoderma (=Oedemagena) tarandi (L.)), the nose bot fly (Cephenemyia trompe (Modeer)) (Diptera: Oestridae) and the sinus worm (Linguatula arctica Riley, Haugerud and Nilssen) (Pentastomida: Linguatulidae). Silda is situated 2-3 km off the mainland of Finnmark, northern Norway, and supports about 475 reindeer in summer. A year after the first treatment, the mean abundance of H. tarandi was reduced from 3.5 to 0.6, but a year after the second treatment the mean abundance unexpectedly had increased to 4.5. After one year without treatment, the mean abundance and prevalence of the three target parasites were at the same level, or higher, than pre-treatment levels. The main hypothesis for the failure to eliminate the parasites is that gravid H. tarandi and C. trompe females originating from untreated reindeer in adjacent mainland areas dispersed to the island during the warm summer of 1997 (possibly also in 1998). -
Furuncular Myiasis Affecting the Lower Lip of a Young Patient
Brazilian Dental Journal (2016) 27(5): 625-628 ISSN 0103-6440 http://dx.doi.org/10.1590/0103-6440201600528 Department of Oral Diagnosis Furuncular Myiasis Affecting (Semiology and Pathology) - Piracicaba Dental School - the Lower Lip of a Young Patient UNICAMP - Universidade de Campinas, Piracicaba, SP, Brazil Felipe Paiva Fonseca, José Ribamar Sabino-Bezerra Jr., Pablo Agustin Vargas, Correspondence: Alan Roger Santos Silva, Avenida Limeira, 901, Bairro Oslei Paes de Almeida, Marcio Ajudarte Lopes, Alan Roger Santos-Silva Areão, 13414-903 Piracicaba, SP, Brasil. Tel: +55-19-2106-5200. e-mail: [email protected] Furuncular myiasis is a parasitic infection caused by the larvae of Dipteran insects after penetrating healthy skin, causing an erythematous nodule with a central pore. Additionally, the patient may feel a sensation of movement and intermittent pain. Furuncular myiasis affecting the oral and perioral region is rare, usually leading to misdiagnosis. This paper describes a rare case of furuncular myiasis in a 20-year-old healthy male patient who presented an erythematous nodule in the lower lip. An exploratory surgery was indicated for both diagnostic and curative purposes, with successful healing observed in the following Key Words: myiasis, furuncular appointment. After 3 years of follow-up, the patient is recovered, with no clinical signs myiasis, dermatobia or symptoms of the disease. hominis, oral cavity, lip. Introduction Myiasis is the infestation of tissues or organs of (13,14). Recognizing this condition in this uncommon animals and humans caused by the larvae of Dipteran anatomic location is very important to appropriately flies, whose eggs are commonly deposited in wounds, distinguish it from other more common differential ulcers or intact skin. -
Diptera: Oestridae) Human Ophthalmomyiasis by Larval DNA Barcoding
DOI: 10.2478/s11686-014-0242-2 © W. Stefański Institute of Parasitology, PAS Acta Parasitologica, 2014, 59(2), 301–304; ISSN 1230-2821 Confirming Hypoderma tarandi (Diptera: Oestridae) human ophthalmomyiasis by larval DNA barcoding Bjørn Arne Rukke1*, Symira Cholidis2, Arild Johnsen3 and Preben Ottesen1 1Department of Pest Control, Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway; 2Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway; 3Natural History Museum, University of Oslo, Sars gate 1, 0562 Oslo, Norway Abstract DNA barcoding is a practical tool for species identification, when morphological classification of an organism is difficult. Herein we describe the utilisation of this technique in a case of ophthalmomyiasis interna. A 12-year-old boy was infested during a summer holiday in northern Norway, while visiting an area populated with reindeer. Following medical examination, a Diptera larva was surgically removed from the boy’s eye and tentatively identified from its morphological traits as Hypoderma tarandi (L.) (Diptera: Oestridae). Ultimately, DNA barcoding confirmed this impression. The larval cytochrome c oxidase subunit 1 (COI) DNA sequence was matched with both profiles of five adult H. tarandi from the same region where the boy was infested, and other established profiles of H. tarandi in the Barcode of Life Data Systems (BOLD) identification engine. Keywords Ophthalmomyiasis, species identification, DNA barcoding, Hypoderma tarandi Introduction polar geographical range (Zumpt 1965). Eggs are laid directly on guard hairs of these animals. When the larvae hatch, they Ophthalmomyiasis is a condition where larvae of some penetrate the skin, migrating subcutaneously to dorsal areas of Diptera invade the human eye or its coverings. -
Ecological and Geographical Speciation in Luciliabufonivora
IJP: Parasites and Wildlife 10 (2019) 218–230 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Ecological and geographical speciation in Lucilia bufonivora: The evolution T of amphibian obligate parasitism ∗ G. Arias-Robledoa,b, , R. Wallb, K. Szpilac, D. Shpeleyd, T. Whitworthe, T. Starkf, R.A. Kinga, J.R. Stevensa a Biosciences, College of Life and Environmental Sciences, University of Exeter, UK b School of Biological Sciences, University of Bristol, UK c Department of Ecology and Biogeography, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland d E.H. Strickland Entomological Museum, Department of Biological Sciences, University of Alberta, Canada e Department of Entomology, Washington State University, Pullman, USA f Reptile, Amphibian and Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands ARTICLE INFO ABSTRACT Keywords: Lucilia (Diptera: Calliphoridae) is a genus of blowflies comprised largely of saprophagous and facultative Obligate parasitism parasites of livestock. Lucilia bufonivora, however, exhibits a unique form of obligate parasitism of amphibians, Amphibian parasitism typically affecting wild hosts. The evolutionary route by which amphibian myiasis arose, however, isnotwell Myiasis understood due to the low phylogenetic resolution in existing nuclear DNA phylogenies. Furthermore, the timing Lucilia of when specificity for amphibian hosts arose in L. bufonivora is also unknown. In addition, this species was Host specialisation recently reported for the first time in North America (Canada) and, to date, no molecular studies have analysed Blowfly the evolutionary relationships between individuals from Eastern and Western hemispheres. To provide broader insights into the evolution of the amphibian parasitic life history trait and to estimate when the trait first arose, a time-scaled phylogeny was inferred from a concatenated data set comprising mtDNA, nDNA and non-coding rDNA (COX1, per and ITS2 respectively).