Kohlrabi—Brassica Oleracea L. (Gongylodes Group)1 James M

Total Page:16

File Type:pdf, Size:1020Kb

Kohlrabi—Brassica Oleracea L. (Gongylodes Group)1 James M HS619 Kohlrabi—Brassica oleracea L. (Gongylodes group)1 James M. Stephens2 Kohlrabi is grown in gardens throughout the United States for the turnip-like enlargement of the stem just above ground level. Cabbage-like leaves on long stems arise from the top and sides of the round, root-like stem. The enlargement is tender and succulent, if rapidly grown and harvested, but becomes tough and fibrous with age. Before kohlrabi is eaten, the peel is removed, and the interior is diced and boiled. The swollen stem also may be eaten raw, and leaves are edible. Propagation and time of planting are similar to cabbage, but plant spacing is about 4 inches. Kohlrabi matures in about 60 days when started from seeds, and 40 days started from transplants. While green varieties are most common, red varieties are popular in many gardens. Figure 1. Kohlrabi. Credits: Moushomi B. C., CC BY-SA 3.0 1. This document is HS619, one of a series of the Horticultural Sciences Department, UF/IFAS Extension. Original publication date May 1994. Revised September 2015. Reviewed October 2018. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. James M. Stephens, professor emeritus, Horticultural Sciences Department; UF/IFAS Extension, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension..
Recommended publications
  • Brassica Rapa Domestication: Untangling Wild and Feral Forms and Convergence of Crop Morphotypes Alex C
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.05.438488; this version posted April 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Brassica rapa domestication: untangling wild and feral forms and convergence of crop morphotypes Alex C. McAlvay, Aaron P. Ragsdale, Makenzie E. Mabry, Xinshuai Qi, Kevin A. Bird, Pablo Velasco, Hong An, J. Chris Pires, Eve Emshwiller Abstract The study of domestication contributes to our knowledge of evolution and crop genetic resources. Human selection has shaped wild Brassica rapa into diverse turnip, leafy, and oilseed crops. Despite its worldwide economic importance and potential as a model for understanding diversification under domestication, insights into the number of domestication events and initial crop(s) domesticated in B. rapa have been limited due to a lack of clarity about the wild or feral status of conspecific non-crop relatives. To address this gap and reconstruct the domestication history of B. rapa, we analyzed 68,468 genotyping-by-sequencing-derived SNPs for 416 samples in the largest diversity panel of domesticated and weedy B. rapa to date. To further understand the center of origin, we modeled the potential range of wild B. rapa during the mid-Holocene. Our analyses of genetic diversity across B. rapa morphotypes suggest that non-crop samples from the Caucasus, Siberia, and Italy may be truly wild, while those occurring in the Americas and much of Europe are feral.
    [Show full text]
  • S41598-018-21689-Z.Pdf
    www.nature.com/scientificreports OPEN Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction Received: 10 October 2017 Accepted: 8 February 2018 of Frankliniella occidentalis Published: xx xx xxxx (Pergande) (Thysanoptera: Thripidae) Tianbo Ding1, Hsin Chi2, Ayhan Gökçe2, Yulin Gao3 & Bin Zhang 1 Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a serious pest that is capable of bisexual and arrhenotokous reproduction. In arrhenotokous reproduction, virgin females initially produce male ofspring; later, when their sons are sexually mature, the mothers begin bisexual reproduction by carrying out oedipal mating with their sons. Because a virgin female produces many male ofspring before oedipal mating occurs, multiple oedipal mating is common. In this study, we investigated the efect of multiple oedipal mating on the population growth of F. occidentalis by using the age-stage, two-sex life table theory. In the arrhenotokous cohorts, all unfertilized eggs developed into males. In the bisexual cohorts, the ofspring sex ratio was signifcantly female biased with the mean number of female ofspring and male ofspring being 72.68 and 29.00, respectively. These were the same as the net reproductive rate of female ofspring and male ofspring. In arrhenotokous cohorts, the number of males available for oedipal mating signifcantly afected the production of female ofspring. The number of female ofspring increased as the number of sons available for oedipal mating increased. Correctly characterizing this unique type of reproduction will provide important information for predicting the timing of future outbreaks of F. occidentalis, as well as aiding in formulating successful management strategies against the species. Te western fower thrips (WFT), Frankliniella occidentalis (Pergande) (Tysanoptera: Tripidae), is one of the most economically important insect pests of many horticultural crops especially in greenhouses1,2.
    [Show full text]
  • Pollination of Rapeseed (Brassica Napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates
    Anais da Academia Brasileira de Ciências (2014) 86(4): 2087-2100 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420140134 www.scielo.br/aabc Pollination of Rapeseed (Brassica napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates EMERSON D. CHAMBÓ1, NEWTON T.E. DE OLIVEIRA1, REGINA C. GARCIA1, JOSÉ B. DUARTE-JÚNIOR1, MARIA CLAUDIA C. RUVOLO-TAKASUSUKI2 and VAGNER A. TOLEDO3 1Universidade Estadual do Oeste do Paraná, Campus Universitário de Marechal Cândido Rondon, Centro de Ciências Agrárias, Rua Pernambuco, 1777, 85960-000 Marechal Cândido Rondon, PR, Brasil 2Universidade Estadual de Maringá, Centro de Ciências Biológicas, Departamento de Biotecnologia, Genética e Biologia Celular, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brasil 3Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Maringá, Centro de Ciências Agrárias, Av. Colombo, 5790, Bloco J45, Campus Universitário 87020-900 Maringá, PR, Brasil Manuscript received on January 21, 2014; accepted for publication on June 23, 2014 ABSTRACT In this study, performed in the western part of the state of Paraná, Brazil, two self-fertile hybrid commercial rapeseed genotypes were evaluated for yield components and physiological quality using three pollination tests and spanning two sowing dates. The treatments consisted of combinations of two rapeseed genotypes (Hyola 61 and Hyola 433), three pollination tests (uncovered area, covered area without insects and covered area containing a single colony of Africanized Apis mellifera honeybees) and two sowing dates (May 25th, 2011 and June 25th, 2011). The presence of Africanized honeybees during flowering time increased the productivity of the rapeseed.
    [Show full text]
  • The Effect of Plant Development on Thrips Resistance in Capsicum
    Arthropod-Plant Interactions https://doi.org/10.1007/s11829-018-9645-6 ORIGINAL PAPER The effect of plant development on thrips resistance in Capsicum Pauline van Haperen1,2 · Roeland E. Voorrips1 · Joop J. A. van Loon2 · Ben Vosman1 Received: 28 March 2018 / Accepted: 25 September 2018 © The Author(s) 2018 Abstract Western flower thrips [Frankliniella occidentalis (Pergande)] is a worldwide pest insect that causes damage in pepper cul- tivation, so growers would benefit from host plant resistance. The objectives of this study were (1) to evaluate the effect of plant age on thrips resistance using nine Capsicum accessions with different levels of thrips resistance at three different plant ages, and (2) to study the effect of leaf age on thrips resistance in a resistant and a susceptible pepper accession. The fraction of first instar larvae that did not develop into second instar was used as a measure for thrips resistance. Our results show that plants start to develop thrips resistance when they are between 4 and 8 weeks old. This transition was most marked on the resistant accession CGN16975, on which about 50% of the L1 larvae developed into the next stage on 4-week-old plants, whereas none of them developed beyond the L1 stage on 8- or 12-week-old plants. Furthermore, it is shown that youngest fully opened leaves of the resistant accession CGN16975 are significantly more resistant to thrips than older leaves; 89% of the L1 larvae did not develop into the next stage on the youngest leaves, whereas 57% did not develop beyond the L1 stage on the oldest leaves.
    [Show full text]
  • Analysis of Yield and Plant Traits of Oilseed Rape (Brassica Napus
    Acta Agrobotanica DOI: 10.5586/aa.1696 REVIEW Publication history Received: 2016-05-20 Accepted: 2016-10-30 Analysis of yield and plant traits of oilseed Published: 2016-12-15 rape (Brassica napus L.) cultivated in Handling editor Alina Syp, Institute of Soil Science and Plant Cultivation, temperate region in light of the possibilities State Research Institute, Poland of sowing in arid areas Authors’ contributions TZ, AKK: study idea and design; TZ, AKK AO, ALK: publication 1 1 1 search; TZ, AKK, AO: analysis Tadeusz Zając , Agnieszka Klimek-Kopyra , Andrzej Oleksy *, and interpretation of results; Anna Lorenc-Kozik1, Karolina Ratajczak2 TZ, AKK, KR: comments on the 1 manuscript; ALK, KR, AO: writing Department of Crop Production, Institute of Plant Production, Faculty of Agriculture and the manuscript; AKK, AO: Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland 2 revision prior to submission Department of Agronomy, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 1, 60-632 Poznań, Poland Funding * Corresponding author. Email: [email protected] Research supported by the Ministry of Science and Higher Education of Poland as part of the statutory activities of the Abstract Institute of Plant Production, This work is a review of selected literature on the species of Brassica with the University of Agriculture in Krakow. greatest economic significance. Oilseed rape Brassica( napus ssp. oleifera) cur- rently ranks third worldwide among oilseed crops used for oil production and is Competing interests the most important in the temperate zone. The manifold uses of rape include not No competing interests have been declared.
    [Show full text]
  • Morphological Characterisation of White Head Cabbage (Brassica Oleracea Var. Capitata Subvar. Alba) Genotypes in Turkey
    NewBalkaya Zealand et al.—Morphological Journal of Crop and characterisation Horticultural ofScience, white head2005, cabbage Vol. 33: 333–341 333 0014–0671/05/3304–0333 © The Royal Society of New Zealand 2005 Morphological characterisation of white head cabbage (Brassica oleracea var. capitata subvar. alba) genotypes in Turkey AHMET BALKAYA Keywords cabbage; classification; morphological Department of Horticulture variation; Brassica oleracea; Turkey Faculty of Agriculture University of Ondokuz Mayis Samsun, Turkey INTRODUCTION email: [email protected] Brassica oleracea L. is an important vegetable crop RUHSAR YANMAZ species which includes fully cross-fertile cultivars or Department of Horticulture form groups with widely differing morphological Faculty of Agriculture characteristics (cabbage, broccoli, cauliflower, University of Ankara collards, Brussel sprouts, kohlrabi, and kale). His- Ankara, Turkey torical evidence indicates that modern head cabbage email: [email protected] cultivars are descended from wild non-heading brassicas originating from the eastern Mediterranean AYDIN APAYDIN and Asia Minor (Dickson & Wallace 1986). It is HAYATI KAR commonly accepted that the origin of cabbage is the Black Sea Agricultural Research Institute north European countries and the Baltic Sea coast Samsun, Turkey (Monteiro & Lunn 1998), and the Mediterranean region (Vural et al. 2000). Zhukovsky considered that the origin of the white head cabbage was the Van Abstract Crops belonging to the Brassica genus region in Anatolia and that the greatest cabbages of are widely grown in Turkey. Cabbages are one of the the world were grown in this region (Bayraktar 1976; most important Brassica vegetable crops in Turkey. Günay 1984). The aim of this study was to determine similarities In Turkey, there are local cultivars of cabbage (B.
    [Show full text]
  • Ornamental Cabbage and Kale, Brassica Oleracea in the Fall, Chyrsanthemums and Pansies Are the Predominant Plants Offered for Seasonal Color
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 3 Sept 2007 Ornamental Cabbage and Kale, Brassica oleracea In the fall, chyrsanthemums and pansies are the predominant plants offered for seasonal color. But another group of cold-tolerant plants without fl owers can help brighten the fall garden when almost ev- erything else is looking tired and ready for winter. Ornamental cabbage and kale are the same species as edible cabbages, broccoli, and caulifl ower (Bras- sica oleracea) but have much fancier and more col- orful foliage than their cousins from the vegetable garden. While these plants are sometimes offered as “fl owering” cabbage and kale, they are grown for their large rosettes of colorful leaves, not the fl owers. These plants are very showy and come in a variety of colors, ranging from white to pinks, purples or reds. Even though they are technically all kales (kale does not produce a head; instead, it produces leaves in a tight rosette), by convention those types with deeply- cut, curly, frilly or ruffl ed leaves are called ornamen- Ornamental kale makes a dramatic massed planting. tal kale, while the ones with broad, fl at leaves often edged in a contrasting color are called ornamental cabbage. The plants grow about a foot wide and 15” tall. Ornamental cabbages and kales do not tolerate summer heat, and plants set out in spring will likely have bolted or declined in appearance, so it is necessary to either start from seed in mid-summer or purchase trans- plants for a good fall show.
    [Show full text]
  • How to Grow Cabbage (Brassica Oleracea) Cabbage Varieties Come in a Spectrum of Colors, from Light Green to Dark Purple
    How to Grow Cabbage (Brassica oleracea) Cabbage varieties come in a spectrum of colors, from light green to dark purple. The scientific name of cabbage is Brassica oleracea, a species that also includes broccoli, cauliflower, kale, and Brussels sprouts. Time of Planting: Sow cabbage seeds indoors 4-6 weeks before transplanting seedlings outdoors. Transplant cabbage seedlings outdoors just before the last frost. Spacing Requirements: Sow seeds ¼ inch deep. Space cabbages at least 24-36 inches apart in even spacing or 12-14 inches apart in rows spaced 36-44 inches apart. Time to Germination: 7-12 days. Special Considerations: When growing for seed, increase spacing to 18-24 inches apart in rows that are at least 36 inches apart. Staking is recommended. Common Pests and Diseases (and how to manage): Cabbage can suffer from a number of pests and diseases including flea beetles, cabbage moths, aphids, leaf miner bugs, slugs, and black rot. Early season insect pests, such as flea beetles, can be deterred by growing transplants underneath row cover. Harvest (when and how): Cut the head at the base of the plant with a harvesting knife or pruning shears as soon as the cabbage head feels solid. Trim off the loose outer leaves and store heads in a cool place. Eating: Raw cabbage can be used in fresh salads like coleslaw. It can also be enjoyed roasted, braised, stewed, and stir fried. Cabbage is often fermented to make sauerkraut and kimchi. Storing: Cabbage will keep for about four months at a temperature between 32-40 degrees F and a relative humidity of 80-90%.
    [Show full text]
  • Honey Bee Suite © Rusty Burlew 2015 Master Plant List by Scientific Name United States
    Honey Bee Suite Master Plant List by Scientific Name United States © Rusty Burlew 2015 Scientific name Common Name Type of plant Zone Full Link for more information Abelia grandiflora Glossy abelia Shrub 6-9 http://plants.ces.ncsu.edu/plants/all/abelia-x-grandiflora/ Acacia Acacia Thorntree Tree 3-8 http://www.2020site.org/trees/acacia.html Acer circinatum Vine maple Tree 7-8 http://www.nwplants.com/business/catalog/ace_cir.html Acer macrophyllum Bigleaf maple Tree 5-9 http://treesandshrubs.about.com/od/commontrees/p/Big-Leaf-Maple-Acer-macrophyllum.htm Acer negundo L. Box elder Tree 2-10 http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=a841 Acer rubrum Red maple Tree 3-9 http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?taxonid=275374&isprofile=1&basic=Acer%20rubrum Acer rubrum Swamp maple Tree 3-9 http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?taxonid=275374&isprofile=1&basic=Acer%20rubrum Acer saccharinum Silver maple Tree 3-9 http://en.wikipedia.org/wiki/Acer_saccharinum Acer spp. Maple Tree 3-8 http://en.wikipedia.org/wiki/Maple Achillea millefolium Yarrow Perennial 3-9 http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=b282 Aesclepias tuberosa Butterfly weed Perennial 3-9 http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=b490 Aesculus glabra Buckeye Tree 3-7 http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?taxonid=281045&isprofile=1&basic=buckeye
    [Show full text]
  • Winter Cutworm: a New Pest Threat in Oregon J
    OREGON STATE UNIVERSITY EXTENSION SERVICE Winter Cutworm: A New Pest Threat in Oregon J. Green, A. Dreves, B. McDonald, and E. Peachey Introduction Winter cutworm is the common name for the larval stage of the large yellow underwing moth (Noctua pronuba [Lepidoptera: Noctuidae]). The cutworm has tolerance for cold temperatures, and larval feeding activity persists throughout fall and winter. Adult N. pronuba moths have been detected in Oregon for at least a decade, and the species is common in many different ecological habitats. Epidemic outbreaks of adult moths have occurred periodically in this region, resulting in captures of up to 500 moths per night. However, larval feeding by N. pronuba has not been a problem in Oregon until recently. In 2013 and 2014, there were isolated instances reported, including damage by larvae to sod near Portland and defoliation of herb and flower gardens in Corvallis. In 2015, large numbers of larvae were observed around homes, within golf courses, and in field crops located in Oregon and Washington. Winter cutworms have a wide host range across agricultural, urban, and natural landscapes (Table Photo: Nate McGhee, © Oregon State University. 1, page 2) and are a concern as a potential crop pest that can cause considerable damage in a short highlights general information about winter amount of time. Above-ground damage occurs when cutworm, including identification, scouting recom- larvae chew through tissues near ground level, cut- mendations, and potential control measures. ting the stems off plants. Leaf chewing and root feeding also have been observed. Winter cutworms Jessica Green, faculty research assistant, Department of are gregarious, which means they feed and move in Horticulture; Amy J.
    [Show full text]
  • OCCURRENCE and HOSTS for a DESTRUCTIVE THRIPS TABACI LIND. (THYSANOPTERA : THRIPIDAE) Sathe T
    Available Online at http://www.recentscientific.com International Journal of Recent Scientific International Journal of Recent Scientific Research Research Vol. 6, Issue, 4, pp.2670-2672, April, 2015 ISSN: 0976-3031 RESEARCH ARTICLE OCCURRENCE AND HOSTS FOR A DESTRUCTIVE THRIPS TABACI LIND. (THYSANOPTERA : THRIPIDAE) Sathe T. V and Pranoti Mithari ARTICLE INFO DepartmentABSTRACT of Zoology, Shivaji University, Kolhapur 416 004, India Article History: Thrips tabaci Lind. (Thysanoptera : Thripidae) is destructive, polyphagus pest of agricultural and other Received 2nd, March, 2015 economically important crop plants. T. tabaci scrape its mouth parts on tender parts of the crop and feed Received in revised form 10th, on oozing sap, resulting white / brown specks / stricks on leaves / flowers and fruits and affect the growth March, 2015 of plant and quality of fruits. Therefore, host crop plants have been detected for T. tabaci from Western Accepted 4th, April, 2015 Maharashtra. It was found emerging economic important crops such as Onion Allium cepa L., Tomato Published online 28th, Lycopersicon esculantum Mill., Cotton Gossypium hirsutum L., Garlic Allium fistulosam L., Tobacco April, 2015 Nicotiana tabacum L., Castor Ricinus communis L., Potato Solanum tuberosum L., Cucumber Cucumis sativa L., Bottle gourd Lagenaria vulgaris L., Cabbage Brassica oleracea capitata L., Cauliflower Brassica oleracea botrytis L. etc. Key words: Thrips tabaci, Host crop plants, destruction. Copyright © et al., Sathe T. V and Pranoti Mithari This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properlyINTRODUCTION cited. mostly found in flowers and tender parts of the crops like leaves, developing shoots and fruits.
    [Show full text]
  • Agronomic Traits in Oilseed Rape (Brassica Napus) Can Predict Foraging Resources for Insect Pollinators
    agronomy Article Agronomic Traits in Oilseed Rape (Brassica napus) Can Predict Foraging Resources for Insect Pollinators Stacey M. Fairhurst 1,2,*, Lorna J. Cole 3 , Tereza Kocarkova 4, Catherine Jones-Morris 1, Andy Evans 2 and Gail Jackson 1 1 School of Geosciences, The University of Edinburgh, Crew Building, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK; [email protected] (C.J.-M.); [email protected] (G.J.) 2 Agriculture, Horticulture and Engineering Sciences, Scotland’s Rural College (SRUC), King’s Buildings, West Mains Road, Edinburgh EH9 3JG, UK; [email protected] 3 Integrated Land Management, Scotland’s Rural College (SRUC), Auchincruive Estate, Ayr KA6 5HW, UK; [email protected] 4 Independent Researcher, King’s Buildings, West Mains Road, Edinburgh EH9 3JG, UK; [email protected] * Correspondence: [email protected] Abstract: Mass-flowering crops, such as oilseed rape (OSR; Brassica napus), provide pulses of nectar and pollen, helping to support pollinators and their pollination services in agricultural landscapes. Despite their value to declining pollinators, varietal in-field OSR testing focusses on agronomic traits, with floral resources being largely overlooked. OSR has a high varietal turnover, and consequently, floral resource data collected for a specific variety quickly become redundant. Here, we explore the potential to predict floral resource availability using agronomic trait data routinely collected in Citation: Fairhurst, S.M.; Cole, L.J.; varietal trials. To build predictive models, we investigated the relationships between agronomic Kocarkova, T.; Jones-Morris, C.; traits and pollen and nectar availability in 19 OSR varieties.
    [Show full text]