CO2 Transport Linda Costanzo, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

CO2 Transport Linda Costanzo, Ph.D CO2 Transport Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. How carbon dioxide is carried in blood, especially as bicarbonate. 2. The effect of oxygen on the carbon dioxide content of blood. CO2 is carried in the blood in three forms: dissolved CO2, CO2 bound to proteins such as - hemoglobin (called carbaminohemoglobin) and, most importantly, as HCO3 . I. DISSOLVED CO2 is described by Henry’s law as the partial pressure times the solubility and accounts for 5% of the total CO2 content of blood. The solubility of CO2 in blood is 0.07 ml CO2/100 ml blood/mm Hg (more than twenty times the solubility of O2). Thus, in arterial blood with a PCO2 of 40 mm Hg, dissolved CO2 is: Dissolved CO2 = PCO2 x solubility = 40 mm Hg x 0.07 ml CO2/100 ml blood/mm Hg = 2.8 ml CO2/100 ml blood, or 2.8 vol% II. CARBAMINOHEMOGLOBIN CO2 binds to terminal amino groups on hemoglobin and plasma proteins such as albumin, so-called carbamino compounds. Carbamino compounds account for 3% of the total CO2 in blood, 2/3 of which is carbaminohemoglobin. - III. HCO3 - - 92%, of the CO2 is carried in blood as HCO3 . The reactions that produce HCO3 are as follows: + - CO2 + H2O W H2CO3 W H + HCO3 Carbonic anhydrase In the tissues, CO2 generated from aerobic metabolism is added to venous blood. In the red cells of venous blood, the above reactions occur, generating H+ and - + HCO3 . The H remains inside the red cells, buffered by deoxyhemoglobin. The - - - HCO3 exchanges with Cl across the red cell membrane (Cl– HCO3 exchange) and travels to the lungs in the plasma. In the lungs the reactions occur in reverse, - HCO3 re-enters the red cells, CO2 is regenerated and then is expired. Figure 1. The graph below shows the relationship between the CO2 content of blood and PCO2. In contrast to O2, which has a sigmoidal relationship with PO2, CO2 content is linear as PCO2 changes over the physiologic range. Even though the carbamino - portion of the CO2 content is saturable as PO2 increases, the dissolved and HCO3 forms are linear. Note that the lower the PO2, the higher the CO2 content, which is attributed to greater binding of CO2 to hemoglobin in its deoxygenated form, called the Haldane effect. (Makes sense, since CO2 must be carried to the lungs in venous blood where hemoglobin is relatively deoxygenated.) Figure 2. (Fig.35-9) Blood CO2 equilibrium curves (atrial and venous). Venous blood can transport more CO2 than arterial blood at any given PCO2. Compared with the hemoglobin-oxygen equilibrium curve, the CO2 curves are essentially straight lines between PCO2 of 20 and 80 mm Hg. IV. PRACTICE QUESTIONS 1. Which of the following statements is correct about CO2 transport in blood? A. Systemic venous pH is higher than systemic arterial pH. B. Deoxyhemoglobin carries more CO2 than oxyhemoglobin. - C. Most HCO3 is carried inside the red blood cells. D. Binding of H+ to hemoglobin increases the affinity of hemoglobin for O2. EXPLANATIONS 2. Answer = B. Deoxyhemoglobin carries more CO2 than oxyhemoglobin (Haldane effect). Binding of H+ to hemoglobin decreases the affinity for - O2 (Bohr effect). Most HCO3 is carried in the plasma, not in the red cells. Systemic venous pH is lower than systemic arterial pH because CO2, a weak acid, has been added to it. .
Recommended publications
  • Hemoglobin : Its Protein of Molecular Weight 64,450 , in Human Beings It
    Hemoglobin : its protein of molecular weight 64,450 , in human beings it is enclose in the RBC .if it were in plasma, some of it leaks through the capillary membrane into the tissue space or through the glomerular membrane of the kidney into the glomerular filtrate each time the blood passes through the capillaries , high free plasma concentration of Hb increased blood viscosity and osmotic pressure. So for Hb to remain in the bloodstream , it must exist in the RBCs ,its major function is to carry O2 to the tissue and also it transport CO2 from the tissues to the lungs Normal hemoglobin type: Hb A: Its normal adult Hb . Its molecule consist of four polypeptide chains ,2 alpha (α) chains (each of which contains 141 amino acids) and 2 beta chains (each of which contains 146 amino acids).thus Hb A is designated α2 and β2. Hb A is predominant type of Hb in adult (95- 97% of total Hb) . Hb A2 : in the normal adult about 25% of the total Hb is Hb A2 in which chain are replaced by delta chains and is designated 2 α 2δ2 . Each δ chain also contain 146 amino acid but 10 amino acid differ from those in the β chain . Hb F (Fetal Hb): it is the main Hb in fetus and new born . It is 2α 2γ,gamma(γ) chain also has 146 amino acid but 37 amino acid differ from those in β chain, Hb F is replaced gradually by adult Hb soon after birth, usually at about 6 months to one year of age, the normal adult Hb predominates .
    [Show full text]
  • Metabolic Stable Isotope Fractionation
    Photograph by author, Gina M.A. Carroll Metabolic Stable Isotope Fractionation: Biogeochemical Approaches to Diagnosing Sickle Cell and Thalassemia Anemia in the Archaeological Record MSc Thesis Faculty of Archaeology MSc Proefschrift Faculteit der Archaeologie Gina M.A. Carroll 1 Photograph by Gina. M.A. Carroll Taken with permission from the Municipal Museum of Écija, Spain April 2014 Gina M.A. Carroll Alberta, Canada Leiden, The Netherlands [email protected] 1 Metabolic Stable Isotope Fractionation: Biogeochemical Approaches to Diagnosing Sickle Cell and Thalassemia Anemia in the Archaeological Record. MSc Thesis MSc Proefschrift Gina M.A. Carroll Human Osteology and Funerary s1371266 Archaeology MSc Thesis Archaeology University of Leiden Faculty of Archaeology ARCH 1044WY Prof. Dr. Waters-Rist Leiden, The Netherlands & Prof. Dr. Inskip Leiden, 26 May 2015 Final Draft. 2 TABLE OF CONTENTS DEDICATIONS ...................................................................................................................... 9 ACKNOWLEDGEMENTS .................................................................................................. 10 CHAPTER 1 INTRODUCTION ....................................................................... 12-30 1. BRIEF HISTORY OF ARCHAEOLOGICAL RESEARCH ........................................ 13 1.1. The Anemias in Archaeology ....................................................... 14 1.2. The Application of Stable Isotopes in Palaeopathology ............... 18 2. HYPOTHESIS ................................................................................................
    [Show full text]
  • A Cephalopod Approach to Rethinking About the Importance of the Bohr and Haldane Effects·
    Pacific Science (1982), vol. 36, no. 3 © 1983 by the University of Hawaii Press. All rights reserved A Cephalopod Approach to Rethinking about the Importance of the Bohr and Haldane Effects· G. LYKKEBOE2 and K. JOHANSEN2 ABSTRACT: This study concerns the physiological implications of the Bohr and Haldane effects and the buffer values in the blood from the cephalopods Nautilus pompilius, Octopus macropus, Sepia latimanus, Nototodarus sloani philippinensis, and Sepioteuthis lessoniana. All species studied except one (Nautilus) have Bohr and Haldane coefficients numerically higher than unity, and the two effects were found to be nearly identical in all cases, in accord with the theoretical prediction of Wyman (1964). However, the functional Haldane coefficient was significantly lower than the Haldane coefficient in two cases (Sepia and Sepioteuthis). Buffer values were highest in the two species with the lowest oxygen requirement (Nautilus and Octopus), whereas the three fast swim­ mers studied (Nototodarus, Sepia, and Sepioteuthis) display comparatively low buffer values. It is concluded that the large Bohr effects seen in four of the five species may have their primary effect on oxygen loading in the gills. THE OXYGEN AFFINITY ofcephalopod blood is Since the Bohr effect is generally acredited pH-sensitive in all reported cases. However, physiological significance in respiratory blood for no other group of animals does the pH­ gas transport, variations in it that are related sensitivity ofthe O 2 binding, expressed by the to behavior, habitat, or systemic factors Bohr coefficient (Lllog P50/LlpH), show such a should be easily discernible in cephalopods. large variability between species (P50 denotes The present study compares blood respi­ the oxygen tension at half02 saturation ofthe ratory properties and discusses their possible blood).
    [Show full text]
  • Published on May 14, 2008 As Doi: 10.1183/09031936.00126507 ERJ
    ERJ Express. Published on May 14, 2008 as doi: 10.1183/09031936.00126507 ACCURACY AND RELIABILITY OF PULSE OXIMETRY AT DIFFERENT PaCO2 LEVELS Authors: Muñoz Xa,b,d , Torres Fc , Sampol Ga,d , Rios Jc , Martí Sa,d , Escrich Eb a) Servei de Pneumologia,Hospital Universitari Vall d’Hebron, Barcelona, Spain b) Departament de Biología Cel·lular, de Fisiologia i d’Immunologia, UAB, Barcelona, Spain c) Laboratorio de Bioestadística i Epidemiología (Universitat Autònoma de Barcelona); Servei de Farmacologia Clínica, IDIBAPS, (Hospital Clínic), Barcelona d) CIBER de Enfermedades Respiratorias (Ciberes) Correspondence to: Dr. Xavier Muñoz Servei de Pneumologia Hospital Vall d'Hebron Pº Vall d'Hebron, 119-129 08035 Barcelona Spain Telf: 00 34 93 2746157 Fax: 00 34 93 2746083 E-mail: [email protected] Short title: ACCURACY OF PULSE OXIMETRY AND PaCO2 LEVELS The first two authors have contributed equally to this study. Copyright 2008 by the European Respiratory Society. ABSTRACT Aim: To assess whether arterial carbon dioxide pressure (PaCO2) has an impact on agreement between oxygen saturation measured with pulse oximetry (SpO2) or arterial blood gas co- oximetry (SaO2). Methods: A study was performed on SaO2 and SpO2 determinations obtained simultaneously from 846 patients under assessment for long-term home oxygen therapy in a specialized outpatient clinic. Both measurements were taken with patients seated and breathing room air. Agreement between SaO2 and SpO2 results was analyzed by the Bland-Altman method and the Lin concordance coefficient. In addition, potential interactions of PaO2 or PaCO2 on agreement were analyzed by adjusted multivariate analysis. Results: At comparison of SaO2 and SpO2 results, the Bland-Altman technique yielded a bias (95% CI) of -1.24 (-6.86; 4.38) and -1.32 (-7.78; 5.15) when PaCO2 was higher than 48 mmHg or PaO2 lower than 54 mmHg, respectively.
    [Show full text]
  • What Are the Health Effects from Exposure to Carbon Monoxide?
    CO Lesson 2 CARBON MONOXIDE: LESSON TWO What are the Health Effects from Exposure to Carbon Monoxide? LESSON SUMMARY Carbon monoxide (CO) is an odorless, tasteless, colorless and nonirritating Grade Level: 9 – 12 gas that is impossible to detect by an exposed person. CO is produced by the Subject(s) Addressed: incomplete combustion of carbon-based fuels, including gas, wood, oil and Science, Biology coal. Exposure to CO is the leading cause of fatal poisonings in the United Class Time: 1 Period States and many other countries. When inhaled, CO is readily absorbed from the lungs into the bloodstream, where it binds tightly to hemoglobin in the Inquiry Category: Guided place of oxygen. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of the physiological mechanisms underlying CO toxicity. For specific learning and standards addressed, please see pages 30 and 31. MATERIALS INCORPORATION OF TECHNOLOGY Computer and/or projector with video capabilities INDIAN EDUCATION FOR ALL Fires utilizing carbon-based fuels, such as wood, produce carbon monoxide as a dangerous byproduct when the combustion is incomplete. Fire was important for the survival of early Native American tribes. The traditional teepees were well designed with sophisticated airflow patterns, enabling fires to be contained within the shelter while minimizing carbon monoxide exposure. However, fire was used for purposes other than just heat and cooking. According to the historian Henry Lewis, Native Americans used fire to aid in hunting, crop management, insect collection, warfare and many other activities. Today, fire is used to heat rocks used in sweat lodges.
    [Show full text]
  • Would the Hemoglobin–Oxygen Dissociation Curve Shift with Fetal Hemoglobin Compared with Adult Hemoglobin?
    ❖ CASE 19 A 23-year-old man with no medical problems is brought to the emergency cen- ter by family members who found him to be confused, nauseated, short of breath, and complaining of a headache. The patient was found in the basement of their home next to a furnace, where he was trying to stay warm on a cold winter day. On examination, the patient is lethargic and confused. His lips appear a bright pink. A urine drug screen is obtained and is negative. His serum carboxyhemoglobin level is elevated. The patient is diagnosed with car- bon monoxide poisoning and is admitted to the hospital for further treatment. ◆ What is the mechanism by which carbon monoxide causes hypoxia? ◆ In which direction (right or left) would the hemoglobin–oxygen dissociation curve shift with fetal hemoglobin compared with adult hemoglobin? ◆ What is the most common way in which carbon dioxide is transported in venous blood? 154 CASE FILES: PHYSIOLOGY ANSWERS TO CASE 19: OXYGEN-CARBON DIOXIDE TRANSPORT Summary: A 23-year-old man has confusion, nausea, shortness of breath, and headache after being found near a furnace in the basement. The patient has clinical and laboratory findings consistent with carbon monoxide poisoning. ◆ Hypoxia with carbon monoxide: Decreased oxygen-binding capacity of hemoglobin. ◆ Fetal hemoglobin–oxygen dissociation curve: Shift to the left. ◆ Most common way carbon dioxide is transported in the blood: - Bicarbonate (HCO3 ). CLINICAL CORRELATION Carbon monoxide is a gas that is produced commonly by internal combustion engines, fossil-fuel home appliances (heaters, stoves, furnaces), and incom- plete combustion of nearly all natural and synthetic products.
    [Show full text]
  • Hematology Notes Blood/ Hematology Danil Hammoudi.MD
    Hematology notes Blood/ Hematology Danil Hammoudi.MD HTTP://Sinoemedicalassociation.or/AP2/ Page | 1 Blood is a connective tissue whose matrix is fluid. It is composed of: 1. red corpuscles, 2. white cells, 3. platelets, 4. blood plasma. It is transported throughout the body within blood vessels. • Blood is sometimes considered to be a fluid connective tissue because of the mesenchymal origin of its cells and a low ratio of cells to liquid intercellular substance, the blood plasma. • In human adults about 5 liter of blood contribute 7-8 % to the body weight of the individual. • The contribution of red blood cells (erythrocytes) to the total volume of the blood (haematocrit) is about 43%. • Erythrocytes are the dominant (99%) but not the only type of cells in the blood. • We also find leukocytes and, in addition, blood platelets. Erythrocytes, leukocytes and blood platelets are also being referred to as the formed elements of the blood. • Erythrocytes and blood platelets perform their functions exclusively in the blood stream. • In contrast, leukocytes reside only temporarily in the blood. • Leukocytes can leave the blood stream through the walls of capillaries and venules and enter either connective or lymphoid tissues. Hematology notes Page | 2 Hematology notes Page | 3 Blood facts • Approximately 8% of an adult's body weight is made up of blood. • Females have around 4-5 litres, while males have around 5-6 litres. This difference is mainly due to the differences in body size between men and women. • Its mean temperature is 38 degrees Celcius. • It has a pH of 7.35-7.45, making it slightly basic (less than 7 is considered acidic).
    [Show full text]
  • Class Notes Class: XI Topic: Breathing and Exchange of Gases Subject: Biology Difference Between Breathing and Respiration Breat
    Class Notes Class: XI Topic: Breathing and Exchange of Gases Subject: Biology Difference between Breathing and Respiration Breathing and Respiration are two different words. Breathing is a process of taking in air and giving out air whereas respiration is a process of release of energy when a food/glucose breakdown in presence of oxygen. Respiration is necessary for the survival of the living organisms. What are different Respiratory Organs? Different organisms have different respiratory organs for respiration. For Example: Lower invertebrates such as sponges, coelenterates, roundworms etc respire via process of diffusion through the body surface. Earthworms respire through skin. Insects respire through tracheal tubes. Aquatic animals such as aquatic arthropods, fishes respire through gills. Amphibians such as frogs respire through their moist skin. What is the role of diffusion in the Respiratory System? Diffusion is a process of movement of molecules from a region of high concentration to a region of low concentration. Diffusion helps in exchange of oxygen and carbon-dioxide between the lungs and the atmosphere. Human Respiratory System Human Respiratory System consists of the following parts Note: The above content has been absolutely prepared from home. • Nostrils is the first part of the respiratory system from where the air enters. • Trachea also known as wind pipe filters the air that is inhaled. Trachea is covered by a lid known as glottis at the time of swallowing of food. It prevents the food from entering into the trachea. It branches into bronchi. • Bronchi also known as air tubes pass air into the lungs. Bronchi branches into bronchioles.
    [Show full text]
  • Physiologic Basis of DLCO Testing
    The Physiologic Basis of DLCO testing Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan Objectives • Review gas transport from inhaled gas to the rest of the body body • Review the methods of measuring gas exchange • Review the principles of the DLCO test • Review physiologic factors that affect DLCO Gas exchange pathway 1. Transport from the mouth through the airways of the lung to the alveoli by convective and diffusive gas flow and mixing 2. Diffusion across the surfactant layer and the Type 1 pneumocytes which form the alveolar wall 3. Diffusion through the interstitium between the alveolar wall and the capillary wall 4. Diffusion across the pulmonary capillary endothelium 5. Diffusion through the plasma to the red blood cell 6. Diffusion across the red blood cell membrane 7. Diffusion through the red blood cell cytoplasm to the Hb molecule 8. Binding with a Hb molecule 9. Transport via the circulatory system to the rest of the body http://depts.washington.edu/envh/lung.html interstitium surfactant layer capillary endothelium type 1 pneumocyte 100 mmHg oxygen 40 mmHg 40 mmHg carbon dioxide 45 mmHg red blood cell plasma alveolus capillary Fick’s Law of Diffusion diffusive gas flow α Area × Diffusivity × (P1 – P2) / Thickness diffusivity CO2 ~ 20 × O2 P1 P2 The diffusivity of a gas molecule is equal to its solubility divided by the square root of its molecular weight https://www.easyways.net https://www.anatomynote.com https://www.differencebetween.com Hemoglobin transport • 15 gm Hb in 100 mL of blood with a PO2 of 100 mmHg carries 20 mL of oxygen in contrast to 0.3 mL of oxygen dissolved in 100 mL of plasma • The hemoglobin molecule simultaneously carries O2 and CO2, but not at the same binding sites.
    [Show full text]
  • Respiratory System True Or False
    Anatomy & Physiology Test November 4, 2017 Respiratory System True or False: 1. The major factor that stimulates the medulla oblongata and pons to produce respiration is not oxygen concentration, but rather the concentration of carbon dioxide in the blood. 2. The functional residual capacity (FRC) is the amount of air that remains in the lung after a normal tidal expiration; it is the sum of expiratory reserve volume and residual volume. 3. Compared to an atmospheric air, the alveolar air contains less of water vapor but greater amount of carbon dioxide. 4. Binding of the first oxygen molecule causes a conformational change in hemoglobin that allows the second molecule of oxygen to bind more readily, however at the tissue level, as the first oxygen molecule dissociates, it is harder for the next oxygen molecule to dissociate. 5. A large fraction—about 70 percent—of the carbon dioxide molecules that diffuse into the blood is transported to the lungs as dissolved state in plasma. 6. It is more difficult for a body to achieve the same level of oxygen saturation at high altitude than at low altitude, due to lower portion of oxygen (5%). Short Answers: 7. Describe how the rise of concentration of carbon dioxide or hydrogen ions affects the respiration centers and the rate and depth of respiration. 8. Explain what happens to perfusion when ventilation to an alveolus is not sufficient. 9. What are the factors that may cause the oxygen–hemoglobin dissociation curve shift to the “RIGHT”? 10. Please complete the following chemical equation: _____ ______ + - Enzyme:______ 11.
    [Show full text]
  • Oxygen Transport During Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells Or Artificial Oxygen Carriers
    International Journal of Molecular Sciences Review Oxygen Transport during Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells or Artificial Oxygen Carriers Silke B. Bodewes 1,2 , Otto B. van Leeuwen 1,3, Adam M. Thorne 1,3, Bianca Lascaris 1,3, Rinse Ubbink 3, Ton Lisman 2 , Diethard Monbaliu 4,5 , Vincent E. De Meijer 1 , Maarten W. N. Nijsten 6 and Robert J. Porte 1,* 1 Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] (S.B.B.); [email protected] (O.B.v.L.); [email protected] (A.M.T.); [email protected] (B.L.); [email protected] (V.E.D.M.) 2 Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] 3 Organ Preservation & Resuscitation Unit, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] 4 Department of Abdominal Transplantation Surgery and Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; [email protected] 5 Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 6 Department of Critical Care, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; [email protected] * Correspondence: [email protected]; Tel./Fax: +31-50-3611745 Abstract: Oxygenated ex situ machine perfusion of donor livers is an alternative for static cold preservation that can be performed at temperatures from 0 ◦C to 37 ◦C.
    [Show full text]
  • Hemoglobin/Myoglobin Robert F.Diegelmann, Ph.D
    Hemoglobin/Myoglobin Robert F.Diegelmann, Ph.D. OBJECTIVES 1. Describe the interactions of heme, globins and oxygen. 2. Discuss the mechanism responsible for Sickle­Cell Anemia. 3. Understand the clinical significance of A1C hemoglobin. 4. Describe the basic biochemical mechanisms of O2 delivery & CO2 removal. RECOMMENDED RESOURCES Lehninger, Principles of Biochemistry, 5th edition, Chapter 5 Molecular Cell Biology, 5th edition; Lodish et al., page 67 http://web.indstate.edu/thcme/mwking/hemoglobin­myoglobin.html#hemoglobin Myoglobin (muscle) & Hemoglobin (Red Blood Cells) were the first proteins for which three­ dimensional structures were determined. Professor Max Perutz and his colleagues at Cambridge University determined Hemoglobin’s three dimensional structure in the late 1950s Therefore Hemoglobin is one of the most studied & best understood proteins. Figure 1. The Evolution of the Globin protein family Figure 2. Structural similarity of the Globin proteins Figure 3 Below is the basic heme group structure. It consists of a complex organic ring structure named Protoporphyrin. NOTE: Heme metabolism will be covered in more detail in another lecture. Protoporphyrin prosthetic group Porphyrin ring Fe binding site Methene bridge Substitution sites Figure 4 Oxygen is not very soluble in aqueous solutions and therefore needs a special molecule to be carried to tissues and cells. The Protoporphyrin ring structure of Heme binds a single iron atom in its ferrous (Fe 2+) . The iron atom has six coordination bonds, four are found bound to the nitrogens in the Porphyrin ring system and two additional sites perpendicular to the Porphyrin. The Cytochromes (a, b & c) are proteins that also consist of porphyrin structures.
    [Show full text]