6.013 Electromagnetics and Applications, Chapter 5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Harvard Physics Circle Lecture 14: Magnetism, Biot-Savart, Ampere’S Law
Harvard Physics Circle Lecture 14: Magnetism, Biot-Savart, Ampere’s Law Atınç Çağan Şengül January 30th, 2021 1 Theory 1.1 Magnetic Fields We are dealing with the same problem of how charged particles interact with each other. We have a group of source charges and a test charge that moves under the influence of these source charges. Unlike electrostatics, however, the source charges are in motion. One of the simplest experiments one can do to gain insight on how magnetism works is observing two parallel wires that have currents flowing through them. The force causing this attraction and repulsion is not electrostatic since the wires are neutral. Even if they were not neutral, flipping the wires would not flip the direction of the force as we see in the experiment. Magnetic fields are what is responsible for this phenomenon. A stationary charge produces only and electric field E~ around it, while a moving charge creates a magnetic field B~ . We will first study the force acting on a charge under the influence of an ambient magnetic field, before we delve into how moving charges generate such magnetic fields. 1 1.2 The Lorentz Force Law For a particle with charge q moving with velocity ~v in a magnetic field B~ , the force acting on the particle by the magnetic field is given by, F~ = q(~v × B~ ): (1) This is known as the Lorentz force law. Just like F = ma, this law is based on experiments rather than being derived. Notice that unlike the electrostatic version of this law where the force is parallel to the electric field (F~ = qE~ ), here, the force is perpendicular to both the velocity of the particle and the magnetic field. -
On the History of the Radiation Reaction1 Kirk T
On the History of the Radiation Reaction1 Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2017; updated March 18, 2020) 1 Introduction Apparently, Kepler considered the pointing of comets’ tails away from the Sun as evidence for radiation pressure of light [2].2 Following Newton’s third law (see p. 83 of [3]), one might suppose there to be a reaction of the comet back on the incident light. However, this theme lay largely dormant until Poincar´e (1891) [37, 41] and Planck (1896) [46] discussed the effect of “radiation damping” on an oscillating electric charge that emits electromagnetic radiation. Already in 1892, Lorentz [38] had considered the self force on an extended, accelerated charge e, finding that for low velocity v this force has the approximate form (in Gaussian units, where c is the speed of light in vacuum), independent of the radius of the charge, 3e2 d2v 2e2v¨ F = = . (v c). (1) self 3c3 dt2 3c3 Lorentz made no connection at the time between this force and radiation, which connection rather was first made by Planck [46], who considered that there should be a damping force on an accelerated charge in reaction to its radiation, and by a clever transformation arrived at a “radiation-damping” force identical to eq. (1). Today, Lorentz is often credited with identifying eq. (1) as the “radiation-reaction force”, and the contribution of Planck is seldom acknowledged. This note attempts to review the history of thoughts on the “radiation reaction”, which seems to be in conflict with the brief discussions in many papers and “textbooks”.3 2 What is “Radiation”? The “radiation reaction” would seem to be a reaction to “radiation”, but the concept of “radiation” is remarkably poorly defined in the literature. -
Chapter 3 Dynamics of the Electromagnetic Fields
Chapter 3 Dynamics of the Electromagnetic Fields 3.1 Maxwell Displacement Current In the early 1860s (during the American civil war!) electricity including induction was well established experimentally. A big row was going on about theory. The warring camps were divided into the • Action-at-a-distance advocates and the • Field-theory advocates. James Clerk Maxwell was firmly in the field-theory camp. He invented mechanical analogies for the behavior of the fields locally in space and how the electric and magnetic influences were carried through space by invisible circulating cogs. Being a consumate mathematician he also formulated differential equations to describe the fields. In modern notation, they would (in 1860) have read: ρ �.E = Coulomb’s Law �0 ∂B � ∧ E = − Faraday’s Law (3.1) ∂t �.B = 0 � ∧ B = µ0j Ampere’s Law. (Quasi-static) Maxwell’s stroke of genius was to realize that this set of equations is inconsistent with charge conservation. In particular it is the quasi-static form of Ampere’s law that has a problem. Taking its divergence µ0�.j = �. (� ∧ B) = 0 (3.2) (because divergence of a curl is zero). This is fine for a static situation, but can’t work for a time-varying one. Conservation of charge in time-dependent case is ∂ρ �.j = − not zero. (3.3) ∂t 55 The problem can be fixed by adding an extra term to Ampere’s law because � � ∂ρ ∂ ∂E �.j + = �.j + �0�.E = �. j + �0 (3.4) ∂t ∂t ∂t Therefore Ampere’s law is consistent with charge conservation only if it is really to be written with the quantity (j + �0∂E/∂t) replacing j. -
The Lorentz Force
CLASSICAL CONCEPT REVIEW 14 The Lorentz Force We can find empirically that a particle with mass m and electric charge q in an elec- tric field E experiences a force FE given by FE = q E LF-1 It is apparent from Equation LF-1 that, if q is a positive charge (e.g., a proton), FE is parallel to, that is, in the direction of E and if q is a negative charge (e.g., an electron), FE is antiparallel to, that is, opposite to the direction of E (see Figure LF-1). A posi- tive charge moving parallel to E or a negative charge moving antiparallel to E is, in the absence of other forces of significance, accelerated according to Newton’s second law: q F q E m a a E LF-2 E = = 1 = m Equation LF-2 is, of course, not relativistically correct. The relativistically correct force is given by d g mu u2 -3 2 du u2 -3 2 FE = q E = = m 1 - = m 1 - a LF-3 dt c2 > dt c2 > 1 2 a b a b 3 Classically, for example, suppose a proton initially moving at v0 = 10 m s enters a region of uniform electric field of magnitude E = 500 V m antiparallel to the direction of E (see Figure LF-2a). How far does it travel before coming (instanta> - neously) to rest? From Equation LF-2 the acceleration slowing the proton> is q 1.60 * 10-19 C 500 V m a = - E = - = -4.79 * 1010 m s2 m 1.67 * 10-27 kg 1 2 1 > 2 E > The distance Dx traveled by the proton until it comes to rest with vf 0 is given by FE • –q +q • FE 2 2 3 2 vf - v0 0 - 10 m s Dx = = 2a 2 4.79 1010 m s2 - 1* > 2 1 > 2 Dx 1.04 10-5 m 1.04 10-3 cm Ϸ 0.01 mm = * = * LF-1 A positively charged particle in an electric field experiences a If the same proton is injected into the field perpendicular to E (or at some angle force in the direction of the field. -
The Lorentz Law of Force and Its Connections to Hidden Momentum
The Lorentz force law and its connections to hidden momentum, the Einstein-Laub force, and the Aharonov-Casher effect Masud Mansuripur College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721 [Published in IEEE Transactions on Magnetics, Vol. 50, No. 4, 1300110, pp1-10 (2014)] Abstract. The Lorentz force of classical electrodynamics, when applied to magnetic materials, gives rise to hidden energy and hidden momentum. Removing the contributions of hidden entities from the Poynting vector, from the electromagnetic momentum density, and from the Lorentz force and torque densities simplifies the equations of the classical theory. In particular, the reduced expression of the electromagnetic force-density becomes very similar (but not identical) to the Einstein-Laub expression for the force exerted by electric and magnetic fields on a distribution of charge, current, polarization and magnetization. Examples reveal the similarities and differences among various equations that describe the force and torque exerted by electromagnetic fields on material media. An important example of the simplifications afforded by the Einstein-Laub formula is provided by a magnetic dipole moving in a static electric field and exhibiting the Aharonov-Casher effect. 1. Introduction. The classical theory of electrodynamics is based on Maxwell’s equations and the Lorentz force law [1-4]. In their microscopic version, Maxwell’s equations relate the electromagnetic (EM) fields, ( , ) and ( , ), to the spatio-temporal distribution of electric charge and current densities, ( , ) and ( , ). In any closed system consisting of an arbitrary distribution of charge and 푬current,풓 푡 Maxwell’s푩 풓 푡 equations uniquely determine the field distributions provided that the휌 sources,풓 푡 푱 and풓 푡 , are fully specified in advance. -
This Chapter Deals with Conservation of Energy, Momentum and Angular Momentum in Electromagnetic Systems
This chapter deals with conservation of energy, momentum and angular momentum in electromagnetic systems. The basic idea is to use Maxwell’s Eqn. to write the charge and currents entirely in terms of the E and B-fields. For example, the current density can be written in terms of the curl of B and the Maxwell Displacement current or the rate of change of the E-field. We could then write the power density which is E dot J entirely in terms of fields and their time derivatives. We begin with a discussion of Poynting’s Theorem which describes the flow of power out of an electromagnetic system using this approach. We turn next to a discussion of the Maxwell stress tensor which is an elegant way of computing electromagnetic forces. For example, we write the charge density which is part of the electrostatic force density (rho times E) in terms of the divergence of the E-field. The magnetic forces involve current densities which can be written as the fields as just described to complete the electromagnetic force description. Since the force is the rate of change of momentum, the Maxwell stress tensor naturally leads to a discussion of electromagnetic momentum density which is similar in spirit to our previous discussion of electromagnetic energy density. In particular, we find that electromagnetic fields contain an angular momentum which accounts for the angular momentum achieved by charge distributions due to the EMF from collapsing magnetic fields according to Faraday’s law. This clears up a mystery from Physics 435. We will frequently re-visit this chapter since it develops many of our crucial tools we need in electrodynamics. -
Magnetohydrodynamics 1 19.1Overview
Contents 19 Magnetohydrodynamics 1 19.1Overview...................................... 1 19.2 BasicEquationsofMHD . 2 19.2.1 Maxwell’s Equations in the MHD Approximation . ..... 4 19.2.2 Momentum and Energy Conservation . .. 8 19.2.3 BoundaryConditions. 10 19.2.4 Magneticfieldandvorticity . .. 12 19.3 MagnetostaticEquilibria . ..... 13 19.3.1 Controlled thermonuclear fusion . ..... 13 19.3.2 Z-Pinch .................................. 15 19.3.3 Θ-Pinch .................................. 17 19.3.4 Tokamak.................................. 17 19.4 HydromagneticFlows. .. 18 19.5 Stability of Hydromagnetic Equilibria . ......... 22 19.5.1 LinearPerturbationTheory . .. 22 19.5.2 Z-Pinch: Sausage and Kink Instabilities . ...... 25 19.5.3 EnergyPrinciple ............................. 28 19.6 Dynamos and Reconnection of Magnetic Field Lines . ......... 29 19.6.1 Cowling’stheorem ............................ 30 19.6.2 Kinematicdynamos............................ 30 19.6.3 MagneticReconnection. 31 19.7 Magnetosonic Waves and the Scattering of Cosmic Rays . ......... 33 19.7.1 CosmicRays ............................... 33 19.7.2 Magnetosonic Dispersion Relation . ..... 34 19.7.3 ScatteringofCosmicRays . 36 0 Chapter 19 Magnetohydrodynamics Version 1219.1.K.pdf, 7 September 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 19.1 Reader’s Guide This chapter relies heavily on Chap. 13 and somewhat on the treatment of vorticity • transport in Sec. 14.2 Part VI, Plasma Physics (Chaps. 20-23) relies heavily on this chapter. • 19.1 Overview In preceding chapters, we have described the consequences of incorporating viscosity and thermal conductivity into the description of a fluid. We now turn to our final embellishment of fluid mechanics, in which the fluid is electrically conducting and moves in a magnetic field. -
Mutual Inductance
Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance ............................................................................................ 11-3 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops ............... 11-5 11.2 Self-Inductance ................................................................................................. 11-5 Example 11.2 Self-Inductance of a Solenoid........................................................ 11-6 Example 11.3 Self-Inductance of a Toroid........................................................... 11-7 Example 11.4 Mutual Inductance of a Coil Wrapped Around a Solenoid ........... 11-8 11.3 Energy Stored in Magnetic Fields .................................................................. 11-10 Example 11.5 Energy Stored in a Solenoid ........................................................ 11-11 Animation 11.1: Creating and Destroying Magnetic Energy............................ 11-12 Animation 11.2: Magnets and Conducting Rings ............................................. 11-13 11.4 RL Circuits ...................................................................................................... 11-15 11.4.1 Self-Inductance and the Modified Kirchhoff's Loop Rule....................... 11-15 11.4.2 Rising Current.......................................................................................... 11-18 11.4.3 Decaying Current..................................................................................... 11-20 11.5 LC Oscillations .............................................................................................. -
Lecture 4: Magnetohydrodynamics (MHD), MHD Equilibrium, MHD Waves
HSE | Valery Nakariakov | Solar Physics 1 Lecture 4: Magnetohydrodynamics (MHD), MHD Equilibrium, MHD Waves MHD describes large scale, slow dynamics of plasmas. More specifically, we can apply MHD when 1. Characteristic time ion gyroperiod and mean free path time, 2. Characteristic scale ion gyroradius and mean free path length, 3. Plasma velocities are not relativistic. In MHD, the plasma is considered as an electrically conducting fluid. Gov- erning equations are equations of fluid dynamics and Maxwell's equations. A self-consistent set of MHD equations connects the plasma mass density ρ, the plasma velocity V, the thermodynamic (also called gas or kinetic) pressure P and the magnetic field B. In strict derivation of MHD, one should neglect the motion of electrons and consider only heavy ions. The 1-st equation is mass continuity @ρ + r(ρV) = 0; (1) @t and it states that matter is neither created or destroyed. The 2-nd is the equation of motion of an element of the fluid, "@V # ρ + (Vr)V = −∇P + j × B; (2) @t also called the Euler equation. The vector j is the electric current density which can be expressed through the magnetic field B. Mind that on the lefthand side it is the total derivative, d=dt. The 3-rd equation is the energy equation, which in the simplest adiabatic case has the form d P ! = 0; (3) dt ργ where γ is the ratio of specific heats Cp=CV , and is normally taken as 5/3. The temperature T of the plasma can be determined from the density ρ and the thermodynamic pressure P , using the state equation (e.g. -
31295005665780.Pdf
DESIGN AND CONSTRUCTION OF A THREE HUNDRED kA BREECH SIMULATION RAILGUN by BRETT D. SMITH, B.S. in M.E. A THESIS IN -ELECTRICAL ENGINEERING Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING Jtpproved Accepted December, 1989 ACKNOWLEDGMENTS I would like to thank Dr. Magne Kristiansen for serving as the advisor for my grad uate work as well as serving as chairman of my thesis committee. I am also appreciative of the excellent working environment provided by Dr. Kristiansen at the laboratory. I would also like to thank my other two thesis committee members, Dr. Lynn Hatfield and Dr. Edgar O'Hair, for their advice on this thesis. I would like to thank Greg Engel for his help and advice in the design and construc tion of the experiment. I am grateful to Lonnie Stephenson for his advice and hard work in the construction of the experiment. I would also like to thank Danny Garcia, Mark Crawford, Ellis Loree, Diana Loree, and Dan Reynolds for their help in various aspects of this work. I owe my deepest appreciation to my parents for their constant support and encour agement. The engineering advice obtained from my father proved to be invaluable. 11 CONTENTS .. ACKNOWLEDGMENTS 11 ABSTRACT lV LIST OF FIGURES v CHAPTER I. INTRODUCTION 1 II. THEORY OF RAILGUN OPERATION 4 III. DESIGN AND CONSTRUCTION OF MAX II 27 Railgun System Design 28 Electrical Design and Construction 42 Mechanical Design and Construction 59 Diagnostics Design and Construction 75 IV. -
Comparison of Main Magnetic Force Computation Methods for Noise and Vibration Assessment in Electrical Machines
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2017 1 Comparison of main magnetic force computation methods for noise and vibration assessment in electrical machines Raphael¨ PILE13, Emile DEVILLERS23, Jean LE BESNERAIS3 1 Universite´ de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France 2 L2EP, Ecole Centrale de Lille, Villeneuve d’Ascq 59651, France 3 EOMYS ENGINEERING, Lille-Hellemmes 59260, France (www.eomys.com) In the vibro-acoustic analysis of electrical machines, the Maxwell Tensor in the air-gap is widely used to compute the magnetic forces applying on the stator. In this paper, the Maxwell magnetic forces experienced by each tooth are compared with different calculation methods such as the Virtual Work Principle based nodal forces (VWP) or the Maxwell Tensor magnetic pressure (MT) following the stator surface. Moreover, the paper focuses on a Surface Permanent Magnet Synchronous Machine (SPMSM). Firstly, the magnetic saturation in iron cores is neglected (linear B-H curve). The saturation effect will be considered in a second part. Homogeneous media are considered and all simulations are performed in 2D. The technique of equivalent force per tooth is justified by finding similar resultant force harmonics between VWP and MT in the linear case for the particular topology of this paper. The link between slot’s magnetic flux and tangential force harmonics is also highlighted. The results of the saturated case are provided at the end of the paper. Index Terms—Electromagnetic forces, Maxwell Tensor, Virtual Work Principle, Electrical Machines. I. INTRODUCTION TABLE I MAGNETO-MECHANICAL COUPLING AMONG SOFTWARE FOR N electrical machines, the study of noise and vibrations due VIBRO-ACOUSTIC I to magnetic forces first requires the accurate calculation of EM Soft Struct. -
The Lorentz Force and the Radiation Pressure of Light
The Lorentz Force and the Radiation Pressure of Light Tony Rothman∗ and Stephen Boughn† Princeton University, Princeton NJ 08544 Haverford College, Haverford PA 19041 LATEX-ed October 23, 2018 Abstract In order to make plausible the idea that light exerts a pressure on matter, some introductory physics texts consider the force exerted by an electromag- netic wave on an electron. The argument as presented is both mathematically incorrect and has several serious conceptual difficulties without obvious resolu- tion at the classical, yet alone introductory, level. We discuss these difficulties and propose an alternative demonstration. PACS: 1.40.Gm, 1.55.+b, 03.50De Keywords: Electromagnetic waves, radiation pressure, Lorentz force, light 1 The Freshman Argument arXiv:0807.1310v5 [physics.class-ph] 21 Nov 2008 The interaction of light and matter plays a central role, not only in physics itself, but in any freshman electricity and magnetism course. To develop this topic most courses introduce the Lorentz force law, which gives the electromagnetic force act- ing on a charged particle, and later devote some discussion to Maxwell’s equations. Students are then persuaded that Maxwell’s equations admit wave solutions which ∗[email protected] †[email protected] 1 Lorentz... 2 travel at the speed of light, thus establishing the connection between light and elec- tromagnetic waves. At this point we unequivocally state that electromagnetic waves carry momentum in the direction of propagation via the Poynting flux and that light therefore exerts a radiation pressure on matter. This is not controversial: Maxwell himself in his Treatise on Electricity and Magnetism[1] recognized that light should manifest a radiation pressure, but his demonstration is not immediately transparent to modern readers.