Design and Emission Uniformity Studies of a 1.5-MW Gyrotron Electron Gun
PSFC/JA-03-1 Design and Emission Uniformity Studies of a 1.5-MW Gyrotron Electron Gun Anderson, J. P., Korbly, S. E., Temkin, R. J., Shapiro, M. A., Felch, K. L.*, Cauffman, S.* December 2002 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 USA * Microwave Power Products Division Communications and Power Industries Palo Alto, CA 94303 USA This work was supported by the U.S. Department of Energy, Office of Fusion Sciences and Virtual Laboratory for Technology. Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted. Submitted for publication to IEEE Transactions on Plasma Science. 1 Design and Emission Uniformity Studies of a 1.5 MW Gyrotron Electron Gun James P. Anderson1, Stephen E. Korbly1, Richard J. Temkin1, Michael A. Shapiro1, K. L. Felch2, and S. Cauffman2 1Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 2Microwave Power Products Division, Communications and Power Industries, Palo Alto, CA 94303 Abstract We present the design and initial operation of a 96 kV, 40 A Magnetron Injection Gun (MIG) for a 1.5 MW, 110 GHz gyrotron. A critical parameter for the successful application of this electron gun is the uniformity of electron emission. The I-V curve of emission, at a series of temperatures, is measured. Analysis indicates that the work function of the emitter is 1.6 eV with a (total) spread of 0.07 +/- 0.01 eV. Measurement of the azimuthal emission uniformity with a rotating probe indicates that the work function variation around the azimuth, the global spread, is 0.04+/- 0.02 eV.
[Show full text]