Security Services in IMS

Total Page:16

File Type:pdf, Size:1020Kb

Security Services in IMS Security Services in IMS Lehrstuhl für UNIKASSEL Kommunikationstechnik VERSITÄT Prof. Dr.-Ing. Klaus David COMMUNICATIONS TECHNOLOGY (CT1) Report on Security Services in IMS (IP Multimedia Subsystem) By Hariharan, Priya - 24200190 Siddiqui Abbas Ali - 24200213 July 2005 1 Security Services in IMS CONTENTS 1. ABSTRACT................................................................................................................ 3 2. MARKET TRENDS IN COMMUNICATION.............................................................. 4 2.1 What Customer and Operator needs?? ..................................................................................................... 5 3. IP MULTIMEDIA SUBSYSTEM (IMS)....................................................................... 6 3.1 Motivation for IP Multimedia Subsystem (IMS)....................................................................................... 6 3.2 Definition of IP Multimedia Subsystem (IMS).......................................................................................... 6 3.3 The IMS - Overview................................................................................................................................. 6 4. SECURITY..................................................................................................................... 8 4.1 Need for Security...................................................................................................................................... 8 4.2 Security Services in IMS.......................................................................................................................... 9 4.3 IMS Security Architecture...................................................................................................................... 10 4.4 Access Security in IMS .......................................................................................................................... 11 4.4.1 SIP Signaling Protection................................................................................................................. 11 4.4.2 Authentication for IMS Services .................................................................................................... 11 4.4.3 Authentication Process in IMS ....................................................................................................... 14 4.4.4 Session Initiation Process in IMS ................................................................................................... 15 4.4.5 SIP Signaling Protection................................................................................................................. 16 4.4.6 User within Home Network............................................................................................................ 17 4.4.7 User in Visited Network ................................................................................................................. 18 4.5 IMS HTTP-Access Security ................................................................................................................... 19 4.6 IMS – Network Domain Security........................................................................................................... 20 4.7 IMS Media Plane Security...................................................................................................................... 22 5. CONCLUSION ........................................................................................................... 23 6. REFERENCES: ............................................................................................................ 24 2 Security Services in IMS 1. Abstract Person-to-person mobile communication is undergoing a transformation that will see users sharing rich content like never before. Based on the technologies of IP Multimedia Subsystem (IMS) and Session Initiation Protocol (SIP), the mobile and Internet domains will merge, allowing users to access, create, consume and share digital content using interoperable devices. IMS enables services to be delivered in a standardized, well- structured way that truly makes the most of layered architecture. At the same time, it provides a future-proof architecture that simplifies and speeds up the service creation and provisioning process, while enabling legacy inter-working. The horizontal architecture of IMS enables operators to move away from vertical ‘stovepipe’ implementations of new services – eliminating the costly and complex traditional network structure of overlapping functionality for charging, presence, group and list management, routing and provisioning. The Security issue is one of the essential for such a service. Security experts preach that hackers, software vandals, content pirates and other security threats will never be totally eliminated. The tools of the hackers' trade -- the viruses, worms and other assorted collections of malicious code—have a way of morphing and mutating into new forms and shapes. Since IMS is an open architecture, it is vulnerable to threats. In this report, we have presented the present market trends in Communication, role of IMS and it’s overview, IMS security architecture & various security services in IMS. 3 Security Services in IMS 2. Market trends in Communication More than 100 years ago, the telephone eliminated the obstacle of distance. The mobile phone came next, removing the obstacle of location. Today, telephony, mobility, and the Internet are converging. Mobile phones were used initially for voice communications. With the invention of short message service (SMS), or text messaging, mobile services began to shift towards becoming increasingly data-based. Today, we are on the brink of having mobile communications as varied and powerful as our imagination. Multimedia messaging - or MMS (Multimedia Messaging Service) - opens up the possibility of including much more than just text: images, graphics, and voice and audio clips. Fig 1 Market Trends in Communication User and enterprise needs will drive multimedia service evolution for both mobile and fixed operators. Users expect to be able to do more with their communications services, for less money, and are showing an interest in services beyond voice. They are attracted towards wide range of communications information and entertainment services in a user friendly and cost effective way. Users want access to the services wherever, whenever and however they want. Technologies like broadband access, Voice over IP (VoIP) and wireless LAN 4 Security Services in IMS (WLAN, or WiFi) are reducing the entry barrier to new service providers in both the fixed and mobile communications worlds. Today’s operators, therefore, need a way to make their services more appealing to users and to maintain their customer relationships and revenue flow. They need to make the best use of their current technology investments and embrace new ones –to create service packages that are easy and attractive for subscribers to use. 2.1 What Customer and Operator needs?? For Customer ¾ Rich user experience more broadband on move, communicate in real time using any combination of voice, video, picture & messages ¾ Convenience and ease of use interoperability between terminals & operators ¾ Safe Communication Free from middleware or malicious attacks, authorized access. For Operator ¾ Expand service offerings and revenues ¾ Controlled subscriber and business relationships ¾ Service Interoperability for mass market services 5 Security Services in IMS 3. IP Multimedia Subsystem (IMS) 3.1 Motivation for IP Multimedia Subsystem (IMS) • Enables rich communications combining multiple media or services • New IP-based services, easier & faster service creation and execution • Access independency, easier inter-working with the Internet • Services available over different access technologies • One network architecture for accommodating all services • Providing and requiring optimized Quality of Service • Smooth evolution from today’s networks and standards • Cost efficiency, evolution for current solutions • Openness: both specifications and (distributed) architecture 3.2 Definition of IP Multimedia Subsystem (IMS) “The IP Multimedia Subsystem (IMS) is an IP multimedia and telephony core network that is defined by 3GPP and 3GPP2 standards and organizations based on IETF Internet protocols. IMS is access independent as it supports IP to IP session over wire-line IP, 802.11, 802.15, CDMA, packet data along with GSM/EDGE/UMTS and other packet data applications. IMS is a standardized reference architecture that consists of session control, connection control and an applications services framework along with subscriber and services data. * “ * [Adapted from Lucent IP Multimedia Subsystem Overview] Some examples of IMS services are: ¾ Instant messaging - Peer to Peer messaging in real time ¾ Push to talk (PTT) - walkie talkie service ¾ Presence - dynamic profile of the user, visible to others and used to control services, information on personal status, terminal status, terminal capability, location, mood, personal logo ¾ Gaming – Peer to Peer or multiparty ¾ Rich Call 3.3 The IMS - Overview IP-based systems offer network operators the opportunity to expand their services, integrating voice and multimedia communications and delivering them into new environments with new purposes. This is what the industry calls convergence, bringing multiple media, multiple points of access, and multiple modes of and purposes for communication together into a single network.
Recommended publications
  • Quicksec for IMS Robust Ipsec Security for the IP Multimedia Subsystem
    QuickSec for IMS Robust IPsec Security for the IP Multimedia Subsystem The IP Multimedia Subsystem (IMS) is an architectural framework that enables carriers to offer premium services, such as video and voice over IP (VoIP) to desktops and next-generation mobile devices. With carrier adoption of an IP-based Benefi ts infrastructure comes increased vulnerability to a new set of security threats. New attacks Massive Scalability to meet targeting signaling and billing data make demands for throughput IMS implementations, new services, and in GW use premium content susceptible to billing fraud, unauthorized use of services, and denial of Small Footprint and Deterministic service attacks. Memory Allocation in client use In order to protect sensitive call setup and billing data from interception and manipulation, IMS-specifi c API’s for fast and the 3GPP and 3GPP2 recommend the use of easy integration IPsec to provide robust integrity, confidentiality, and authentication. SafeNet provides a complete Inter-Networking Security Nested Tunnels with support for IMS security solution for telecom equipment To protect traffic between networks and IPv4 and IPv6 manufacturers looking to build robust IPsec- implement network domain security (NDS), based security into network gateways and user carriers deploy Security Gateways (SEG) at the Handset and Gateway equipment. edge of the security domains. cryptographic offl oad, for greater throughput, massive scalability, IMS Security Solution QuickSec for IMS provides a massively scalable CPU conservation and increased security solution to handle the most demanding QuickSec for IMS delivers the advanced levels battery life throughput and reliability requirements. of protection, reliability, and performance mandated by OEM vendors and industry Complementary Security Products Security designed specifi cally for standards.
    [Show full text]
  • Wimax-UMTS Converging Architecture with IMS Signalling Analysis to Achieve Qos
    Available online at www.sciencedirect.com Procedia Technology 6 ( 2012 ) 16 – 23 2nd International Conference on Communication, Computing & Security [ICCCS-2012] WiMAX-UMTS Converging Architecture with IMS Signalling analysis to achieve QoS G.Vijayalakshmy a* and G. Sivaradje b a Perunthalaivar Kamarajar Institute of Engineering and Technology, Karaikal, Pondicherry University, India b Pondicherry Engineering College, Pondicherry University, Pondicherry,India Abstract The third-generation partnership project (3GPP) and 3GPP2 have standardized the IP multimedia subsystem (IMS) to provide ubiquitous and access network-independent IP-based services for next-generation networks via merging cellular networks and the Internet. The IEEE 802.16 worldwide interoperability for microwave access (WiMAX) promises to provide high data rate broadband wireless access services. The IP Multimedia Subsystem (IMS) seems to be the technology that will prevail in Next Generation Networks (NGN s), since the interworking environment and the service exibility that this technology offers to the currently deployed wireless broadband technologies makes it appealing to users, service developers and network operators. In this paper we propose a heterogeneous network model based on the IMS that integrates the Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS) and provides guaranteed QoS. In this paper, hybrid interworking architecture to integrate 3G (UMTS) and WiMAX networks with QoS is proposed. Moreover, IMS based signaling along with QoS algorithm was analyzed for UMTS and WiMAX interworking Architectures. QoS parameters such as Ethernet load and delay, IP Packet end to end delay, TCP delay, Active TCP connection count and TCP retransmission count, Email download response and upload response, Voice jitter, Voice packet delay variations and voice traffic received were analyzed © 20122012 The The Authors.
    [Show full text]
  • Design and Implementation of an IP Multimedia Subsystem (IMS) Emulator Using Virtualization Techniques
    Design and Implementation of an IP Multimedia Subsystem (IMS) Emulator Using Virtualization Techniques F. Ga lán 1,2, E. García2, C. Chávarri2, M. Gómez3, D. Fernández2 1: Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) Av. Canal Olimpic, s/n - Castelldefels, Spain [email protected] 2: Departamento de Ingeniería de Sistemas Telemáticos (DIT) Universidad Politécnica de Madrid (UPM) Av. Complutense, s/n - Madrid, Spain {galan,egarcia,chavarri,david}@dit.upm.es 3: Agora Systems, S. A. Velázquez, 46 - Madrid, Spain [email protected] Abstract Multimedia service provisioning in Packet-Switched networks is one of the most active research and standardization efforts nowadays, and constitutes the most likely evolution of current telecommunication networks. In this environment, the 3GPP IP Multimedia Subsystem (IMS) represents the service provisioning platform of choice for SIP-based content delivery in mobile and fixed environments. However, in spite of the advanced status of research and specification in this field, few IMS-based services have been defined or deployed, mainly due to the fact that production or experimental IMS platforms are scarcely available for service validation and testing. This paper addresses the design and implementation through virtualization techniques of an IMS testbed intended for the functional validation of services, presenting the involved technologies, the undertaken implementation strategy, and the experiences and tests carried out in the first stages of its development. Keywords IP Multimedia Subsystem, virtualization, VNUML, IMS, 3GPP 1. Introduction Given the current trend in telecommunications industry towards data packet switching (the so called all-IP approach), the IP Multimedia Subsystem (IMS) plays a key role as service provisioning platform in Next Generation Networks.
    [Show full text]
  • ETSI TS 187 003 V1.7.1 (2008-02) Technical Specification
    ETSI TS 187 003 V1.7.1 (2008-02) Technical Specification Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); NGN Security; Security Architecture 2 ETSI TS 187 003 V1.7.1 (2008-02) Reference RTS/TISPAN-07024-NGN-R1 Keywords architecture, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
    [Show full text]
  • IMS Profile for Converged IP Communications Version 5.0 29 May 2018
    GSM Association Non-confidential Official Document NG.102 - IMS Profile for Converged IP Communications IMS Profile for Converged IP Communications Version 5.0 29 May 2018 This is a Non-binding Permanent Reference Document of the GSMA Security Classification: Non-confidential Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. Copyright Notice Copyright © 2018 GSM Association Disclaimer The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. V5.0 Page 1 of 26 GSM Association Non-confidential Official Document NG.102 - IMS Profile for Converged IP Communications Table of Contents 1 Introduction 4 1.1 Overview 4 1.2 Relationship to Existing
    [Show full text]
  • Etsi Ts 123 228 V11.10.0 (2013-12)
    ETSI TS 123 228 V11.10.0 (2013-12) Technical Specification Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; IP Multimedia Subsystem (IMS); Stage 2 (3GPP TS 23.228 version 11.10.0 Release 11) 3GPP TS 23.228 version 11.10.0 Release 11 1 ETSI TS 123 228 V11.10.0 (2013-12) Reference RTS/TSGS-0223228vba0 Keywords GSM,LTE,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • Design of a Handset for the IP Multimedia Subsystem a Case Study
    Design of a Handset for the IP Multimedia Subsystem A Case Study James Sunil Selvam ITTIAM Systems [email protected] IMS Architecture OSA AS GSM SCF Application Layer OSA-SCS SIP AS IM-SSF Session Control CSCF Layer HSS GPRS, CDMA MGCF 802.11, DSL SIP Media Transport Layer Gateway EndPoint PSTN PTT, IM, VVoIP VoIP PTT, IM, VVoIP Hardware Block Diagram MIC LCD / Audio TOUCH Codec Speaker/ SCREEN Headphone GSM/ Keypad GPRS JTAG PROCESSOR WLAN Serial Board Control Flash/ Power SDRAM USB Reg TI Innovator Kit based on OMAP1510 Customised Hardware Based on OMAP™ Innovator Kit WLAN NOISE SUPRESSOR R O USB1 USB DWL-G122 T C TRANSCEIVER WLAN E 3.3V N N 5V O C GSM/ SIM E C GPRS CARD A F R E UART2 GM47 T LEVEL GSM/ N I SHIFTER GPRS R O T A MIC V O SPEAKER N N I POWER 2.75V (LEVEL SHIFTER) 5V POWER CONVERTERS 3.6V (GM47) Implementation Hardware Software Block Level SIP : oSIP Linux 2.6.16 RTP/RTCP : oRTP Circuit Design Audio Codec : Kernel Dep. G711, SPEEX, GSM Artwork Driver Management of SIM Test Programs Air Interface : GM47 TI Innovator Device + Custom Hardware Kernel Related Application Services VoIP : Linphone UA GUI Ergonomics Packaging ID Test Setup SIP Proxy & Registrar Ethernet Linphone UA Linphone UA IMS Handset Test Setup Integrated Product IMS Handset Design of a Handset for the IP Multimedia Subsystem - A Case Study James Selvam ITTIAM Systems (Pvt) Ltd Part 1: IMS Why IMS? • Internet – Ease of service creation & provision – Open protocols & large professional talent – Wealth of information • Cellular World – Service on the move
    [Show full text]
  • Ghost Calls from Operational 4G Call Systems: IMS Vulnerability, Call Dos A￿ack, and Countermeasure
    Ghost Calls from Operational 4G Call Systems: IMS Vulnerability, Call DoS Aack, and Countermeasure Yu-Han Lu, Chi-Yu Li, Yao-Yu Tian Xie, Guan-Hua Tu Wei-Xun Chen Li, Sandy Hsin-Yu Hsiao Department of Computer Science Department of Computer Science Department of Computer Science and Engineering College of Computer Science College of Computer Science Michigan State University National Chiao Tung University National Chiao Tung University East Lansing, Michigan, USA Hsinchu, Taiwan Hsinchu, Taiwan ABSTRACT 90 percent of combined 4G and 5G subscriptions. Undoubtedly, the IMS (IP Multimedia Subsystem) is an essential framework for pro- IMS system will play a decisive role for future call services. viding 4G/5G multimedia services. It has been deployed worldwide VoWi-Fi extends the reach of the IMS call service, yet with a to support two call services: VoLTE (Voice over LTE) and VoWi-Fi larger attack surface than conventional voice solutions. Its software- (Voice over Wi-Fi). VoWi-Fi enables telephony calls over the Wi-Fi based framework is barely hardened by existing hardware-based network to complement VoLTE. In this work, we uncover that the security from the telecom modem. It may suer, when an adversary VoWi-Fi signaling session can be hijacked to maliciously manipu- gets full control over the phone OS (e.g., root access). As VoWi-Fi late the IMS call operation. An adversary can easily make ghost still follows the same security principle as VoLTE, we are interested calls to launch a stealthy call DoS (Denial of Service) attack against in whether VoWi-Fi may imperil the IMS ecosystem.
    [Show full text]
  • UMTS); Technical Specifications and Technical Reports for a UTRAN-Based 3GPP System (3GPP TS 21.101 Version 14.0.0 Release 14)
    ETSI TS 121 101 V14.0.0 (2017-03) TECHNICAL SPECIFICATION Universal Mobile Telecommunications System (UMTS); Technical Specifications and Technical Reports for a UTRAN-based 3GPP system (3GPP TS 21.101 version 14.0.0 Release 14) 3GPP TS 21.101 version 14.0.0 Release 14 1 ETSI TS 121 101 V14.0.0 (2017-03) Reference RTS/TSGS-0021101ve00 Keywords UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Parlay PAM in 3GPP's IP-Multimedia Subsystem
    Parlay PAM in 3GPP’s IP-Multimedia Subsystem Jens-Michael Klaus, Thomas Magedanz (klaus/magedanz)@fokus.fraunhofer.de TU-Berlin - Architektur der Vermittlungsknoten - http://www.av.tu-berlin.de/ Fraunhofer FOKUS - http://www.fokus.fraunhofer.de Abstract: The document will give a brief overview of the Presence and Availabil- ity -specification in general, protocols used in the IP Multimedia Subsystem - namely SIP and Diameter - and will show a possible mapping for PAM-methods to the under- lying infrastructure. In addition it will describe the IMS infrastructure developed at Fraunhofer Fokus and the implementation of the PAM-server Keywords: IMS , Parlay, Presence, Availability, UMTS, SIP, Diameter, service enabler 1 Introduction In todays telecommunication networks there are several ways of communicating between users. People have telephones at home, telephones at work, a mobile phone, emails and sometimes use instant messaging applications. When one tries to get in contact with some- body else the question asked is often how to reach someone. Presence and Availability Management (PAM) defines interfaces allowing 3rd party service providers to use this in- formation to create their services. Instead of being put into each service the necessary logic is put into the network itself. The network will then decide taking into account different criteria e.g. informatition from various networks such as GSM an Internet and user-preferences, whether a person is present as well as available to another person. Several examples exist for this kind of service: T-Mobile Germany offers instant messag- ing services allowing subscribers to chat with their friends via their mobile devices while Vodafone Germany offers a system called “Friend-Finder”.
    [Show full text]
  • New Security Threats Caused by IMS-Based SMS Service in 4G LTE Networks
    New Security Threats Caused by IMS-based SMS Service in 4G LTE Networks ∗ ∗ Guan-Hua Tu Chi-Yu Li Chunyi Peng Michigan State University, National Chiao Tung Ohio State University East Lansing, MI, USA University, Columbus, OH, USA [email protected] Hsinchu City, Taiwan [email protected] [email protected] state.edu Yuanjie Li Songwu Lu University of California, University of California, Los Angeles, CA, USA Los Angeles, CA, USA [email protected] [email protected] ABSTRACT bank (e.g., Chase), apparel (e.g., A&F), courier (e.g., Fedex, UPS) SMS (Short Messaging Service) is a text messaging service for mo- and instant messaging application (e.g., Whatsapp), to name a few. bile users to exchange short text messages. It is also widely used to The success of the SMS-based approach stems from two rea- provide SMS-powered services (e.g., mobile banking). With the sons. First, the delivery of SMS messages within mobile networks rapid deployment of all-IP 4G mobile networks, the underlying protects confidentiality and integrity [21]. Though it has some se- technology of SMS evolves from the legacy circuit-switched net- curity issues (e.g., the unauthorized SMS messages sent by the work to the IMS (IP Multimedia Subsystem) system over packet- phone-side malware or the spoofed SMS messages sent from the switched network. In this work, we study the insecurity of the Internet), thanks to the efforts of research community and indus- IMS-based SMS. We uncover its security vulnerabilities and ex- try [8, 9, 15, 37, 43, 48, 49], they are well addressed in the 2G/3G ploit them to devise four SMS attacks: silent SMS abuse, SMS networks, at least for the top four largest US carriers.
    [Show full text]
  • Architecture for IMS Security to Mobile: Focusing on Artificial Immune System and Mobile Agents Integration
    Master Thesis Computer Science Thesis no: MCS-2009:24 May 22nd 2009 Architecture for IMS Security to Mobile: Focusing on Artificial Immune System and Mobile Agents Integration . Author: Kalyani Chalamalsetty School of Computing Blekinge Institute of Technology Soft Center SE-37225 RONNEBY SWEDEN This thesis is submitted to the Department of Software Engineering and Computer Science, School of Engineering at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Kalyani Chalamalasetty E-mail: [email protected] Department of Software Engineering and Computer Science University advisor(s): Dr. Bengt CarlssonAssociate professor Email: [email protected] Department of Software Engineering and Computer Science Dr. Guohua Bai Assistant professor Email: [email protected] Department of Interaction and System Design School of Computing Blekinge Institute of Technology Soft Center SE-37225 RONNEBY SWEDEN ii ABSTRACT The IP Multimedia Subsystem (IMS) is an open IP based service infrastructure that enables an easy deployment of new rich multimedia services mixing voice and data. The IMS is an overlay network on top of IP that uses SIP as the primary signaling mechanism. As an emerging technology, the SIP standard will certainly be the target of Denial of Service (DoS) attacks and consequently IMS will also inherit this problem. The objective of proposed architecture for IMS is to cram the potential attacks and security threats to IP Multimedia Subsystem (IMS) and explore the security solutions developed by 3GPP.
    [Show full text]