Implementing Security in an IP Multimedia Subsystem (IMS) Next Generation Network – a Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Implementing Security in an IP Multimedia Subsystem (IMS) Next Generation Network – a Case Study IMPLEMENTING SECURITY IN AN IP MULTIMEDIA SUBSYSTEM (IMS) NEXT GENERATION NETWORK – A CASE STUDY By Jose M. Ortiz-Villajos A Thesis Submitted to the Faculty of The College of Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida April 2009 ABSTRACT Author: Jose M. Ortiz-Villajos Title: Implementing Security in an IP Multimedia Subsystem (IMS) Next Generation Network – A Case Study Institution: Florida Atlantic University Dissertation Advisor: Dr. Eduardo Fernandez Degree: Master of Science Year: 2009 The IP Multimedia Subsystem (IMS) has gone from just a step in the evolution of the GSM cellular architecture control core, to being the de-facto framework for Next Generation Network (NGN) implementations and deployments by operators world-wide, not only cellular mobile communications operators, but also fixed line, cable television, and alternative operators. With this transition from standards documents to the real world, engineers in these new multimedia communications companies need to face the task of making these new networks secure against threats and real attacks that were not a part of the previous generation of networks. We present the IMS and other competing frameworks, we analyze the security issues, we present the topic of Security Patterns, we introduce several new patterns, including the basis for a Generic Network pattern, and we apply these concepts to designing a security architecture for a fictitious 3G operator using IMS for the control core. ii IMPLEMENTING SECURITY IN AN IP MULTIMEDIA SUBSYSTEM (IMS) NEXT GENERATION NETWORK – A CASE STUDY TABLES...................................................................................................................................................... viii FIGURES .......................................................................................................................................................ix GLOSSARY...................................................................................................................................................xi ACRONYMS ................................................................................................................................................xx PART A VOICE OVER IP AND MULTI-MEDIA NETWORKS................................................................1 1 INTRODUCTION...................................................................................................................................2 1.1 Motivation.........................................................................................................................................2 1.2 Telecom Provider Security Concerns................................................................................................3 1.3 Thesis Outline ...................................................................................................................................5 2 CURRENT NGN SERVICES AND TECHNOLOGY ...........................................................................8 2.1 Consumers.........................................................................................................................................8 2.2 Operators.........................................................................................................................................10 2.2.1 Telcos and Wireless...............................................................................................................10 2.2.2 Cable Companies...................................................................................................................14 2.2.3 New entrants..........................................................................................................................16 2.3 Standards.........................................................................................................................................16 2.3.1 3GPP/3GPP2 .........................................................................................................................16 2.3.2 TISPAN.................................................................................................................................17 2.3.3 PacketCable...........................................................................................................................18 2.3.4 IETF ......................................................................................................................................20 2.4 Regulatory Mandates ......................................................................................................................21 2.4.1 Lawful Interception (LI)........................................................................................................21 iii 2.4.2 Emergency Services ..............................................................................................................23 2.5 Current Security Standards .............................................................................................................24 2.5.1 3GPP......................................................................................................................................25 2.5.2 CableLabs PacketCable .........................................................................................................26 2.5.3 ETSI TISPAN........................................................................................................................26 3 THE IP MULTIMEDIA SUBSYSTEM (IMS).....................................................................................28 3.1 IMS Basics......................................................................................................................................28 3.2 Logical Functions............................................................................................................................32 3.3 Reference Points .............................................................................................................................34 3.4 Design Principles ............................................................................................................................37 3.4.1 Separation of Applications, Control, and Media ...................................................................39 3.4.2 Access Network Independence..............................................................................................40 3.4.3 Avoidance of Duplication of Common Resources ................................................................42 3.4.4 Re-use of Internet Open Interfaces and Technology .............................................................43 3.4.5 Decoupling of User-Device Identity......................................................................................44 3.4.6 Operator Control of Security, QoS, Charging .......................................................................45 3.5 Some Published IMS Announcements............................................................................................46 3.5.1 Verizon ..................................................................................................................................48 3.5.2 KPN.......................................................................................................................................49 3.5.3 Telia Sonera...........................................................................................................................49 3.5.4 AT&T....................................................................................................................................50 3.5.5 China Telecom ......................................................................................................................51 3.5.6 Chungwha Telecom...............................................................................................................52 3.5.7 Com Hem ..............................................................................................................................52 3.5.8 Vodafone ...............................................................................................................................52 3.5.9 Telefonica..............................................................................................................................52 3.5.10 North American Cable Companies (MSO’s).........................................................................53 4 OTHER NEXT GENERATION NETWORKS ....................................................................................54 iv 4.1 CableLabs PacketCable 2.0.............................................................................................................54 4.1.1 PacketCable 2.0 Architecture ................................................................................................55 4.2 TISPAN ..........................................................................................................................................58 4.3 Multiservice Switching Forum........................................................................................................61 5 ABSTRACTING THE NETWORK .....................................................................................................64 5.1 Functions in IP-based Communications Networks .........................................................................64 5.2 Network Element Classification .....................................................................................................65
Recommended publications
  • Packetcable™ ENUM Server Provisioning Specification PKT-SP
    PacketCable™ ENUM Server Provisioning Specification PKT-SP-ENUM-PROV-C01-130930 CLOSED Notice This PacketCable specification is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. Neither CableLabs nor any member company is responsible to any party for any liability of any nature whatsoever resulting from or arising out of use or reliance upon this document, or any document referenced herein. This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein. Cable Television Laboratories, Inc., 2008 - 2013 PKT-SP-ENUM-PROV-C01-130930 PacketCable™ DISCLAIMER This document is published by Cable Television Laboratories, Inc. ("CableLabs®"). CableLabs reserves the right to revise this document for any reason including, but not limited to, changes in laws, regulations, or standards promulgated by various agencies; technological advances; or changes in equipment design, manufacturing techniques, or operating procedures described, or referred to, herein. CableLabs makes no representation or warranty, express or implied, with respect to the completeness, accuracy, or utility of the document or any information or opinion contained in the report.
    [Show full text]
  • Quicksec for IMS Robust Ipsec Security for the IP Multimedia Subsystem
    QuickSec for IMS Robust IPsec Security for the IP Multimedia Subsystem The IP Multimedia Subsystem (IMS) is an architectural framework that enables carriers to offer premium services, such as video and voice over IP (VoIP) to desktops and next-generation mobile devices. With carrier adoption of an IP-based Benefi ts infrastructure comes increased vulnerability to a new set of security threats. New attacks Massive Scalability to meet targeting signaling and billing data make demands for throughput IMS implementations, new services, and in GW use premium content susceptible to billing fraud, unauthorized use of services, and denial of Small Footprint and Deterministic service attacks. Memory Allocation in client use In order to protect sensitive call setup and billing data from interception and manipulation, IMS-specifi c API’s for fast and the 3GPP and 3GPP2 recommend the use of easy integration IPsec to provide robust integrity, confidentiality, and authentication. SafeNet provides a complete Inter-Networking Security Nested Tunnels with support for IMS security solution for telecom equipment To protect traffic between networks and IPv4 and IPv6 manufacturers looking to build robust IPsec- implement network domain security (NDS), based security into network gateways and user carriers deploy Security Gateways (SEG) at the Handset and Gateway equipment. edge of the security domains. cryptographic offl oad, for greater throughput, massive scalability, IMS Security Solution QuickSec for IMS provides a massively scalable CPU conservation and increased security solution to handle the most demanding QuickSec for IMS delivers the advanced levels battery life throughput and reliability requirements. of protection, reliability, and performance mandated by OEM vendors and industry Complementary Security Products Security designed specifi cally for standards.
    [Show full text]
  • ETSI TS 187 003 V1.7.1 (2008-02) Technical Specification
    ETSI TS 187 003 V1.7.1 (2008-02) Technical Specification Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); NGN Security; Security Architecture 2 ETSI TS 187 003 V1.7.1 (2008-02) Reference RTS/TISPAN-07024-NGN-R1 Keywords architecture, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
    [Show full text]
  • IMS Profile for Converged IP Communications Version 5.0 29 May 2018
    GSM Association Non-confidential Official Document NG.102 - IMS Profile for Converged IP Communications IMS Profile for Converged IP Communications Version 5.0 29 May 2018 This is a Non-binding Permanent Reference Document of the GSMA Security Classification: Non-confidential Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. Copyright Notice Copyright © 2018 GSM Association Disclaimer The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. V5.0 Page 1 of 26 GSM Association Non-confidential Official Document NG.102 - IMS Profile for Converged IP Communications Table of Contents 1 Introduction 4 1.1 Overview 4 1.2 Relationship to Existing
    [Show full text]
  • Security Services in IMS
    Security Services in IMS Lehrstuhl für UNIKASSEL Kommunikationstechnik VERSITÄT Prof. Dr.-Ing. Klaus David COMMUNICATIONS TECHNOLOGY (CT1) Report on Security Services in IMS (IP Multimedia Subsystem) By Hariharan, Priya - 24200190 Siddiqui Abbas Ali - 24200213 July 2005 1 Security Services in IMS CONTENTS 1. ABSTRACT................................................................................................................ 3 2. MARKET TRENDS IN COMMUNICATION.............................................................. 4 2.1 What Customer and Operator needs?? ..................................................................................................... 5 3. IP MULTIMEDIA SUBSYSTEM (IMS)....................................................................... 6 3.1 Motivation for IP Multimedia Subsystem (IMS)....................................................................................... 6 3.2 Definition of IP Multimedia Subsystem (IMS).......................................................................................... 6 3.3 The IMS - Overview................................................................................................................................. 6 4. SECURITY..................................................................................................................... 8 4.1 Need for Security...................................................................................................................................... 8 4.2 Security Services in IMS.........................................................................................................................
    [Show full text]
  • Ghost Calls from Operational 4G Call Systems: IMS Vulnerability, Call Dos A￿ack, and Countermeasure
    Ghost Calls from Operational 4G Call Systems: IMS Vulnerability, Call DoS Aack, and Countermeasure Yu-Han Lu, Chi-Yu Li, Yao-Yu Tian Xie, Guan-Hua Tu Wei-Xun Chen Li, Sandy Hsin-Yu Hsiao Department of Computer Science Department of Computer Science Department of Computer Science and Engineering College of Computer Science College of Computer Science Michigan State University National Chiao Tung University National Chiao Tung University East Lansing, Michigan, USA Hsinchu, Taiwan Hsinchu, Taiwan ABSTRACT 90 percent of combined 4G and 5G subscriptions. Undoubtedly, the IMS (IP Multimedia Subsystem) is an essential framework for pro- IMS system will play a decisive role for future call services. viding 4G/5G multimedia services. It has been deployed worldwide VoWi-Fi extends the reach of the IMS call service, yet with a to support two call services: VoLTE (Voice over LTE) and VoWi-Fi larger attack surface than conventional voice solutions. Its software- (Voice over Wi-Fi). VoWi-Fi enables telephony calls over the Wi-Fi based framework is barely hardened by existing hardware-based network to complement VoLTE. In this work, we uncover that the security from the telecom modem. It may suer, when an adversary VoWi-Fi signaling session can be hijacked to maliciously manipu- gets full control over the phone OS (e.g., root access). As VoWi-Fi late the IMS call operation. An adversary can easily make ghost still follows the same security principle as VoLTE, we are interested calls to launch a stealthy call DoS (Denial of Service) attack against in whether VoWi-Fi may imperil the IMS ecosystem.
    [Show full text]
  • Federal Communications Commission FCC 05-13 Before the Federal Communications Commission Washington, D.C. 20554 in the Matter Of
    Federal Communications Commission FCC 05-13 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Annual Assessment of the Status of Competition ) MB Docket No. 04-227 in the Market for the Delivery of Video ) Programming ) ELEVENTH ANNUAL REPORT Adopted: January 14, 2005 Released: February 4, 2005 By the Commission: Chairman Powell issuing a statement; Commissioners Copps and Adelstein concurring and issuing a joint statement. TABLE OF CONTENTS Paragraph I. INTRODUCTION .....................................................................................................................................1 A. Scope of this Report..................................................................................................................2 B. Summary of Findings ..............................................................................................................4 1. The Current State of Competition: 2004 ...................................................................4 2 General Findings .........................................................................................................7 II. COMPETITORS IN THE MARKET FOR THE DELIVERY OF VIDEO PROGRAMMING......16 A. Cable Television Service.......................................................................................................16 1. General Performance.................................................................................................17 2. Capital Acquisition and Disposition.........................................................................33
    [Show full text]
  • Packetcable™ 1.5 Specifications Dynamic Quality-Of-Service PKT-SP
    PacketCable™ 1.5 Specifications Dynamic Quality-of-Service PKT-SP-DQOS1.5-C01-191120 CLOSED Notice This PacketCable specification is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. You may download, copy, distribute, and reference the documents herein only for the purpose of developing products or services in accordance with such documents, and educational use. Except as granted by CableLabs® in a separate written license agreement, no license is granted to modify the documents herein (except via the Engineering Change process), or to use, copy, modify or distribute the documents for any other purpose. This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. To the extent this document contains or refers to documents of third parties, you agree to abide by the terms of any licenses associated with such third-party documents, including open source licenses, if any. Copyright 2004-2019 Cable Television Laboratories, Inc. All rights reserved. PKT-SP-DQOS1.5-C01-191120 PacketCable™ 1.5 Specifications DISCLAIMER This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein.
    [Show full text]
  • Management's Discussion and Analysis Altice Luxemborg
    MANAGEMENT’S DISCUSSION AND ANALYSIS ALTICE LUXEMBORG S.A. FOR THE YEAR ENDED DECEMBER 31, 2018 Contents Overview Strategy and performance Key Factors Affecting Our Results of Operations Basis of Preparation Group financial review Significant Events Affecting Historical Results Discussion and analysis of the results and financial condition of the Group Revenue Adjusted EBITDA Other items Impacting Profit/(Loss) Capital Expenditure Liquidity and Capital Resources Capital expenditures Discussion and analysis of the financial condition of the Group Key Operating Measures Other Disclosures Key Income Statement Items 1 The Group is a multinational group operating across three sectors: (i) telecom (broadband and mobile communications), (ii) content and media and (iii) advertising. The Group operates in Western Europe (comprising France and Portugal), Israel, the Dominican Republic and the French overseas territories (comprising Guadeloupe, Martinique, French Guiana, La Réunion and Mayotte (the “French Overseas Territories”)). The parent company of the Group is Altice Luxembourg S.A. (the “Company”). The Group had expanded internationally in previous years through several acquisitions of telecommunications businesses, including: SFR and MEO in Western Europe; HOT in Israel; and Altice Hispaniola and Tricom in the Dominican Republic. The Group’s acquisition strategy has allowed it to target cable, FTTH or mobile operators with what it believes to be high- quality networks in markets the Group finds attractive from an economic, competitive and regulatory perspective. Furthermore, the Group is focused on growing the businesses that it acquired organically, by focusing on cost optimization, increasing economies of scale and operational synergies and improving quality of its network and services. As part of its innovative strategy, the Group is focusing on investment in its proprietary best-in-class infrastructure, both in fibre and mobile, commensurate with the Group’s position as a number one or number two operator in each market.
    [Show full text]
  • New Security Threats Caused by IMS-Based SMS Service in 4G LTE Networks
    New Security Threats Caused by IMS-based SMS Service in 4G LTE Networks ∗ ∗ Guan-Hua Tu Chi-Yu Li Chunyi Peng Michigan State University, National Chiao Tung Ohio State University East Lansing, MI, USA University, Columbus, OH, USA [email protected] Hsinchu City, Taiwan [email protected] [email protected] state.edu Yuanjie Li Songwu Lu University of California, University of California, Los Angeles, CA, USA Los Angeles, CA, USA [email protected] [email protected] ABSTRACT bank (e.g., Chase), apparel (e.g., A&F), courier (e.g., Fedex, UPS) SMS (Short Messaging Service) is a text messaging service for mo- and instant messaging application (e.g., Whatsapp), to name a few. bile users to exchange short text messages. It is also widely used to The success of the SMS-based approach stems from two rea- provide SMS-powered services (e.g., mobile banking). With the sons. First, the delivery of SMS messages within mobile networks rapid deployment of all-IP 4G mobile networks, the underlying protects confidentiality and integrity [21]. Though it has some se- technology of SMS evolves from the legacy circuit-switched net- curity issues (e.g., the unauthorized SMS messages sent by the work to the IMS (IP Multimedia Subsystem) system over packet- phone-side malware or the spoofed SMS messages sent from the switched network. In this work, we study the insecurity of the Internet), thanks to the efforts of research community and indus- IMS-based SMS. We uncover its security vulnerabilities and ex- try [8, 9, 15, 37, 43, 48, 49], they are well addressed in the 2G/3G ploit them to devise four SMS attacks: silent SMS abuse, SMS networks, at least for the top four largest US carriers.
    [Show full text]
  • Architecture for IMS Security to Mobile: Focusing on Artificial Immune System and Mobile Agents Integration
    Master Thesis Computer Science Thesis no: MCS-2009:24 May 22nd 2009 Architecture for IMS Security to Mobile: Focusing on Artificial Immune System and Mobile Agents Integration . Author: Kalyani Chalamalsetty School of Computing Blekinge Institute of Technology Soft Center SE-37225 RONNEBY SWEDEN This thesis is submitted to the Department of Software Engineering and Computer Science, School of Engineering at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Kalyani Chalamalasetty E-mail: [email protected] Department of Software Engineering and Computer Science University advisor(s): Dr. Bengt CarlssonAssociate professor Email: [email protected] Department of Software Engineering and Computer Science Dr. Guohua Bai Assistant professor Email: [email protected] Department of Interaction and System Design School of Computing Blekinge Institute of Technology Soft Center SE-37225 RONNEBY SWEDEN ii ABSTRACT The IP Multimedia Subsystem (IMS) is an open IP based service infrastructure that enables an easy deployment of new rich multimedia services mixing voice and data. The IMS is an overlay network on top of IP that uses SIP as the primary signaling mechanism. As an emerging technology, the SIP standard will certainly be the target of Denial of Service (DoS) attacks and consequently IMS will also inherit this problem. The objective of proposed architecture for IMS is to cram the potential attacks and security threats to IP Multimedia Subsystem (IMS) and explore the security solutions developed by 3GPP.
    [Show full text]
  • (Ims) Architecture
    InSight: RIVIER ACADEMIC JOURNAL, VOLUME 4, NUMBER 1, SPRING 2008 AN OVERVIEW OF INTERNET PROTOCOL MULTIMEDIA SUBSYSTEMS (IMS) ARCHITECTURE Jhansi Jujjuru* Graduate Student, M.S. in Computer Science Program, Rivier College Keywords: IMS Architecture, Application Servers in IMS, IMS Protocols Abstract Internet Protocol Multimedia Subsystems (IMS) is an internationally standardized Next Generation Networking (NGN) architecture for telecom operators in order to provide mobile and fixed multimedia services. It uses Voice-over-IP (VoIP) implementation based on a 3GPP-standardised implementation of Session Initiation Protocol (SIP), and runs over the standard Internet Protocol (IP). It also specifies interoperability and roaming, and provides bearer control, charging and security. IMS is well integrated with existing voice and data networks, while adopting many of the key characteristics of the IT domain. This makes IMS a key enabler for fixed-mobile Convergence and value-based charging. IMS also supports existing Packet-Switched and Circuit–Switched phone systems. 1. Introduction Recently, web based multimedia services have gained popularity and have proven themselves to be viable of communication. This has inspired the telecommunication service providers and network operators to reinvent themselves to try and provide value added IP centric services. There was a need for a system, which would allow new services to be introduced rapidly with reduced capital expense (CAPEX) and operational expense (OPEX) through increased efficiency in network
    [Show full text]