Catalogue of the Vascular Plants of Madagascar

Total Page:16

File Type:pdf, Size:1020Kb

Catalogue of the Vascular Plants of Madagascar Catalogue of the Vascular Plants of Madagascar Tropicos Names Specimens References Projects Images More Tools Logout | Browse Madagascar > Diospyros Choose Project English Higher Taxa Orders Families The genus Diospyros in Madagascar: a Preliminary Checklist for CITES Genera Parties. Species Plant Themes Sourced from: Madagascar Catalogue, 2016. Catalogue of the Vascular Plants of Madagascar. Name Searches Missouri Botanical Garden, St. Louis, U.S.A. & Antananarivo, Madagascar [http://www.efloras.org /madagascar. Accessed: March 28, 2016] Quick Search Note: This Checklist is termed preliminary as a significant number of taxa remain to be described, published and included in this list. If CITES Parties encounter names of taxa which they consider may be native to Madagascar these names should be forwarded to the Specialist on Botanical All Names Nomenclature of the Plants Committee who will then consult the compilers of the checklist and Fern Index advise on the status of the names. Red List Reference(s): Other Searches Specimen Full Perrier de la Bathie, H. 1952. Revision des Ebenacees de Madagascar et des Comores. Search Mém. Inst. Sci. Madagascar, Sér. B, Biol. Vég. 4(1): 93–154. Specimens with Vernacular Capuron, R. 1962. Contributions à l'étude de la flore forestière de Madagascar. Adansonia, names n.s. 2: 122–128. References Perrier de la Bathie, H. 1952. Ebenacees. Fl. Madagasc. 165: 1–129. Geographic Search Schatz, G. E. & P. P. Lowry. 2011. Nomenclatural notes of Malagasy Diospyros L. Collector Search (Ebenaceae). Adansonia, sér. 3, 33(2): 271–281. Search Builder Schatz, G. E., P. P. Lowry, C. Mas & M. W. Callmander. 2013. Further nomenclatural Project Query notes on Malagasy Diospyros (Ebenaceae): Goudot types in the Geneva herbarium. Candollea builder (Login required) 68(2): 307–309. Image Galleries Generic Distribution: not endemic to the Malagasy Region Photo Gallery Specimens Generic Species Diversity and Endemism Status: has been evaluated Scans No. of species in Fl. Madagasc.: 72 endemic All Image Galleries Accepted Published Species: 85 (82 endemic, 3 indigenous non-endemic) Resources Estimated Undescribed Species: 130 endemic Botanical Estimated Total Species: 215 (212 endemic, 3 indigenous non-endemic) Liesner field guide Additional Taxonomic Work: in progress The Plant List Species Level Data Entry: not yet complete JSTOR Plants APG links Compiled or updated by: G. E. Schatz & P. P. Lowry Generic Tree Key The Checklist: Names in Bold = Accepted; Non-bold names = Synonyms; ! = Legitimate name; * Web Sites = Illegitimate name; ** = Invalid name. Glossary Fr/Eng Online Library Diospyros aculeata H. Perrier Catalogue Diospyros albidum Scott-Elliot = Diospyros gracilipes Hiern Diospyros analamerensis H. Perrier JSTOR Diospyros ankifiensis H. Perrier = Diospyros comorensis Hiern Botanicus Diospyros anosivolensis H. Perrier Gallica Diospyros baroniana H. Perrier Adansonia Diospyros bemarivensis H. Perrier Bull. Soc. Bot Diospyros bernieri Hiern = Diospyros squamosa Bojer ex A. DC. Diospyros bernieriana (Baill.) H. Perrier Flore de Madagascar Diospyros bezofensis H. Perrier Diospyros boinensis (H. Perrier) G.E. Schatz & Lowry Candollea Diospyros boivinii Hiern 1 of 3 28-Mar-16 11:41 Notes Diospyros buxifolia Thouars = Diospyros ferrea (Willd.) Bakh. Pteridologiques Diospyros calophylla Hiern General Diospyros caucheana A. Chev. = Diospyros toxicaria Hiern Literature Diospyros cinnamomoides H. Perrier Maps Diospyros clusiifolia (Hiern) G.E. Schatz & Lowry Bioclimate Diospyros comorensis Hiern Diospyros conifera H. Perrier = Diospyros squamosa Bojer ex A. DC. Geology Diospyros coursiana H. Perrier Protected Areas *Diospyros crassiflora H. Perrier = Diospyros mcphersonii G.E. Schatz & Lowry Provinces Diospyros cupulifera H. Perrier Regions Diospyros danguyana H. Perrier Ethnic groups Diospyros decaryana H. Perrier Diospyros dicorypheoides H. Perrier Vegetation Diospyros ebenifera (H. Perrier) G.E. Schatz & Lowry Protected Diospyros enervis (H. Perrier) G.E. Schatz & Lowry Areas Diospyros erinacea (H. Perrier) G.E. Schatz & Lowry Details Diospyros erythrosperma H. Perrier Nat. Parks !Diospyros ferrea (Willd.) Bakh. Diospyros filipes H. Perrier SAPM Diospyros fuscovelutina Baker Gazetteers Diospyros geayana (H. Perrier) G.E. Schatz & Lowry MBG Gazetteer Diospyros gonoclada Baker = Diospyros sphaerosepala Baker Fallingrain.com Diospyros gracilipes Hiern Diospyros greveana H. Perrier Diospyros haplostylis Boivin ex Hiern Diospyros hazomainty H. Perrier Diospyros heterosepala H. Perrier Diospyros hildebrandtii Gürke = Diospyros bernieriana (Baill.) H. Perrier Diospyros humbertiana H. Perrier Diospyros implexicalyx H. Perrier *Diospyros intricata H. Perrier = Diospyros nidiformis G.E. Schatz & Lowry Diospyros ketsensis H. Perrier Diospyros laevis Bojer ex A. DC. Diospyros lanceolata Poir. Diospyros latispathulata H. Perrier Diospyros lenticellata Baker = Diospyros boivinii Hiern Diospyros leucocalyx Hiern Diospyros lokohensis (H. Perrier) G.E. Schatz & Lowry Diospyros louvelii H. Perrier Diospyros madecassa H. Perrier Diospyros manampetsae H. Perrier Diospyros mangabensis Aug. DC. Diospyros mangorensis H. Perrier Diospyros mapingo H. Perrier Diospyros masoalensis H. Perrier Diospyros mcphersonii G.E. Schatz & Lowry Diospyros meeusiana (H. Perrier) G.E. Schatz & Lowry Diospyros megasepala Baker = Diospyros leucocalyx Hiern Diospyros microrhombus Hiern Diospyros minutiloba H. Perrier = Chrysophyllum boivinianum (Pierre) Baehni Diospyros myriophylla (H. Perrier) G.E. Schatz & Lowry Diospyros myrtifolia H. Perrier Diospyros myrtilloides (H. Perrier) G.E. Schatz & Lowry = Diospyros parvifolia Hiern Diospyros nidiformis G.E. Schatz & Lowry Diospyros obducta (H. Perrier) G.E. Schatz & Lowry Diospyros occlusa H. Perrier Diospyros olacinoides (H. Perrier) G.E. Schatz & Lowry Diospyros onivensis H. Perrier = Diospyros haplostylis Boivin ex Hiern Diospyros parifolia H. Perrier Diospyros parvifolia Hiern Diospyros perglauca H. Perrier Diospyros perreticulata H. Perrier Diospyros perrieri Jum. Diospyros pervilleana (Baill.) G.E. Schatz & Lowry Diospyros pervillei Hiern Diospyros platycalyx Hiern Diospyros pruinosa Hiern Diospyros quercina (Baill.) G.E. Schatz & Lowry Diospyros rubrolanata H. Perrier = Diospyros haplostylis Boivin ex Hiern Diospyros sakalavarum H. Perrier Diospyros sclerophylla H. Perrier 2 of 3 28-Mar-16 11:41 Diospyros sphaerosepala Baker Diospyros squamosa Bojer ex A. DC. Diospyros stenocarpa (H. Perrier) G.E. Schatz & Lowry Diospyros striicalyx H. Perrier = Diospyros platycalyx Hiern Diospyros subacuta Hiern Diospyros subenervis (H. Perrier) G.E. Schatz & Lowry Diospyros subfalciformis H. Perrier Diospyros subsessilifolia H. Perrier Diospyros subtrinervis H. Perrier Diospyros tampinensis H. Perrier Diospyros tetraceros H. Perrier Diospyros tetrapoda H. Perrier Diospyros thouarsii Hiern Diospyros torquata H. Perrier Diospyros toxicaria Hiern Diospyros tropophylla (H. Perrier) G.E. Schatz & Lowry Diospyros urschii H. Perrier Diospyros velutipes (H. Perrier) G.E. Schatz & Lowry Diospyros vescoi Hiern Diospyros viguieriana H. Perrier = Diospyros haplostylis Boivin ex Hiern Download PDF. Peter B. Phillipson, source page: http://www.tropicos.org/NamePage.aspx?nameid=40031908& projectid=17, March 28, 2016. Edit this Page © 2016 Missouri Botanical Garden - 4344 Shaw Boulevard - Saint Louis, Missouri 63110 Send feedback|Terms Of Use|API|Linking to Tropicos|FAQ|Additional Info 3 of 3 28-Mar-16 11:41.
Loading...
Loading...
Loading...

—— Preview end. ——

Recommended publications
  • Developing a Sustainable Roadmap for Ebony Production in Cameroon
    Developing a Sustainable Roadmap for Ebony Production in Cameroon UCLA Environmental Science Senior Practicum 2016-17 Sarah Casey, Kenyon Chow, Diana Krichevsky, Abigail Mejia, Emily Parker Advisors: Kevin Njabo and Virginia Zaunbrecher Client: Taylor Guitars Table of Contents I. Sustainability Roadmap for Ebony 3 A. Introduction of Stakeholders 3 Taylor Guitars 3 Crelicam S.A.R.L. 3 Congo Basin Institute 4 ICRAF 4 IBAY/HIES 5 Ekombite Plantation 5 Somalomo and Bifalone Communities 5 B. Current State of Ebony Production 6 C. Pathways to Sustainable Ebony Production 7 i. Co-cropping 7 ii. Improving Ebony Production Efficiency 8 iii. Legal and Policy Classifications 8 iv. Tissue Culture and Ebony Growth Propagation 8 Current Work 9 Challenges and Future Goals 11 v. Domestic Education and Conservation 11 vii. Community Engagement and Participatory Development 12 II. Co-cropping 13 A.Current state and application of co-cropping 13 Benefits of Co-cropping 13 Co-cropping Practices for Ebony 14 B. Co-cropping species identification and feasibility: 14 C. Stakeholders and co-cropping incentives 16 D. Recommendations 21 III. Ebony Production Efficiency 22 A. Process Overview 22 i. Production Inefficiency- Logging Level 23 ii. Production Inefficiency- Sawmill Level 25 B. Recommendations 25 i. Forest Level 26 ii. Sawmill Level 27 iii. Retail Level 28 IV. Laws and Regulations 30 1 A. Overview- Domestic 30 FLEGT 30 1994 Forestry Law 31 Classification of Ebony 33 Ebony Logging Permits 34 FSC 35 Taxation 35 B. Overview- International 37 C. Comparison between Legal and Illegal Forestry Operators 38 D. Setbacks 39 V. Recommendation Matrix 41 VI.
    [Show full text]
  • Caterpillars Moths Butterflies Woodies
    NATIVE Caterpillars Moths and utter flies Band host NATIVE Hackberry Emperor oodies PHOTO : Megan McCarty W Double-toothed Prominent Honey locust Moth caterpillar Hackberry Emperor larva PHOTO : Douglas Tallamy Big Poplar Sphinx Number of species of Caterpillars n a study published in 2009, Dr. Oaks (Quercus) 557 Beeches (Fagus) 127 Honey-locusts (Gleditsia) 46 Magnolias (Magnolia) 21 Double-toothed Prominent ( Nerice IDouglas W. Tallamy, Ph.D, chair of the Cherries (Prunus) 456 Serviceberry (Amelanchier) 124 New Jersey Tea (Ceanothus) 45 Buttonbush (Cephalanthus) 19 bidentata ) larvae feed exclusively on elms Department of Entomology and Wildlife Willows (Salix) 455 Larches or Tamaracks (Larix) 121 Sycamores (Platanus) 45 Redbuds (Cercis) 19 (Ulmus), and can be found June through Ecology at the University of Delaware Birches (Betula) 411 Dogwoods (Cornus) 118 Huckleberry (Gaylussacia) 44 Green-briar (Smilax) 19 October. Their body shape mimics the specifically addressed the usefulness of Poplars (Populus) 367 Firs (Abies) 117 Hackberry (Celtis) 43 Wisterias (Wisteria) 19 toothed shape of American elm, making native woodies as host plants for our Crabapples (Malus) 308 Bayberries (Myrica) 108 Junipers (Juniperus) 42 Redbay (native) (Persea) 18 them hard to spot. The adult moth is native caterpillars (and obviously Maples (Acer) 297 Viburnums (Viburnum) 104 Elders (Sambucus) 42 Bearberry (Arctostaphylos) 17 small with a wingspan of 3-4 cm. therefore moths and butterflies). Blueberries (Vaccinium) 294 Currants (Ribes) 99 Ninebark (Physocarpus) 41 Bald cypresses (Taxodium) 16 We present here a partial list, and the Alders (Alnus) 255 Hop Hornbeam (Ostrya) 94 Lilacs (Syringa) 40 Leatherleaf (Chamaedaphne) 15 Honey locust caterpillar feeds on honey number of Lepidopteran species that rely Hickories (Carya) 235 Hemlocks (Tsuga) 92 Hollies (Ilex) 39 Poison Ivy (Toxicodendron) 15 locust, and Kentucky coffee trees.
    [Show full text]
  • Differences in the Phenolic Profile by UPLC Coupled to High Resolution
    antioxidants Article Differences in the Phenolic Profile by UPLC Coupled to High Resolution Mass Spectrometry and Antioxidant Capacity of Two Diospyros kaki Varieties Adelaida Esteban-Muñoz 1,2,*, Silvia Sánchez-Hernández 1,2, Cristina Samaniego-Sánchez 1,3 , Rafael Giménez-Martínez 1,3 and Manuel Olalla-Herrera 1,3 1 Departamento de Nutrición y Bromatología, Universidad de Granada, 18071 Granada, Spain; silsanchez@ugr.es (S.S.-H.); csama@ugr.es (C.S.-S.); rafaelg@ugr.es (R.G.-M.); olalla@ugr.es (M.O.-H.) 2 Programme in Nutrition and Food Science, University of Granada, 18071 Granada, Spain 3 Biosanitary Research Institute, IBS, 18071 Granada, Spain * Correspondence: aidaem@ugr.es; Tel.: +34-958-243-863 Abstract: Background: phenolic compounds are bioactive chemical species derived from fruits and vegetables, with a plethora of healthy properties. In recent years, there has been a growing inter- est in persimmon (Diospyros kaki L.f.) due to the presence of many different classes of phenolic compounds. However, the analysis of individual phenolic compounds is difficult due to matrix interferences. Methods: the aim of this research was the evaluation of individual phenolic compounds and antioxidant capacity of the pulp of two varieties of persimmon (Rojo Brillante and Triumph) by an improved extraction procedure together with a UPLC-Q-TOF-MS platform. Results: the phenolic compounds composition of persimmon was characterized by the presence of hydroxybenzoic and hy- droxycinnamic acids, hydroxybenzaldehydes, dihydrochalcones, tyrosols, flavanols, flavanones, and Citation: Esteban-Muñoz, A.; flavonols. A total of 31 compounds were identified and 17 compounds were quantified. Gallic acid was Sánchez-Hernández, S.; Rojo Brillante Samaniego-Sánchez, C.; the predominant phenolic compounds found in the variety (0.953 mg/100 g) whereas the Giménez-Martínez, R.; concentration of p-hydroxybenzoic acid was higher in the Triumph option (0.119 mg/100 g).
    [Show full text]
  • Pp. 72-75, 2020 Download
    T REPRO N DU The International Journal of Plant Reproductive Biology 12(1) Jan., 2020, pp.72-75 LA C P T I F V O E B Y T I DOI 10.14787/ijprb.2020 12.1. O E I L O C G O S I S T E S H Floral anatomy and flower visitors of three persimmon (Diospyros kaki L.) T varieties cultivated in Central Europe Virág Andor and Ágnes Farkas* Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Rókus str. 2., Hungary *e-mail : agnes.farkas@aok.pte.hu Received : 20.12.2019; Accepted and Published online: 31.12.2019 ABSTRACT We report flower and pollination biological traits of three persimmon (Diospyros kaki L.) varieties cultivated under suboptimal conditions in the temperate climate of Central Europe. In order to observe flower visiting insects and floral morphology, and to determine the nectar producing capacity of persimmon flowers, field studies were conducted in 2018 and 2019. The anatomical studies were performed with light microscopy. Quantitative floral traits were analysed with two-sample t-test. The main flower visitors were honeybees (Apis mellifera L.) and bumblebees (Bombus sp.), which can act as pollinators, while searching for nectar. The studied persimmon varieties belong to the gynoecious type, the solitary pistillate flowers consisting of four- membered calyx and corolla, reduced androecium and a pistil with superior ovary and 3 to 5 stigmata. The size of the calyx was significantly different in different varieties, but corolla diameter did not differ within the same year of study. The diameter of both the calyx and corolla of the same variety was bigger in 2019 compared to 2018, due to favourable climatic conditions.
    [Show full text]
  • Tree Composition and Ecological Structure of Akak Forest Area
    Environment and Natural Resources Research; Vol. 9, No. 4; 2019 ISSN 1927-0488 E-ISSN 1927-0496 Published by Canadian Center of Science and Education Tree Composition and Ecological Structure of Akak Forest Area Agbor James Ayamba1,2, Nkwatoh Athanasius Fuashi1, & Ayuk Elizabeth Orock1 1 Department of Environmental Science, University of Buea, Cameroon 2 Ajemalebu Self Help, Kumba, South West Region, Cameroon Correspondence: Agbor James Ayamba, Department of Environmental Science, University of Buea, Cameroon. Tel: 237-652-079-481. E-mail: ayamba87@yahoo.com Received: August 2, 2019 Accepted: September 11, 2019 Online Published: October 12, 2019 doi:10.5539/enrr.v9n4p23 URL: https://doi.org/10.5539/enrr.v9n4p23 Abstract Tree composition and ecological structure were assessed in Akak forest area with the objective of assessing the floristic composition and the regeneration potentials. The study was carried out between April 2018 to February 2019. A total of 49 logged stumps were selected within the Akak forest spanning a period of 5 years and 20m x 20m transects were demarcated. All plants species <1cm and above were identified and recorded. Results revealed that a total of 5239 individuals from 71 families, 216 genera and 384species were identified in the study area. The maximum plants species was recorded in the year 2015 (376 species). The maximum number of species and regeneration potentials was found in the family Fabaceae, (99 species) and (31) respectively. Baphia nitida, Musanga cecropioides and Angylocalyx pynaertii were the most dominant plants specie in the years 2013, 2015 and 2017 respectively. The year 2017 depicts the highest Simpson diversity with value of (0.989) while the year 2015 show the highest Simpson dominance with value of (0.013).
    [Show full text]
  • Common Name: Scientific Name(S): Diospyros Crassiflora Diospyros
    Common name: EBENE D'AFRIQUE Family: EBENACEAE Scientific name(s): Diospyros crassiflora Diospyros mespiliformis Note: Other African Diospyros species are not commercialized due to their light colour (ex.: D. sanzaminika). Moreover, there are a lots of other Diospyros species, especially in Asia-Océania: among others, D. perrierii in Madagascar, D. celebica and D. rumphii (Ebène de Macassar). Wood often commercialized in small logs of 1 m to 1,5 m long. LOG DESCRIPTION WOOD DESCRIPTION Diameter: from 30 to 60 cm Colour: Black Thickness of sapwood: from 512 to cm Sapwood: Clearly demarcated Floats: no Texture: Fine Durability in forest : Good Grain: Straight or interlocked Interlocked grain: Slight Note: Logs may present different kinds of defects, especially small pinholes and heartwood rots. Wood is uniform black to black brown (D. mespiliformis). PHYSICAL PROPERTIES MECHANICAL PROPERTIES Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions. mean standard deviation mean standard Density *: 0.90 g/cm3 0.06 deviation Monnin hardness*: 7.0 0.6 Crushing strength *: 58 MPa 8 Coef of volumetric shrinkage: 0.51 % 0.04 Static bending strength *: 130 MPa 31 Total tangential shrinkage: 11.0 % 0.5 Total radial shrinkage: 7.0 % 0.2 Modulus of elasticity *: 15500 MPa 3500 Fibre saturation point: 29 % Stability: Poorly stable ( * : at 12 % moisture content ; 1 MPa = 1 N/mm2 ) Note: Properties are very variable according to the species and the origin; thus, specific gravity may vary from 0,75 to 1,1. NATURAL DURABILITY AND TREATABILITY Fungi and termite resistance refers to end-uses under temperate climate.
    [Show full text]
  • (Ebenaceae) by Evaluating Short Sequence Region of Plastid Rbcl Gene
    POJ 7(2):102-107 (2014) ISSN:1836-3644 Nucleotide based validation of the endangered plant Diospyros mespiliformis (Ebenaceae) by evaluating short sequence region of plastid rbcL gene Abdullah Alaklabi1, Ibrahim A. Arif 2,3, Sameera O. Bafeel4, Ahmad H. Alfarhan2,3, Anis Ahamed2,3, Jacob Thomas2 and Mohammad A. Bakir2,3* 1Department of Biology, College of Arts and Science, Al-Baha University (BU), Baljurashi, Saudi Arabia 2Department of Botany and Microbiology, College of Science, King Saud University (KSU), Riyadh, Saudi Arabia 3Saudi Biological Society and Prince Sultan Research Chair for Environment and Wildlife, King Saud University 4Department of Biology, King Abdulaziz University (KAU), Jeddah, Saudi Arabia *Corresponding author. Email: mbakir@ksu.edu.sa Abstract Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. Close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D.
    [Show full text]
  • Diospyros Virginiana: Common Persimmon1 Edward F
    ENH390 Diospyros virginiana: Common Persimmon1 Edward F. Gilman, Dennis G. Watson, Ryan W. Klein, Andrew K. Koeser, Deborah R. Hilbert, and Drew C. McLean2 Introduction Uses: fruit; reclamation; specimen; urban tolerant; highway median; bonsai An excellent small to medium tree, common persimmon is an interesting, somewhat irregularly-shaped native tree, for possible naturalizing in yards or parks. Bark is grey or black and distinctly blocky with orange in the valleys between the blocks. Fall color can be a spectacular red in USDA hardiness zones 4 through 8a. It is well adapted to cities, but presents a problem with fruit litter, attracting flies and scavengers, such as opossums and other mammals. Its mature height can be 60 feet, with branches spreading from 20 to 35 feet and a trunk two feet thick, but it is commonly much shorter in landscapes. The trunk typically ascends up through the crown in a curved but very dominant fashion, rarely producing double or multiple leaders. Lateral branches are typically much smaller in diameter than the trunk. General Information Scientific name: Diospyros virginiana Pronunciation: dye-OSS-pih-ross ver-jin-nee-AY-nuh Common name(s): common persimmon Family: Ebenaceae USDA hardiness zones: 4B through 9B (Figure 2) Origin: native to the southern two-thirds of the eastern United States UF/IFAS Invasive Assessment Status: native Figure 1. Full Form—Diospyros virginiana: common persimmon 1. This document is ENH390, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date November 1993. Revised December 2018. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
    [Show full text]
  • Diospyros Crassiflora, Ebony
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T33048A2831968 Scope: Global Language: English Diospyros crassiflora, Ebony Assessment by: Schatz, G.E., Lowry, II, P.P., Onana, J.-M., Stévart, T. & Deblauwe , V. View on www.iucnredlist.org Citation: Schatz, G.E., Lowry, II, P.P., Onana, J.-M., Stévart, T. & Deblauwe , V. 2019. Diospyros crassiflora. The IUCN Red List of Threatened Species 2019: e.T33048A2831968. http://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T33048A2831968.en Copyright: © 2018 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Plantae Tracheophyta Magnoliopsida Ericales Ebenaceae Taxon Name: Diospyros crassiflora Hiern Synonym(s): • Diospyros ampullacea Gürke • Diospyros evila Pierre ex A.Chev.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. datarmandar@gmail.com G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • PICT: a Low Cost, Modular, Open-Source Camera Trap System to Study Plant-Insect Interactions
    PICT: A low cost, modular, open-source camera trap system to study plant-insect interactions Vincent Droissart, Laura Azandi, Eric Rostand Onguene, Marie Savignac, Thomas Smith, Vincent Deblauwe To cite this version: Vincent Droissart, Laura Azandi, Eric Rostand Onguene, Marie Savignac, Thomas Smith, et al.. PICT: A low cost, modular, open-source camera trap system to study plant-insect interactions. Meth- ods in Ecology and Evolution, Wiley, 2021, 12 (8), pp.1389-1396. 10.1111/2041-210X.13618. hal- 03217745 HAL Id: hal-03217745 https://hal.inrae.fr/hal-03217745 Submitted on 17 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received: 28 January 2021 | Accepted: 7 April 2021 DOI: 10.1111/2041-210X.13618 PRACTICAL TOOLS PICT: A low- cost, modular, open- source camera trap system to study plant– insect interactions Vincent Droissart1,2,3 | Laura Azandi2,3 | Eric Rostand Onguene4,5 | Marie Savignac1,3 | Thomas B. Smith6 | Vincent Deblauwe2,4,6 1AMAP Lab, Université Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France; 2Herbarium et Bibliothèque de Botanique Africaine, Université Libre de Bruxelles, Brussels, Belgium; 3Plant Systematics and Ecology Laboratory, Higher Teachers’ Training College, University of Yaoundé I, Yaoundé, Cameroon; 4International Institute of Tropical Agriculture, Yaoundé, Cameroon; 5National Forestry School Mbalmayo, Mbalmayo, Cameroon and 6Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA Correspondence Vincent Deblauwe Abstract Email: v.deblauwe@cgiar.org 1.
    [Show full text]
  • Notes on Persimmons, Kakis, Date Plums, and Chapotes by STEPHEN A
    Notes on Persimmons, Kakis, Date Plums, and Chapotes by STEPHEN A. SPONGBERG The genus Diospyros is not at present an important genus of orna- mental woody plants in North America, and while native persimmons once were valuable fruits in the eastern United States, the fruits pro- duced by Diospyros species no longer are important food items in the American home. In the countries of eastern Asia at least two species of Diospyros are among the most common trees encountered in door- yard gardens and orchards, where they are cultivated for their edible fruits as well as for other uses and for their ornamental beauty. J. J. Rein, a German traveler and author, wrote in 1889 that Diospyros kaki Linnaeus f. was "undeniably the most widely distributed, most important, and most beautiful fruit-tree in Japan, Corea, and North- ern China." And in Japan, where D. kaki is second in importance as an orchard crop only to citrus fruit, the kaki often is referred to as the national fruit (Childers, 1972). The rarity with which species of Diospyros are found in cultivation in cool-temperate North America is partially due to the fact that most are native to regions of tropical and subtropical climate and are not hardy in areas of temperate climate. A member of the Ebenaceae or Ebony Family, the genus contains upwards of 400 species that occur Stephen A. Spongberg is a horticultural taxonomist at the Arnold Arbore- tum. He participated in the Arboretum’s collecting trip to Japan and Korea in the fall of 1977, an experience which intensifted his interest in persim- mons.
    [Show full text]