Historical and Contemporary Diversity of Galaxiids in South America: Biogeographic and Phylogenetic Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Historical and Contemporary Diversity of Galaxiids in South America: Biogeographic and Phylogenetic Perspectives diversity Review Historical and Contemporary Diversity of Galaxiids in South America: Biogeographic and Phylogenetic Perspectives Iván Vera-Escalona 1,2,* , M. Lisette Delgado 3 , Evelyn Habit 4 and Daniel E. Ruzzante 3,* 1 Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción 4090541, Chile 2 CIBAS, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción 4090541, Chile 3 Department of Biology, Dalhousie University, Halifax, NS B3H4R2, Canada; [email protected] 4 Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, Concepción 4070386, Chile; [email protected] * Correspondence: [email protected] (I.V.-E.); [email protected] (D.E.R.) Received: 27 May 2020; Accepted: 28 July 2020; Published: 5 August 2020 Abstract: Galaxiid fishes from South America are represented by three genera (Aplochiton, Brachygalaxias and Galaxias) and eight species. Their genetic patterns have been studied over the last two decades to disentangle how historical and contemporary processes influenced their biogeographic distribution and phylogeographic patterns. Here we review and synthesize this body of work. Phylogeographic approaches reveal the important role played by orogeny and the expansion/melting of glacial ice during the Quaternary. Populations retreated to glacial refugia during glacial times and some systems experienced drainage reversals from the Atlantic to the Pacific following deglaciation. Although most species expanded their populations and increased their genetic diversity during the Holocene, the introduction of salmonids and the construction of dams are likely to lead to a decline in genetic diversity for at least some species. An improvement in our understanding of the processes that influenced historical and contemporary diversity patterns among galaxiid and other native fishes in South America is necessary for addressing the cumulative and synergistic impacts of human activity on this unique freshwater fauna. Keywords: Galaxiidae; fish; Patagonia; genetics; phylogeny 1. Introduction Galaxiid fishes (Galaxiidae) in South America are represented by three genera and eight species (Galaxias maculatus, G. platei, G. globiceps, Aplochiton zebra, A. marinus, A. taeniatus, Brachygalaxias bullocki, and B. gothei) distributed throughout the Southern Cone in continental Patagonia on both sides of the Andes as well as in Tierra del Fuego and the Falkland/Malvinas islands ([1]; Figure1A). The various species in the group differ in their life histories, and though their respective ranges overlap, they differ substantially in their distributions. Galaxias maculatus and G. platei are the two most widespread species in the group and their distributions coincide with the area covered by the icecap during the Last Glacial Maximum (LGM), including the area west of the icecap north of Lat 42◦ S where the ice coverage did not reach the sea (Figure1B). One di fference between these two species, however, is that G. maculatus (but not G. platei) is present in estuarine and coastal areas as indicated below. The other species in the group are also found within the area covered by the LGM icecap, but they tend to be present less frequently and in smaller numbers than G. maculatus [2]. Diversity 2020, 12, 304; doi:10.3390/d12080304 www.mdpi.com/journal/diversity Diversity 2020, 12, x FOR PEER REVIEW 2 of 14 Diversityindicated2020 below., 12, 304 The other species in the group are also found within the area covered by the2 LGM of 14 icecap, but they tend to be present less frequently and in smaller numbers than G. maculatus [2]. FigureFigure 1.1. (A(A) )Southern Southern hemisphere hemisphere map map including including GalaxiasGalaxias (in (inyellow), yellow), AplochitonAplochiton (in red),(in red), and andBrachygalaxiasBrachygalaxias (in light(in light blue) blue) range range species species from from South South America America and and G. G.maculatus maculatus rangerange outside outside of ofSouth South America America (in (in green). green). West West Wind Wind Drift Drift in magenta in magenta arrows. arrows. (B) South (B) South America America zoomed zoomed map mapwith withschematic schematic main main landscape landscape changes changes in Patagonia in Patagonia and presumed and presumed direction direction of retre ofat retreatto glacial to glacialrefugia refugia(marked (marked with arrows) with arrows) explaining explaining the principal the principal phylogeographic phylogeographic patterns patterns of galaxiid of galaxiid species species during duringglacial glacialtimes. Approximate times. Approximate glacial glacialice cover ice at cover the time at the of time the Last of the Glacial Last Glacial Maximum Maximum (LGM) (LGM)shown shownin grey. in Exposed grey. Exposed area of Patagonia area of Patagonia during the during LGM the(in dark LGM grey) (in darkdue to grey) sea level due todrop sea (180 level m) drop (See (180[3,4] m)). (SeePaleocoast [3,4]). Paleocoastduring the during Last theGlacial Last GlacialMaximum Maximum based based on onfree free data data available available fromfrom https:https://crc806db.uni//crc806db.uni-koeln.de-koeln.de/layer/show/327/./layer/show/327/. GalaxiasGalaxias maculatus,maculatus, thethe mostmost widelywidely distributeddistributed speciesspecies inin thethe groupgroup exhibitsexhibits bothboth freshwaterfreshwater residentresident (whether(whether landlockedlandlocked oror not)not) as as well well as as diadromous diadromous populations. populations. Diadromous Diadromous populationspopulations inhabitinhabit estuarineestuarine andand coastalcoastal marinemarine habitatshabitats alongalong thethe PacificPacific coastcoast [5[5]],, thethe AtlanticAtlantic coastcoast inin southernmostsouthernmost PatagoniaPatagonia [[6]6] asas wellwell asas thethe island of Tierra del Fuego [7] [7].. GalaxiasGalaxias maculatus maculatus hashas a arelatively relatively short short generation generation time; time; individuals individuals usually usually reach reach maturity maturity before before their their first firstyearyear of life, of with life, withthe most the most common common cohort cohort among among reproductively reproductively mature mature individuals individuals often being often the being 1+ thecohort. 1+ cohort. Adults Adults> 3 years> 3 of years age are of age rarely are found rarely found[8]. Freshwater [8]. Freshwater resident resident G. maculatusG. maculatus lay theirlay eggs their in eggs littoral in littoral zones zonesof lakes of lakesand andon riverine on riverine floodplains floodplains with with abundant abundant vegetation, vegetation, exhibiting exhibiting a a repetitive spawningspawning strategystrategy [ [88––1010]].. AfterAfter hatching,hatching, larvaelarvae undertakeundertake significantsignificant habitathabitat shifts,shifts, migratingmigrating fromfrom thethe littorallittoral toto thethe limneticlimnetic zonezone [11[11]].. InIn estuaries,estuaries, G.G. maculatusmaculatus spawnsspawns onon thethe toptop ofof floodedflooded grassgrass flatsflats afterafter thethe highesthighest high-water high-water spring spring tide tide [ 12[12]]..As As thethe tidetide recedes,recedes,the theeggs eggsare are washed washed down down to to the the bases bases of of the the grassgrass clumpsclumps where where the the highhigh humidityhumidity ofof thethe vegetationvegetation protectsprotects themthem fromfrom desiccationdesiccation until until thethe nextnext springspring tides tides a a fortnight fortnight later later [13 [13]]. Larvae. Larvae are are subsequently subsequently washed washed out to out sea to where sea where the juveniles the juveniles spend approximatelyspend approximately six months six months before returningbefore returning to freshwater. to freshwater. Hatching Hatching during during flood events flood events may favor may larvalfavor survivallarval survival as turbid as flowsturbid likely flows provide likely coverprovide as larvaecover as migrate larvae out migrate to sea out [14]. toGalaxias sea [14] maculatus. Galaxias formmaculatus large form shoals large that shoals swim that during swim the during day; they the day tend; they to feed tend on to zooplankton feed on zooplankton in lakes and in lakes benthic and macroinvertebratesbenthic macroinvertebrates in rivers, in floodplains, rivers, floodplains, and estuaries. and estuaries. Lacustrine Lacustrine individuals individuals tend to havetend ato more have fusiforma more body,fusiform narrower body, heads,narrower and heads, larger eyesand thanlarger riverine eyes individualsthan riverine [15 individuals]. Similar morphological [15]. Similar divergencemorphological patterns divergence have recently patterns been have described recently forbeen other described galaxiid for species other galaxiid inhabiting species lentic inhabiting and lotic environmentslentic and lotic [16 environments]. [16]. GalaxiasGalaxias plateiplatei,, a strictly strictly freshwater freshwater species species largely largely restricted restricted to to lacustrine lacustrine environments, environments, is isdistributed distributed throughout throughout Andean Andean Patagonia Patagonia and and Tierra Tierra del Fuego. Their juveniles are mostmost commonlycommonly foundfound inin thethe shallowshallow littorallittoral zonezone ofof lakes,lakes, whilewhile largelarge adultadult individualsindividuals inhabitinginhabiting multispeciesmultispecies communitiescommunities areare mostmost commoncommon inin deepdeep
Recommended publications
  • Critical Habitat for Canterbury Freshwater Fish, Kōura/Kēkēwai and Kākahi
    CRITICAL HABITAT FOR CANTERBURY FRESHWATER FISH, KŌURA/KĒKĒWAI AND KĀKAHI REPORT PREPARED FOR CANTERBURY REGIONAL COUNCIL BY RICHARD ALLIBONE WATERWAYS CONSULTING REPORT NUMBER: 55-2018 AND DUNCAN GRAY CANTERBURY REGIONAL COUNCIL DATE: DECEMBER 2018 EXECUTIVE SUMMARY Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kōura/kēkēwai (crayfish) and kākahi (mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Water plans in Canterbury are intended to set rules for the use of water, the quality of water in aquatic systems and activities that occur within and adjacent to aquatic areas. To inform the planning and resource consent processes, information on the distribution of species and their critical habitat requirements can be used to provide for their protection. This report assesses the conservation status and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of these species and provides information on the critical habitat requirements of these species and/or populations. Water Ways Consulting Ltd Critical habitats for Canterbury aquatic fauna Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Methods ..............................................................................................................................................
    [Show full text]
  • A Global Assessment of Parasite Diversity in Galaxiid Fishes
    diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus.
    [Show full text]
  • Evidence of Interactive Segregation Between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile
    Transactions of the American Fisheries Society 138:839–845, 2009 [Note] Ó Copyright by the American Fisheries Society 2009 DOI: 10.1577/T08-134.1 Evidence of Interactive Segregation between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile BROOKE E. PENALUNA* Department of Fisheries and Wildlife, Oregon State University, 3200 Jefferson Way, Corvallis, Oregon 97331, USA IVAN ARISMENDI Nu´cleo Milenio FORECOS, and Escuela de Graduados, Facultad de Ciencias Forestales, Universidad Austral de Chile, Casilla #567, Valdivia, Chile DORIS SOTO Nu´cleo Milenio FORECOS, Universidad Austral de Chile, Casilla #567, Valdivia, Chile; and Food and Agriculture Organization of the United Nations, Fisheries Department, Inland Water Resources and Aquaculture Service, Viale delle Terme di Caracalla, 00100 Rome, Italy Abstract.—Introduced rainbow trout Oncorhynchus mykiss recreational fishing and early practices of aquaculture and brown trout Salmo trutta fario are the most abundant (Basulto 2003). It was thought that these areas in the fishes in the northern Chilean Patagonia, and their effect on Southern Hemisphere were suitable for and would benefit native fishes is not well known. We tested for interactive from the addition of trout (Campos 1970; Basulto 2003). segregation between trout and native fishes by using a before– Since their introduction, trout have formed naturalized after, control–impact design in which we deliberately reduced the density of trout and observed the response of the native populations and have become the most abundant fish fishes in their mesohabitat use (pool, run, riffle). Three native species, accounting for over 95% of the total biomass in fish species, Brachygalaxias bullocki, Galaxias maculatus rivers of the Chilean Patagonia (Soto et al.
    [Show full text]
  • Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property
    Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property. Los Alerces National Park, Argentina 185 Map 2: Andean-North Patagonian Biosphere Reserve: Context for the Nominated Proprty. Los Alerces National Park, Argentina 186 Map 3: Vegetation of the Valdivian Ecoregion 187 Map 4: Vegetation Communities in Los Alerces National Park 188 Map 5: Strict Nature and Wildlife Reserve 189 Map 6: Usage Zoning, Los Alerces National Park 190 Map 7: Human Settlements and Infrastructure 191 Appendix 2: Species Lists Ap9n192 Appendix 2.1 List of Plant Species Recorded at PNLA 193 Appendix 2.2: List of Animal Species: Mammals 212 Appendix 2.3: List of Animal Species: Birds 214 Appendix 2.4: List of Animal Species: Reptiles 219 Appendix 2.5: List of Animal Species: Amphibians 220 Appendix 2.6: List of Animal Species: Fish 221 Appendix 2.7: List of Animal Species and Threat Status 222 Appendix 3: Law No. 19,292 Append228 Appendix 4: PNLA Management Plan Approval and Contents Appendi242 Appendix 5: Participative Process for Writing the Nomination Form Appendi252 Synthesis 252 Management Plan UpdateWorkshop 253 Annex A: Interview Guide 256 Annex B: Meetings and Interviews Held 257 Annex C: Self-Administered Survey 261 Annex D: ExternalWorkshop Participants 262 Annex E: Promotional Leaflet 264 Annex F: Interview Results Summary 267 Annex G: Survey Results Summary 272 Annex H: Esquel Declaration of Interest 274 Annex I: Trevelin Declaration of Interest 276 Annex J: Chubut Tourism Secretariat Declaration of Interest 278
    [Show full text]
  • Composición, Origen Y Valor De Conservación De La Ictiofauna Del Río San Pedro (Cuenca Del Río Valdivia, Chile)
    Gayana Especial:75(2), 2012 10-23, 2012. Composición, origen y valor de conservación de la Ictiofauna del Río San Pedro (Cuenca del Río Valdivia, Chile) Composition, origin and conservation value of the San Pedro River Ichthyofauna (Valdivia River Basin, Chile) EVELYN HABIT1, PEDRO VICTORIANO2 1Unidad de Sistemas Acuáticos, Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepción. Concepción, Chile. Casilla 160-C. 2Facultad de Ciencias Naturales y Oceanográfi cas. Departamento de Zoología, Universidad de Concepción. Concepción, Chile. Casilla160-C. E-mail: [email protected] RESUMEN Basado en muestreos de tres años consecutivos y revisión de literatura, describimos la composición, singularidad y estado de conservación de la ictiofauna del río San Pedro, en la cuenca del río Valdivia. Además, analizamos los posibles orígenes de esta ictiofauna, postulando que parte de la cuenca del río Valdivia ha funcionado como un sumidero, principalmente su parte alta, con aportes de fuentes tanto costero-Pacífi cas como del Este de Los Andes. Concluimos que el río San Pedro es de particular valor ictiofaunístico por su alta riqueza específi ca, endemismos y características biogeográfi cas. PALABRAS CLAVE: Fauna íctica, Río San Pedro, Endemismos, Conservación, Chile. ABSTRACT Based on three consecutive years of sampling and bibliographic revision, the composition, singularity and conservation status of the San Pedro River ichthyofauna is described. In addition, the potential origin of this Valdivia River ichthyofauna was analyzed and this basin is proposed to have worked like a sink, mainly the higher zone, having been colonized both from Coastal-Pacifi c as from Eastern Andes sources. It is concluded that this river has a particular conservation value due to its high species richness, endemism and biogeographic characteristics.
    [Show full text]
  • Documento Completo Descargar Archivo
    Publicaciones científicas del Dr. Raúl A. Ringuelet Zoogeografía y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las áreas ictiológicas de América del Sur Ecosur, 2(3): 1-122, 1975 Contribución Científica N° 52 al Instituto de Limnología Versión electrónica por: Catalina Julia Saravia (CIC) Instituto de Limnología “Dr. Raúl A. Ringuelet” Enero de 2004 1 Zoogeografía y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las áreas ictiológicas de América del Sur RAÚL A. RINGUELET SUMMARY: The zoogeography and ecology of fresh water fishes from Argentina and comments on ichthyogeography of South America. This study comprises a critical review of relevant literature on the fish fauna, genocentres, means of dispersal, barriers, ecological groups, coactions, and ecological causality of distribution, including an analysis of allotopic species in the lame lake or pond, the application of indexes of diversity of severa¡ biotopes and comments on historical factors. Its wide scope allows to clarify several aspects of South American Ichthyogeography. The location of Argentina ichthyological fauna according to the above mentioned distributional scheme as well as its relation with the most important hydrography systems are also provided, followed by additional information on its distribution in the Argentine Republic, including an analysis through the application of Simpson's similitude test in several localities. SINOPSIS I. Introducción II. Las hipótesis paleogeográficas de Hermann von Ihering III. La ictiogeografía de Carl H. Eigenmann IV. Estudios de Emiliano J. Mac Donagh sobre distribución de peces argentinos de agua dulce V. El esquema de Pozzi según el patrón hidrográfico actual VI.
    [Show full text]
  • BEFORE the COMMISSIONERS on BEHALF of the OTAGO REGIONAL COUNCIL Consent No. RM16.093.01 BETWEEN CRIFFEL WATER LIMITED Applic
    BEFORE THE COMMISSIONERS ON BEHALF OF THE OTAGO REGIONAL COUNCIL Consent No. RM16.093.01 BETWEEN CRIFFEL WATER LIMITED Applicant AND OTAGO REGIONAL COUNCIL Consent Authority EVIDENCE OF RICHARD MARK ALLIBONE ____________________________________________________________ GALLAWAY COOK ALLAN LAWYERS DUNEDIN Solicitor to contact: Bridget Irving P O Box 143, Dunedin 9054 Ph: (03) 477 7312 Fax: (03) 477 5564 Email: [email protected] BI-308132-1-352-V4 1 EVIDENCE OF RICHARD MARK ALLIBONE Introduction 1. My name is Richard Mark Allibone. 2. I am the Director and Principal Ecologist of Water Ways Consulting Limited. I hold the following tertiary qualifications; a BSc (Zoology and Geology), an MSc (Zoology) and PhD (Zoology), all from the University of Otago. My research has centred on New Zealand’s native fish with a focus on the New Zealand galaxiids, their taxonomy, life history and threats to these species. 3. I specialise in freshwater ecological research and management for native freshwater fish. I have been a researching native fish for over thirty years. Initially my research between 1990 and 2001 was conducted as a post-graduate student and then as a freshwater fisheries specialist for the Department of Conservation, a Post Doctoral Fellow and fisheries scientist at NIWA, and a Species Protection Officer in the Department of Conservation’s Biodiversity Recovery Unit. During 2002-2004 I was the National Services Manager at the QEII National Trust. Since 2004 I have worked as a consultant; firstly for Kingett Mitchell Limited, then Golder Associates (NZ) Ltd. In November 2014 I formed the company Water Ways Consulting Limited where I am a director and the principal ecologist.
    [Show full text]
  • Presence of the Red Jollytail, Brachygalaxias Bullocki (Regan
    Correa-Araneda et al. Revista Chilena de Historia Natural 2014, 87:20 http://www.revchilhistnat.com/content/87/1/20 SHORT REPORT Open Access Presence of the red jollytail, Brachygalaxias bullocki (Regan, 1908) (Galaxiformes: Galaxiidae), in freshwater forested wetlands from Chile Francisco Correa-Araneda1,2,3*, Patricio De Los Ríos2,3 and Evelyn Habit4 Abstract Background: Brachygalaxias bullocki (Regan, 1908) is a small-sized freshwater fish species (41 to 46 mm) and endemic to Chile. Its biology has still various knowledge gaps, and its distribution range has been reduced in the last decade due to human intervention. Findings: In this article, for the first time, its presence in forested wetlands of Chile (38°52′ to 39°02′ S) is documented. The presence of this species in these ecosystems is restricted to wetlands with permanent water regime and depths ranging from 15.7 to 83.5 cm. Conclusions: The physicochemical habitat conditions show important seasonal variations, suggesting that B. bullocki is resistant to a wide range of temperatures, as well as different levels of dissolved oxygen and conductivity. Keywords: Brachygalaxias bullocki; Fish fauna; Forested wetlands; Conservation Findings Consequently, B. bullocki changes in the past 26 years from Brachygalaxias bullocki (Regan, 1908) is an endemic, small- a vulnerable status of conservation (Glade 1988; Campos sized (41 to 46 mm) fish species (Stokell 1954; Cifuentes et al. 1998) to almost endanger (MMA 2014). Our goal is et al. 2012). It is endemic to Chile and still several know- to document, for the first time, the presence of this species ledge gaps about its biology exist (Habit and Victoriano in forested wetlands of Chile, providing more evidence on 2012).
    [Show full text]
  • Diversity of Aplochiton Fishes (Galaxiidea) and the Taxonomic Resurrection of A
    Diversity of Aplochiton Fishes (Galaxiidea) and the Taxonomic Resurrection of A. marinus Dominique Alo` 1*., Cristia´n Correa2*., Carlos Arias2,3, Leyla Ca´rdenas4 1 Instituto de Conservacio´n, Biodiversidad and Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile, 2 Department of Biology and Redpath Museum, McGill University, Montreal, Quebec, Canada, 3 Smithsonian Tropical Research Institute, Panama´, Repu´blica de Panama´, 4 Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile Abstract Aplochiton is a small genus of galaxiid fishes endemic to Patagonia and the Falkland Islands whose taxonomy is insufficiently resolved. Recent genetic analyses confirmed the existence of only two closely related species, Aplochiton taeniatus and Aplochiton zebra, while a third controversial species, Aplochiton marinus, remained lost to synonymy with A. taeniatus. Using an integrative taxonomy framework, we studied original samples and published sequences from a broad range in western Patagonia and the Falkland Islands, and generated robust species hypotheses based on single-locus (Cytochrome Oxidase subunit I; COI) species-delineation methods and known diagnostic morphological characters analyzed in a multivariate context. Results revealed three distinct evolutionary lineages that morphologically resemble, in important respects, existing nominal species descriptions. Interestingly, the lineage associated with A. marinus was unambiguously identifiable (100% accuracy) both from the genetic and morphological viewpoints. In contrast, the morphology of A. taeniatus and A. zebra overlapped substantially, mainly due to the high variability of A. taeniatus. Discriminant function analysis aided the identification of these species with 83.9% accuracy. Hence, for their unambiguous identification, genetic screening is needed.
    [Show full text]
  • Memo Prioritisation of Native Aquatic Species Habitat for Protection Under the LWRP Omnibus Plan Change
    Memo Date 21.05.2019 To Andrea Richardson, Senior Planner CC Peter Constantine, ECan From Duncan Gray, ECan and Richard Allibone, Waterways Consulting Prioritisation of native aquatic species habitat for protection under the LWRP Omnibus plan change Introduction Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kēkēwai (crayfish) and kākahi (freshwater mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Resource management plans in Canterbury set rules for the use of water, standards for the quality of water in aquatic systems and regulate activities that occur within and adjacent to aquatic areas. As such the Land and Water Regional Plan (LWRP) for Canterbury is an appropriate framework through which to provide protection for the habitat of threatened species. Allibone & Gray (2019) review the biodiversity value and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of species and provides information on the critical habitat requirements of these species and/or populations. This memo details a prioritisation process undertaken on the information in Allibone & Gray (2019) to establish a list of taxa and their distribution appropriate for protection under the LWRP Omnibus plan change. Distribution data Allibone & Gray (2019 use distributional data for fish and macroinvertebrates derived from the New Zealand Freshwater Fish Database (NZFFD), online surveys conducted by the Canterbury Regional Council and other data provided by universities, Crown Research Institutes and consultancies.
    [Show full text]
  • Fact Sheet: Big Trouble for Little Fish
    Science for Policy Research findings in brief Project 2.1 Big trouble for little fish: Identifying Australian freshwater fishes at imminent risk of extinction In brief In Australia, many freshwater fish described in the past decade, and (The Environment Protection and species have declined sharply since seven are awaiting description. Biodiversity Conservation Act 1999 the 1950s. Preventing extinctions Twenty-one of the species identified (EPBC Act)). Listing of the other will require identifying the species are small-bodied, with the majority 19 species would provide essential most at risk. occurring in southern Australia, a protection and recognition for the remaining individuals of these We used structured expert elicitation region where introduced predatory species and their critical habitat. and other available published and trout species have taken a heavy unpublished data to identify the toll, especially on native galaxiids. The fate of all 22 species will depend freshwater fishes at greatest risk Although the majority of these species upon individual targeted action, of extinction, and to estimate were once far more widespread, all 22 investment and collaboration among the likelihood of extinction within fishes now have small distributions with governments and non-government ~20 years if there is no change areas of occupancy ranging between organisations to mitigate threats to current management. 4 – 44 km2; this greatly increases the and support recovery. We identified 22 species at high risk of risk that single catastrophic events, such The assessments were undertaken extinction (from ~315 species known as a large bushfire, could cause species prior to the 2019–20 Black Summer to occur in Australia), 20 of which had extinctions.
    [Show full text]
  • National Recovery Plan for the Barred Galaxias Galaxias Fuscus
    National Recovery Plan for the Barred Galaxias Galaxias fuscus Tarmo A. Raadik, Peter S. Fairbrother and Stephen J. Smith Prepared by Tarmo A. Raadik, Peter S. Fairbrother and Stephen J. Smith (Department of Sustainability and Environment, Victoria). Published by the Victorian Government Department of Sustainability and Environment (DSE) Melbourne, October 2010. © State of Victoria Department of Sustainability and Environment 2010 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. Authorised by the Victorian Government, 8 Nicholson Street, East Melbourne. ISBN 978-1-74208-883-9 This is a Recovery Plan prepared under the Commonwealth Environment Protection and Biodiversity Conservation Act 1999, with the assistance of funding provided by the Australian Government. This Recovery Plan has been developed with the involvement and cooperation of a range of stakeholders, but individual stakeholders have not necessarily committed to undertaking specific actions. The attainment of objectives and the provision of funds may be subject to budgetary and other constraints affecting the parties involved. Proposed actions may be subject to modification over the life of the plan due to changes in knowledge. Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence that may arise from you relying on any information in this publication. An electronic version of this document is available on the Department of Sustainability, Environment, Water, Population and Communities website: www.environment.gov.au For more information contact the DSE Customer Service Centre telephone 136 186 Citation: Raadik, T.A., Fairbrother, P.S.
    [Show full text]