Bovine Hypodermosis: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Bovine Hypodermosis: a Review IJAAR 6 (2018) 18-29 ISSN 2053-1265 Bovine hypodermosis: A review Gautam Patra1*, Parthasarathi Behera2, Samares Kumar Das3, Subhamoy Ghosh1, Papia Biswas4, Ajit Kumar5, C. Lalnunpuia1, C. Lalchhandama6, Seikh Sahanawaz Alam7, Jayashre Bhagawati8 1Department of Veterinary Parasitology; College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India. 2Department of Veterinary Physiology and Biochemistry; College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India. 3Department of Veterinary & Animal Husbandry Extension; College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India. 4Department of Veterinary Public Health & Epidemiology; College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India. 5Department of Veterinary Parasitology; WBUAFS, Kolkata-37, West Bengal, India. 6Department of Veterinary Pharmacology & Toxicology; College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India. 7District Microbiologist, Malda Medical College & Hospital, Malda, West Bengal, India. 8FCLA; College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, India. Article History ABSTRACT Received 28 December, 2017 Cattle hypodermosis (warble fly infestation, WFI) is an economically important Received in revised form 17 disease in livestock throughout the world. Larvae of Hypoderma spp. cause January, 2018 Accepted 23 January, 2018 subcutaneous myiasis of domesticated and wild ruminants. The important species in cattle are Hypoderma bovis and Hypoderma lineatum whereas, Keywords: Hypoderma diana, Hypoderma actaeon and Hypoderma tarandi, affect roe deer, Hypodermosis, red deer, and reindeer, respectively. Hypoderma crossi infects sheep and goat. Warble fly, Adults of the cattle grub are commonly known as heel flies, warble flies, bomb Hypoderma bovis, flies or gad flies. The larval stages of Hypoderma bovis and Hypoderma lineatum Hypoderma lineatum. are commonly called ‘ox warbles’. The biology of hypodermosis is complex in nature. The parasitic larval stage of Hypoderma spp. spend about one year in domesticated as well as in the wild animals, while the adult free-living stage lasts only for few days. The disease causes heavy economic losses to animal production like milk and leather industry. It can also affect the general health status as well as the immune system of the body of the diseased animals. The early diagnosis of hypodermosis is of great importance for planning treatment and eradication program. The control measures of the disease have been efficiently practiced and consequently this disease is controlled at national level in many European countries. Keeping in view the importance of the disease, the present review intends to underscore and provide up to date information about Article Type: the overall aspect of hypodermosis in animals with the existing literature Review available with special emphasis on hypodermosis on cattle. ©2018 BluePen Journals Ltd. All rights reserved INTRODUCTION Warble fly infestation is a major disease of economic (Scholl, 1993). Larvae of Hypoderma spp. cause a significance affecting livestock throughout the world. The subcutaneous myiasis of domesticated and wild warble has an Anglo-Saxon origin which means boil ruminants. The definitive hosts for this parasite are Int. J. Adv. Agric. Res. 19 Table 1. Prevalence rate of hypodermosis in cattle globally. Country Prevalence rate (%) Host References UK 40 Cattle (Webster, 1998) Turkey 3.56-10.23 Cattle (Gulanber et al., 2000) Kazakhstan 30 Cattle (Mukhtar and Omarkhan, 2004) Albania 38.66-41.28 Cattle (Otranto et al., 2005) Turkey 31.9 Cattle (Kara et al., 2005) Turkey 23.3 Cattle (Simsek et al., 2008) Turkey 2.96 Cattle (Cicek et al., 2011) Turkey 28.9 Cattle (Karatepe et al., 2013) herbivores including cattle, buffaloes, sheep, goats, deer Only one species viz., H. lineatum has been described and reindeer. There are seven species of Hypoderma from India affecting the bovidae with a prevalence rate of that affect the wild and domesticated animals and these 50–90% (Soni and Khan, 1945) and Yadav et al. (2013) are Hypoderma bovis (Northern cattle grub), Hypoderma reported prevalence rate (9.73%) of H. lineatum in case lineatum (common cattle grub), mainly affecting cattle, of cattle from Jammu state by conventional palpation Hypoderma diana, Hypoderma actaeon, Hypoderma method. tarandi, H. sinense affecting roe deer, red deer, and reindeer respectively (Taylor et al., 2016) and GLOBAL DISTRIBUTION Hypoderma crossi of sheep and goat (Scholl, 1993). The disease has been extensively studied all over the world Hypoderma spp. have cosmopolitan in distribution but due to its high economic significance. It has been more commonly found in tropical and subtropical reported from almost all countries rearing livestock. Many countries of the world. The prevalence of disease due to scientists in the past worked on the epidemiology, Hypoderma varies in different regions of the world and economic significance and control of hypodermosis in upon the region studied (O’Brien, 1998; Scholl, 1993; Europe including the eastern European countries of the Martinez-Moreno et al., 1992). In many countries, the former USSR and Asia. It has been observed that the rate of infestation was reported up to 100% in different parasite is unable to adopt the seasonal life cycle to the herds that might be due to a great variation between the conditions of Australia and South Africa due to the parasitological and immuno-diagnostic techniques for the climatic conditions (Tarry, 1998). detection of hypodermosis. It might reflect differences of During the recent decade, livestock production has antibody-mediated host immune responsiveness in increased significantly. However, still this sector has not different species of animals (Frangipane di Regalabone yet reached its full potential to deliver adequate meat for et al., 2003). The prevalence rate of hypodermosis varies the rising human population across the globe (Thornton, depending upon diagnostic methodologies used ranging 2010). Among several restraining factors, parasitic from 21 to 79% in Spain, 43% in Belgium, 85% in Italy diseases that severely affect livestock are the biggest (Puccini et al., 1997; Preston, 1984; Frangipane di constraints. Among parasitic diseases, ectoparasitic Regalbone et al., 2003), while it was 44.2% in Greece infestation is a serious veterinary health problem affecting (Papadopoulos, 2004). In East Turkey, 28.6% cattle were livestock industry, worldwide (Hourrigan, 1979). found seropositive for hypodermosis (Balkaya et al., Hypoderma spp. under the family Oestridae is 2010). Similarly in Middle East, the disease has responsible for causing subcutaneous myiasis that prevalence rate of 14.1% in Libya (Otify and Mansour, affects both wild and domestic ruminants across the 1994) and 23% in Iraq (Abul-Hak, 1973). South East northern hemisphere (Boulard, 2002). This is an endemic Asian countries like China have a record of 80% (Yin et disease of livestock (including goats, deer, buffaloes, al., 2003) and 18.4% in Pakistan (Ahmed et al., 2012). yaks and cattle) which results a severe decline of milk Yadav et al. (2013) reported prevalence rate (9.73%) of and meat production and depreciation in hide quality from H. lineatum in case of cattle from Jammu state of India. holes and other flaws caused by Hypoderma larvae (Hall The prevalence rate of hypodermosis in cattle across the and Wall, 1995). globe is shown in Table 1. Oviposition and egg development *Corresponding author: E-mail: [email protected]. Tel: +91 8582859415. The egg laying of H. lineatum and H. bovis varies Patra et al. 20 Figure 1. Egg of H. lineatum (Photograph by Lyle J. Buss, University of Florida). significantly so does its ovipositing behaviour (Andrews, lineatum larvae in the body of affected animals varies. In 1978; Colwell, 1992; Scholl, 1993; Tarry, 1998). Both case of H. lineatum, larvae travel through the submucosal species also differ from each other in approaching the connective tissues of oesophageal wall of the body and animals, egg laying behaviour, egg size, phenotype and ultimately reach at the back of animals while in H. bovis it migration pattern in the affected host, etc. (Scholl, 1990). travels along the nerve paths and reaches into the spinal Mating occurs soon after the flies emerge and females canal. The migration of the larvae inside the body of host begin to lay eggs within 20 min after copulation. is again aided by the proteolytic enzymes secreted from the anterior part of the larvae (Scholl, 1993). The larvae move in the resting site of the body of the Eggs, skin penetration and larval development host in different ways in both species of Hypoderma. In case of H. lineatum, the larvae travel in the loose Eggs of H. lineatum are 1 mm in length and are laid in a submucosal tissue of the esophagus while in H. bovis the row of six eggs and attached by a petiole to the hairs larvae move towards the similar resting site in the below the hocks (Figure 1) (Tarry, 1998) while in case of epidural fat between the dura mater and periosteum in H. bovis the eggs are laid singly on the body and above the spinal canal (winter resting site). At this stage, the the hocks of the animals (Urquhart et al., 1991) and the first instar larvae are approximately 15 mm
Recommended publications
  • Diptera: Calyptratae)
    Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment.
    [Show full text]
  • Variation in the Intensity and Prevalence of Macroparasites in Migratory Caribou: a Quasi-Circumpolar Study
    Canadian Journal of Zoology Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study Journal: Canadian Journal of Zoology Manuscript ID cjz-2015-0190.R2 Manuscript Type: Article Date Submitted by the Author: 21-Mar-2016 Complete List of Authors: Simard, Alice-Anne; Université Laval, Département de biologie et Centre d'études nordiques Kutz, Susan; University of Calgary Ducrocq, Julie;Draft Calgary University, Faculty of Veterinary Medicine Beckmen, Kimberlee; Alaska Department of Fish and Game, Division of Wildlife Conservation Brodeur, Vincent; Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune du Nord-du-Québec Campbell, Mitch; Government of Nunavut, Department of Environment Croft, Bruno; Government of the Northwest Territories, Environment and Natural Resources Cuyler, Christine; Greenland Institute of Natural Resources, Davison, Tracy; Government of the Northwest Territories in Inuvik, Department of ENR Elkin, Brett; Government of the Northwest Territories, Environment and Natural Resources Giroux, Tina; Athabasca Denesuline Né Né Land Corporation Kelly, Allicia; Government of the Northwest Territories, Environment and Natural Resources Russell, Don; Environnement Canada Taillon, Joëlle; Université Laval, Département de biologie et Centre d'études nordiques Veitch, Alasdair; Government of the Northwest Territories, Environment and Natural Resources Côté, Steeve D.; Université Laval, Département de Biologie and Centre of Northern Studies COMPARATIVE < Discipline, parasite, caribou, Rangifer tarandus, helminth, Keyword: arthropod, monitoring https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 46 Canadian Journal of Zoology 1 Variation in the intensity and prevalence of macroparasites in migratory caribou: a quasi-circumpolar study Alice-Anne Simard, Susan Kutz, Julie Ducrocq, Kimberlee Beckmen, Vincent Brodeur, Mitch Campbell, Bruno Croft, Christine Cuyler, Tracy Davison, Brett Elkin, Tina Giroux, Allicia Kelly, Don Russell, Joëlle Taillon, Alasdair Veitch, Steeve D.
    [Show full text]
  • Hypoderma Tarandi, Case Series from Norway, 2011 to 2016
    Surveillance and outbreak report Human myiasis caused by the reindeer warble fly, Hypoderma tarandi, case series from Norway, 2011 to 2016 J Landehag ¹ , A Skogen ¹ , K Åsbakk ² , B Kan ³ 1. Department of Paediatrics, Finnmark Hospital Trust, Hammerfest, Norway 2. UiT The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway 3. Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Correspondence: Kjetil Åsbakk ([email protected]) Citation style for this article: Landehag J, Skogen A, Åsbakk K, Kan B. Human myiasis caused by the reindeer warble fly, Hypoderma tarandi, case series from Norway, 2011 to 2016. Euro Surveill. 2017;22(29):pii=30576. DOI: http://dx.doi.org/10.2807/1560-7917.ES.2017.22.29.30576 Article submitted on 01 September 2016 / accepted on 14 December 2016 / published on 20 July 2017 Hypoderma tarandi causes myiasis in reindeer and northern hemisphere regions (Alaska, Canada, Nordic caribou (Rangifer tarandus spp.) in most northern countries in Europe including Greenland (self-govern- hemisphere regions where these animals live. We ing territory of Denmark) and Russia) where these ani- report a series of 39 human myiasis cases caused by mals live [5]. H. tarandi in Norway from 2011 to 2016. Thirty-two were residents of Finnmark, the northernmost county Most of the 24 human cases of myiasis caused by H. of Norway, one a visitor to Finnmark, and six lived in tarandi reported in Norway and other countries in the other counties of Norway where reindeer live. Clinical literature from 1982 to 2016 [6-17] developed oph- manifestations involved migratory dermal swellings thalmomyiasis interna (OMI), a condition where the of the face and head, enlargement of regional lymph larva has invaded the eye globe, often leading to vis- nodes, and periorbital oedema, with or without eosin- ual impairment.
    [Show full text]
  • Disease Factsheet: Warble
    Livestock Notifiable Disease Factsheets Warble Fly If you suspect signs of any notifiable disease, you must immediately notify a Defra Divisional Veterinary Manager. Introduction The warble fly is an insect, which parasitically infects cattle. Animals usually affected are Cattle although horses and deer can be affected. History and spread of the disease Around thirty years ago the industry was concerned that warble fly infestation was not only causing distress to cattle and financial losses to farmers, but was also ruining hides that would otherwise be used to make items such as coats, bags, and shoes. There were believed to be around 4 million cases of warble fly every year at that time. On 7 February 1978 the MAFF Parliamentary Secretary announced a five-year campaign to eradicate the warble fly. This included an extensive publicity campaign in summer and autumn each year to encourage all farmers with cattle at risk from the fly to treat them as a precaution in the autumn and also to treat any cattle showing visible signs of infestation. Legislation made under the Diseases of Animals Act 1950 required owners of warbled cattle to treat them with a systemic dressing: affected animals could not be moved, even to a slaughterhouse, without first being treated. Veterinary inspectors could compel owners to treat affected cattle. The farming community responded splendidly to this campaign involving both voluntary and compulsory treatment, with the help of market surveys by the State Veterinary Service, the Meat & Livestock Commission and the Hide & Allied Trade Improvement Society. At the end of the five year period the number of outbreaks was down to around 500 a year.
    [Show full text]
  • Inflammatory Reaction to the Human Bot-Fly, Dermatobia Hominis, in Infested and Reinfested Mice
    Medical and Veterinary Entomology (2003) 17, 55±60 Inflammatory reaction to the human bot-fly, Dermatobia hominis, in infested and reinfested mice * E. LELLO and A. M. B. DE ROSIS Departamento de Morfologia, Instituto de Biocieà ncias, Universidade Estadual Paulista, Botucatu and *Departamento de Cieà ncias Biolo gicas, Faculdade de Cieà ncias, Universidade Estadual Paulista, Bauru, SP, Brazil Abstract. Two groups of mice were infested with first stage larvae of the human bot-fly, Dermatobia hominis (Linnaeus Jr) (Diptera: Oestridae). In the first group, skin biopsies were carried out 1, 3, 5, 7, 10 and 18 days after infestation. The second group was also infested but had all the larvae removed 5 days after infestation. The mice in the latter group were reinfested 4 weeks later and skin biopsies were carried out 1, 3, 5, 7, 10 and 18 days after reinfestation. In the first group, an inflammatory reaction began slowly, the neutrophils being the main inflammatory cells, eosinophils being scarce. The reaction progressed with time, developing a necrotic halo around the larvae containing inflammatory cells sur- rounded by fibroblasts. The inflammation invaded the adjacent tissue. In the second group, the inflammatory reaction was intense on the day immediately after reinfestation, the pattern being changed by the presence of a large number of eosinophils. Activated fibroblasts surrounding the necrotic area around the larvae appeared 3 days after reinfestation in the second group and 7 days after infestation in the first group. The results demonstrated that the previous contact with the antigens elicited the early arrival of eosinophils, probably through the chemotactic factors liberated by mast cells in the anaphylactic reaction.
    [Show full text]
  • The Timing and Departure Rate of Larvae of the Warble Fly Hypoderma
    The timing and departure rate of larvae of the warble fly Hypoderma (= Oedemagena) tarandi (L.) and the nose bot fly Cephenemyia trompe (Modeer) (Diptera: Oestridae) from reindeer Arne C. Nilssen & Rolf E. Haugerud Zoology Department, Tromsø Museum, N-9006 Tromsø, Norway Abstract: The emergence of larvae of the reindeer warble fly Hypoderma (= Oedemagena) tarandi (L.) (n = 2205) from 4, 9, 3, 6 and 5 Norwegian semi-domestic reindeer yearlings (Rangifer tarandus tarandus (L.)) was registered in 1988, 1989, 1990, 1991 and 1992, respectively. Larvae of the reindeer nose bot fly Cephenemyia trompe (Moder) (n = 261) were recor• ded during the years 1990, 1991 and 1992 from the same reindeer. A collection cape technique (only H. tarandi) and a grating technique (both species) were used. In both species, dropping started around 20 Apr and ended 20 June. Peak emergence occurred from 10 May - 10 June, and was usually bimodal. The temperature during the larvae departure period had a slight effect (significant only in 1991) on the dropping rate of H. tarandi larvae, and temperature during infection in the preceding summer is therefore supposed to explain the uneven dropping rate. This appeared to be due to the occurrence of successive periods of infection caused by separate periods of weather that were favourable for mass attacks by the flies. As a result, the temporal pattern of maturation of larvae was divided into distinct pulses. Departure time of the larvae in relation to spring migration of the reindeer influences infection levels. Applied possibilities for biological control by separating the reindeer from the dropping sites are discussed.
    [Show full text]
  • The Ox Warble Flies
    BULLETIN 428 NOVEMBER, 1928 The Ox Warble Flies Hypoderma bovis de Geer Hypoderma lineatum de Villers Don C. Mote OHIO AGRICULTURAL EXPERIMENT STATION \Vooster, Ohio CONTENTS Introduction . .. 3 Hosts .............................................................. 4 Effect of the Warble Flies on Man and Animals . .. 5 Economic Importance . .. 8 Distribution . ................................ 10 Biology and Habits . 12 Larvae in the Gullet and Spinal Canal . 19 Emergence of Adults ................................................. 27 Combatting the Warble Flies ......................................... 28 Extracting and Destroying . 28 Larvacides . ............. 31 Fly Repellents, Ovicides . 34 Medicinal Treatment . 35 Natural Immunity ................................................ 35 Protection of Cattle by Housing ................................... 36 H. bovis and H. linea tum Differentiated ................................ 36 The Adult . 37 The Egg ........................................................ 38 The Larvae . 38 The Puparia . 42 Literature Cited .................................................. , . 43 (1) This page intentionally blank. THE OX WARBLE FLIES~· Hypoderma bovis de Geer Hypoderma lineatum de Villers Order, Diptera Family, Oestridae DON C. MOTE INTRODUCTION Domestic cattle in Ohio are subject to attack by two species of warble flies-Hypoderma bovis de Geer and Hypoderma lineatum de Villers. Every cattleman is familiar with grubs that produce the tumors or warbles on the backs of cattle in the spring and nearly
    [Show full text]
  • Reindeer Warble Fly Larvae Found in Red Deer Nilssen, A. C.1
    Reindeer warble fly larvae found in red deer Reinens gorm-larver funnet i hjort Nilssen, A. C.1 & Gjershaug, J. O.2. 1. Zoology Department, Tromsø Museum, N-9000 Tromsø, Norway. 2. Sognli Forsøksgård, N-7320 Fannrem, Norway. Abstract: Seven third instar larvae of the reindeer warble fly (Hypoderma (=Oedemagena) tarandi) were found in a 2-3 year old male red deer {Cervus elaphus) shot on 14 November 1985 at Todalen, western Norway. This it, the first report of H. tarandi from red deer. In reindeer third instar larvae are found from February to June, and the unusual date of this record indicates a delayed development of the larvae due to abnormal host reactions. Warble fly larvae, probably H. tarandi, are also reported from moose {Alces al• ces) in northern Norway. Key words: Oedemagena tarandi, Hypoderma tarandi, Cervus elaphus, Rangifer tarandus, Alces alces, reindeer, caribou, red deer, moose, exotic host, unsuitable host, reindeer warble fly, Norway. Rangifer, 8 (1): 35-37 Introduction and first and second instar larvae also from The warble fly Hypoderma tarandi is endopa- musk ox {Ovibos moschatus) in Canada (Jan- rasitic in reindeer and caribou {Rangifer ta• sen 1970, Alendal and Helle 1983). Nordkvist randus), occurring in most of the holarctic (in Skjenneberg and Slagsvold 1968) reported distribution of the host (Zumpt 1965). The H. tarandi from roe deer {Capreolus capreo• adult females attach eggs to leg and body lus), and this appears to be the only record of hairs. After hatching the larvae penetrate the H. tarandi in a cervid other than reindeer. skin, migrate intermuscularly and complete Here we report H.
    [Show full text]
  • Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet?
    Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet? JOHN D. SPETH Department of Anthropology, 101 West Hall, 1085 South University Avenue, University of Michigan, Ann Arbor, MI 48109-1107, USA; [email protected] submitted: 21 February 2017; revised 2 April 2017; accepted 4 April 2017 ABSTRACT This paper begins by exploring the role of fermented and deliberately rotted (putrefied) meat, fish, and fat in the diet of modern hunters and gatherers throughout the arctic and subarctic. These practices partially ‘pre-digest’ the high protein and fat content typical of northern forager diets without the need for cooking, and hence without the need for fire or scarce fuel. Because of the peculiar properties of many bacteria, including various lactic acid bacteria (LAB) which rapidly colonize decomposing meat and fish, these foods can be preserved free of pathogens for weeks or even months and remain safe to eat. In addition, aerobic bacteria in the early stages of putrefaction deplete the supply of oxygen in the tissues, creating an anaerobic environment that retards the production of po- tentially toxic byproducts of lipid autoxidation (rancidity). Moreover, LAB produce B-vitamins, and the anaerobic environment favors the preservation of vitamin C, a critical but scarce micronutrient in heavily meat-based north- ern diets. If such foods are cooked, vitamin C may be depleted or lost entirely, increasing the threat of scurvy. Psy- chological studies indicate that the widespread revulsion shown by many Euroamericans to the sight and smell of putrefied meat is not a universal hard-wired response, but a culturally learned reaction that does not emerge in young children until the age of about five or later, too late to protect the infant from pathogens during the highly vulnerable immediate-post-weaning period.
    [Show full text]
  • Parasites of Caribou (2): Fly Larvae Infestations
    Publication AP010 July 27, 2004 Wildlife Diseases FACTSHEET Parasites of Caribou (2): Fly Larvae Infestations Introduction All wild animals carry diseases. In some cases these might be of concern if they can spread to humans or domestic animals. In other cases they might be of interest if they impact on the health of our wild herds, or simply because the signs of the disease have been noticed and you want to know more. This factsheet is one of a series produced on the common diseases of caribou and covers the larval form of two different flies commonly seen in this province. Neither of these are a cause of public health Figure 2: Warble fly larvae emerging from back concern. Fly Larvae Infestations Warbles are the larvae of the warble fly (Hypoderma tarandi) which lays its eggs on the hair of Warbles and throat bots are common names for the caribou’s legs and lower body in mid-summer. the larvae of two types of flies that can be found in the Once the eggs hatch, the larvae (maggots) penetrate carcasses of caribou in this province. Many people the skin of the caribou and start a long migration who hunt these animals may be familiar with their towards the animal’s back. appearance. Hunters may see signs of these migrating larvae Warbles in the fall when skinning out an animal. At this early part of the larvae’s life, they are about the size of a small grain of rice and are almost transparent. They may be seen on the surface of the muscles or under the skin.
    [Show full text]
  • Myiasis in Humans and Animals
    Animal Husbandry, Dairy and Veterinary Science Pilot Study ISSN: 2513-9304 Myiasis in humans and animals Vahedi Nouri N1*and Salehi A2 1Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran 2Department of Veterinary Medicine, Babol Islamic Azad University, Iran Abstract Myiasis is the contamination of live or dead tissue of vertebrates via the larvae of various flies. Myiasis occurred both in humans and animals. The myiasis contamination has a worldwide distribution. Different genera of three families which include: Oestridae, calliphoridae and Sarcophagidae have a role in creating myiasis in animals and humans. Myiasis in addition to health problems, can cause a lot of economic problems. Decrease of fly population as a causative of myiasis is one of the important ways to control this contamination. Also, surgical approaches and removing larvae of flies in infected parts, is the other treatment for the contamination. Introduction decaying organic matter and carcasses of animals. The external parasite producing secondary myiasis lives naturally in the form of a detritivore Although Kirby and Spence (1918) for the first time, used the term and usually cannot produce Myiasis but may attack previous living Scholechiasis for infected animals with fly larvae [1], Hoop (1840) used organism secondary [8]. the term Myiasis for many years before that [2]. Myiasis is a Greek word (Myia=Fly) meaning fly, which means the contamination of organs, Accidental myiasis living tissues or dead vertebrates (humans and all kinds of animals) In this type, the larvae of the fly create a random Myiasis and may with fly larvae.
    [Show full text]
  • By Hypoderma Tarandi, Northern
    INTERNATIONAL POLAR YEAR DISPATCHES by Hypoderma spp. is not known. Eyebrows and eyelashes Human have been suggested as possible targets for oviposition (3). Oviposition on human scalp hair has been achieved experi- Ophthalmomyiasis mentally and could be the preferential site in humans (3). An alternative explanation is transfer of the larvae directly Interna Caused from the guard hairs of the caribou to the human eye or skin through close contact with animal pelts. The parasite does by Hypoderma not appear to complete its life cycle in humans (1,2). tarandi, Northern We present the fi rst, to our knowledge, 2 published cases of ophthalmomyiasis interna caused by H. tarandi in Canada Canada. Furthermore, we present the fi rst published use of Hypoderma spp. serologic testing to assist in the diagnosis Philippe R.S. Lagacé-Wiens,* Ravi Dookeran,* of myiasis in humans. Stuart Skinner,* Richard Leicht,* Douglas D. Colwell,† and Terry D. Galloway* The Cases and Literature Review Human myiasis caused by bot fl ies of nonhuman ani- The fi rst patient was a 41-year-old woman from Rankin mals is rare but may be increasing. The treatment of choice Inlet, Nunavut, Canada, who noticed fl oaters (objects in the is laser photocoagulation or vitrectomy with larva removal fi eld of vision that originate in the vitreous) in her right eye and intraocular steroids. Ophthalmomyiasis caused by Hy- in August 2006. Initial funduscopic examination showed poderma spp. should be recognized as a potentially revers- posterior vitreous detachment. Two weeks later, her vision ible cause of vision loss. was more impaired; repeat funduscopy showed panuveitis.
    [Show full text]