The Use of a Solid State Analog Television Transmitter As a Superconducting Electron Gun Power Amplifier* J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cathode-Ray Tube Displays for Medical Imaging
DIGITAL IMAGING BASICS Cathode-Ray Tube Displays for Medical Imaging Peter A. Keller This paper will discuss the principles of cathode-ray crease the velocity of the electron beam for tube displays in medical imaging and the parameters increased light output from the screen; essential to the selection of displays for specific 4. a focusing section to bring the electron requirements. A discussion of cathode-ray tube fun- beam to a sharp focus at the screen; damentals and medical requirements is included. 9 1990bu W.B. Saunders Company. 5. a deflection system to position the electron beam to a desired location on the screen or KEY WORDS: displays, cathode ray tube, medical scan the beam in a repetitive pattern; and irnaging, high resolution. 6. a phosphor screen to convert the invisible electron beam to visible light. he cathode-ray tube (CRT) is the heart of The assembly of electrodes or elements mounted T almost every medical display and its single within the neck of the CRT is commonly known most costly component. Brightness, resolution, as the "electron gun" (Fig 2). This is a good color, contrast, life, cost, and viewer comfort are analogy, because it is the function of the electron gun to "shoot" a beam of electrons toward the all strongly influenced by the selection of a screen or target. The velocity of the electron particular CRT by the display designer. These beam is a function of the overall accelerating factors are especially important for displays used voltage applied to the tube. For a CRT operating for medical diagnosis in which patient safety and at an accelerating voltage of 20,000 V, the comfort hinge on the ability of the display to electron velocity at the screen is about present easily readable, high-resolution images 250,000,000 mph, or about 37% of the velocity of accurately and rapidly. -
UHF-Band TV Transmitter for TV White Space Video Streaming Applications Hyunchol Shin1,* · Hyukjun Oh2
JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 19, NO. 4, 227~233, OCT. 2019 https://doi.org/10.26866/jees.2019.19.4.227 ISSN 2671-7263 (Online) ∙ ISSN 2671-7255 (Print) UHF-Band TV Transmitter for TV White Space Video Streaming Applications Hyunchol Shin1,* · Hyukjun Oh2 Abstract This paper presents a television (TV) transmitter for wireless video streaming applications in TV white space band. The TV transmitter is composed of a digital TV (DTV) signal generator and a UHF-band RF transmitter. Compared to a conventional high-IF heterodyne structure, the RF transmitter employs a zero-IF quadrature direct up-conversion architecture to minimize hardware overhead and com- plexity. The RF transmitter features I/Q mismatch compensation circuitry using 12-bit digital-to-analog converters to significantly im- prove LO and image suppressions. The DTV signal generator produces an 8-vestigial sideband (VSB) modulated digital baseband signal fully compliant with the Advanced Television System Committee (ATSC) DTV signal specifications. By employing the proposed TV transmitter and a commercial TV receiver, over-the-air, real-time, high-definition video streaming has been successfully demonstrated across all UHF-band TV channels between 14 and 69. This work shows that a portable hand-held TV transmitter can be a useful TV- band device for wireless video streaming application in TV white space. Key Words: DTV Signal Generator, RF Transmitter, TV Band Device, TV Transmitter, TV White Space. industry-science-medical (ISM)-to-UHF-band RF converters I. INTRODUCTION [3, 4] is a TV-band device (TVBD) to enable Wi-Fi service in a TVWS band. -
Design and Emission Uniformity Studies of a 1.5-MW Gyrotron Electron Gun
PSFC/JA-03-1 Design and Emission Uniformity Studies of a 1.5-MW Gyrotron Electron Gun Anderson, J. P., Korbly, S. E., Temkin, R. J., Shapiro, M. A., Felch, K. L.*, Cauffman, S.* December 2002 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 USA * Microwave Power Products Division Communications and Power Industries Palo Alto, CA 94303 USA This work was supported by the U.S. Department of Energy, Office of Fusion Sciences and Virtual Laboratory for Technology. Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted. Submitted for publication to IEEE Transactions on Plasma Science. 1 Design and Emission Uniformity Studies of a 1.5 MW Gyrotron Electron Gun James P. Anderson1, Stephen E. Korbly1, Richard J. Temkin1, Michael A. Shapiro1, K. L. Felch2, and S. Cauffman2 1Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 2Microwave Power Products Division, Communications and Power Industries, Palo Alto, CA 94303 Abstract We present the design and initial operation of a 96 kV, 40 A Magnetron Injection Gun (MIG) for a 1.5 MW, 110 GHz gyrotron. A critical parameter for the successful application of this electron gun is the uniformity of electron emission. The I-V curve of emission, at a series of temperatures, is measured. Analysis indicates that the work function of the emitter is 1.6 eV with a (total) spread of 0.07 +/- 0.01 eV. Measurement of the azimuthal emission uniformity with a rotating probe indicates that the work function variation around the azimuth, the global spread, is 0.04+/- 0.02 eV. -
Low Emittance Thermionic Electron Gun at Slri
9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPMK088 LOW EMITTANCE THERMIONIC ELECTRON GUN AT SLRI ∗ K. Kittimanapun , N. Juntong, C. Dhammatong, W. Phacheerak, and M. Phanak Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand Abstract • Fast beam deflector allowing nanosecond-pulsed elec- The Synchrotron Light Research Institute (SLRI) has de- tron beam to transport to the bunching section and to veloped a new thermionic electron gun producing low emit- deflect undesired electrons to the collimator. tance electron beam for the future upgrade of the existing • Pre-buncher and buncher to adiabatically bunch and one. The thermionic cathode made of a CeB single crys- 6 accelerate electrons to higher energy and minimize tal is selected due to its properties providing high electron the effect from the Radio-Frequency (RF) field that beam current, uniform current density, and high resistance potentially causes the emittance growth. to contamination. In addition, the CeB6 cathode of 3 mm in diameter can produce up to a few Amperes of electron beam ELECTRON GUN current. The electron gun is pulsed at 500 kV with a few microseconds wide to avoid high voltage breakdown as well Three main parts that have to be carefully considered for as to reduce space charge effect resulting in the emittance building the high-performance thermionic electron guns are growth of the extracted electron beam. The preliminary sim- an electron gun cathode, extraction of high-current electron ulation and design of the electron gun together with the high beam, and a high-voltage system. -
Electron and Ion Sources Layout
Electron and Ion Sources Layout • Electron Sources o Thermionic o Photo-Cathodes • Ion Sources o Particle motion in plasmas o Protons o ECR Ion Source o Negative Ions Richard Scrivens, BE Dept, CERN. CAS@CERN, February 2017 1 Electron and Ion Sources Every accelerator chain needs a source! 2 Electron and Ion Sources Every accelerator chain needs a source! Protons Ions Principles of the electron guns, with thermionic and photo Principles of ion sources, and the cathodes types used at CERN. 3 Electron and Ion Sources • Electron Sources o Thermionic o Photo-Cathodes • Ion Sources o Particle motion in plasmas o Protons o ECR Ion Source o Negative Ions o Radioactive Ions 4 Electron and Ion Sources Electron Sources - Basics Insulator Chamber E-field Beam Cathode (Electron source) HT Power Supply The classic Cathode Ray Experiment 5 Electron and Ion Sources • Electron Sources o Thermionic o Photo-Cathodes • Ion Sources o Particle motion in plasmas o Protons o ECR Ion Source o Negative Ions o Radioactive Ions 6 Electron and Ion Sources Electrons – Thermionic Emission Electrons within a material are heated to energies above that needed to escape the material. Cathode emission is dominated by the Richardson Dushmann equation. Energy difference Energy between highest energy electron and vacuum Electrons Work Function fs Material 7 Electron and Ion Sources Electrons – Thermionic Emission (the maths) Conducting materials contain free electrons, who follow the Fermi-Dirac These electrons can energy distribution inside the material. escape the material When a material is heated, the electrons 8 energy distribution shifts from the zero 8 T=2000K T=1000K temperature Fermi distribution. -
Production of X Rays / Clinical Radiation Generators
External Beam Delivery Systems Argonne National Laboratory Course: 3DCRT for Technologists Karl L. Prado, Ph.D., FACR, FAAPM Professor, Department of Radiation Oncology X-Ray Production X rays, fundamentals, etc. Production of X Rays The X-Ray Tube Components (Figure 3.1 of Khan) Glass tube – maintains vacuum necessary to minimize electron interactions outside of the target area Cathode – contains filament and focusing cup Anode – contains x-ray target The X-Ray Tube The Cathode Tungsten filament (high melting point – 3370 C) Thermionic emission – electron production as a consequence of heating Focusing cup – “directs” electrons to anode Dual filaments (diagnostic tubes) – necessary to balance small focal spots and larger tube currents The X-Ray Tube The Anode Tungsten target High melting point High Z (74) – preferred since bremsstrahlung production Z2 Heat dissipation Copper anode – heat conducted outside glass into oil / water / air Rotating anode (diagnostic tubes) – larger dissipation area Anode hood – copper and tungsten shields intercept stray electrons and x rays Basic X-Ray Circuit Simplified diagram (Khan Figure 3.3) Consists of two parts: High-voltage circuit – provides x-ray tube accelerating potential Filament circuit – provides filament current X-Ray Production Bremsstrahlung (“braking” radiation) Schematics (Khan Figure 3.6) Electromagnetic radiation emitted when an electron losses energy as a consequence of coulomb interaction with the nucleus of an atom X-Ray Energy Spectrum The bremsstrahlung -
En 302 296 V2.0.2 (2016-10)
Draft ETSI EN 302 296 V2.0.2 (2016-10) HARMONISED EUROPEAN STANDARD Digital Terrestrial TV Transmitters; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU 2 Draft ETSI EN 302 296 V2.0.2 (2016-10) Reference REN/ERM-TG17-24 Keywords broadcasting, digital, Harmonised standard, radio, regulation, terrestrial, transmitter, TV, video ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. -
Cathode Ray Tube
Cathode ray tube Quick reference guide Introduction The Cathode Ray Tube or Braun’s Tube was invented by the German physicist Karl Ferdinand Braun in 1897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the electrons in the tube filled with a low pressure rare gas can be observed in a darkened room as a trace of light. Electron beam deflection can be effected by means of either an electrical or a magnetic field. Functional principle • The source of the electron beam is the electron gun, which produces a stream of electrons through thermionic emission at the heated cathode and focuses it into a thin beam by the control grid (or “Wehnelt cylinder”). • A strong electric field between cathode and anode accelerates the electrons, before they leave the electron gun through a small hole in the anode. • The electron beam can be deflected by a capacitor or coils in a way which causes it to display an image on the screen. The image may represent electrical waveforms (oscilloscope), pictures (television, computer monitor), echoes of aircraft detected by radar etc. • When electrons strike the fluorescent screen, light is emitted. • The whole configuration is placed in a vacuum tube to avoid collisions between electrons and gas molecules of the air, which would attenuate the beam. Flourescent screen Cathode Control grid Anode UA - 1 - CERN Teachers Lab Cathode ray tube Safety precautions • Don’t touch cathode ray tube and cables during operation, voltages of 300 V are used in this experiment! • Do not exert mechanical force on the tube, danger of implosions! ! Experimental procedure 1. -
Chapter 5 TREATMENT MACHINES for EXTERNAL BEAM
Chapter 5 TREATMENT MACHINES FOR EXTERNAL BEAM RADIOTHERAPY E.B. PODGORSAK Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada 5.1. INTRODUCTION Since the inception of radiotherapy soon after the discovery of X rays by Roentgen in 1895, the technology of X ray production has first been aimed towards ever higher photon and electron beam energies and intensities, and more recently towards computerization and intensity modulated beam delivery. During the first 50 years of radiotherapy the technological progress was relatively slow and mainly based on X ray tubes, van de Graaff generators and betatrons. The invention of the 60Co teletherapy unit by H.E. Johns in Canada in the early 1950s provided a tremendous boost in the quest for higher photon energies and placed the cobalt unit at the forefront of radiotherapy for a number of years. The concurrently developed medical linacs, however, soon eclipsed cobalt units, moved through five increasingly sophisticated generations and became the most widely used radiation source in modern radiotherapy. With its compact and efficient design, the linac offers excellent versatility for use in radiotherapy through isocentric mounting and provides either electron or megavoltage X ray therapy with a wide range of energies. In addition to linacs, electron and X ray radiotherapy is also carried out with other types of accelerator, such as betatrons and microtrons. More exotic particles, such as protons, neutrons, heavy ions and negative p mesons, all produced by special accelerators, are also sometimes used for radiotherapy; however, most contemporary radiotherapy is carried out with linacs or teletherapy cobalt units. -
Photosensitive Camera Tubes and Devices Handbook
11.2 PHOTOSENSITIVE CAMERA TUBES AND DEVICES 11.1 PHOTOSENSITIVITY / 11.2 11.1.1 Photoemitters / 11.2 11.1.2 Photoconductors / 11.5 11.2 PHOTOELECTRIC-INDUCED TELEVISION SIGNAL GENERATION / 11.5 11.2.1 Photoemission-Induced Charge Images / 11.5 11.2.2 Secondary-Emission-Induced Charge Images / 11.6 11.2.3 Electron-Bombardment-Induced Conductivity / 11.8 11.2.4 Photoconductive-Generated Charge Images / 11.9 11.2.5 Generation of Video Signals by Scanning / 11.11 11.2.6 Low-Velocity Scanning / 11.11 11.2.7 Return-Beam Signal Generation / 11.13 11.2.8 High-Velecity Scanning / 11.14 11.3 EVOLUTION AND DEVELOPMENT OF TELEVISION CAMERA TUBES / 11.14 11.3.1 Nonstorage Tubes / 11.14 11.3.2 Storage Tubes / 11.15 11.4 VIDICON-TYPE CAMERA TUBES / 11.26 11.4.1 Antimony Trisulfide Photoconductor / 11.26 11.4.2 Lead Oxide Photoconductor / 11.28 11.4.3 Selenium Photoconductor / 11.30 11.4.4 Silicon-Diode Photoconductive Target / 11.31 11.4.5 Cadmium Selenide Photoconductor / 11.32 11.4.6 Zinc Selenide Photoconductor / 11.32 11.5 INTERFACE WITH THE CAMERA / 11.33 11.5.1 Optical Input / 11.34 11.5.2 Operating Voltages / 11.34 11.5.3 Dynamic Focusing / 11.36 11.5.4 Beam Blanking / 11.36 11.5.5 Beam Trajectory Control / 11.38 11.5.6 Video Output / 11.40 11.5.7 Deflecting Coils and Circuits / 11.42 11.5.8 Magnetic Shielding / 11.42 11.5.9 Anti-Comet-Tail Tube / 11.42 11.6 CAMERA TUBE PERFORMANCE CHARACTERISTICS / 11.43 11.6.1 Sensitivity and Output / 11.44 11.6.2 Resolution / 11.45 11.6.3 Lag / 11.49 11.6.4 Lag-Reduction Techniques / 11.50 11.7 SINGLE-TUBE COLOR CAMERA SYSTEMS / 11.54 11.7.1 Single-Output-Signal Tubes / 11.55 11.7.2 Multiple-Output-Signal Tubes / 11.58 11.8 SOLID-STATE IMAGER DEVELOPMENT / 11.60 11.8.1 Early Imager Devices / 11.60 11.8.2 Improvements in Signal-to-Noise Ratio / 11.60 11.8.3 CCD Structures / 11.61 11.8.4 New Developments / 11.63 REFERENCES / 11.64 PHOTOSENSITIVITY 11.3 11.1 PHOTOSENSITIVITY A photosensitive camera tube is the light-sensitive device utilized in a television camera to develop the video signal. -
Fundamentals of Digital Television Transmission
Fundamentals of Digital Television Transmission. Gerald W. Collins, PE Copyright 2001 John Wiley & Sons, Inc. ISBNs: 0-471-39199-9 (Hardback); 0-471-21376-4 (Electronic) FUNDAMENTALS OF DIGITAL TELEVISION TRANSMISSION FUNDAMENTALS OF DIGITAL TELEVISION TRANSMISSION GERALD W. COLLINS, PE GW Collins Consulting A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York ž Chichester ž Weinheim ž Brisbane ž Singapore ž Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: [email protected]. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought. -
A Gridded Electron Gun for a Sheet Beam Klystron M
SLAC-PUB-13205 A GRIDDED ELECTRON GUN FOR A SHEET BEAM KLYSTRON M. E. Read, G. Miram, and R.L. Ives, Calabazas Creek Research, Inc., Saratoga, CA, 95070-3753 V. Ivanov and A. Krasnykh, Stanford Linear Accelerator Center, Menlo Park, CA 94025 Abstract This paper describes the development of an electron Focus gun for a sheet beam klystron. Initially intended for Electrode accelerator applications, the gun can operate at a higher Grid perveance than one with a cylindrically symmetric beam. Results of 2D and 3D simulations are discussed. Beam Calabazas Creek Research, Inc. (CCR) is developing rectangular, gridded, thermionic, dispenser-cathode guns for sheet beam devices. The first application is expected to be klystrons for advanced particle accelerators and colliders.[1] The current generation of accelerators typically use klystrons with a cylindrical beam generated by a Pierce-type electron gun. As RF power is pushed to higher levels, space charge forces in the electron beam Cathode limit the amount of current that can be transmitted at a given voltage. The options are to increase the beam Anode voltage, leading to problems with X-Ray shielding and Mod Anode modulator and power supply design, or to develop new techniques for lowering the space charge forces in the Figure 1. Geometry of the sheet beam gun. One quarter electron beam. of the gun is shown, with the cathode on the left and the In this device, the beam has a rectangular cross section. axes of symmetry toward the top and left. The mod The thickness is constrained as in a normal, cylindrically anode is included to grade the field and minimize the symmetric klystron with a Pierce gun; however, the width possibility of an arc directly from the cathode to the of the beam is many times the thickness.